

Ruud Commercial Achiever® Series Package Gas Electric Unit

RKNL-C Series

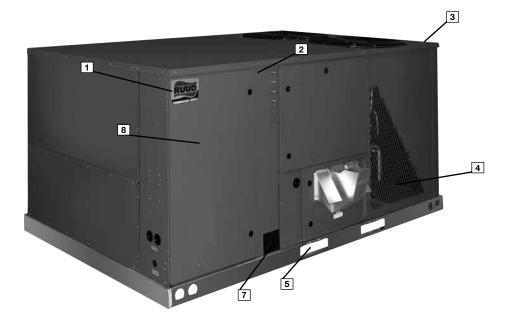
With ClearControl™ Nominal Sizes 6-12.5 Tons [21.1-44.0 kW] ASHRAE 90.1-2010 Compliant 6-8.5 Tons [21.1-29.9 kW] ASHRAE 90.1-2007 Compliant 10-12.5 Tons [35.2-44.0 kW]

RKNL-H Series

With ClearControl™ and VFD Technology Nominal Sizes 7.5-12.5 Tons [26.4-44.0 kW] ASHRAE 90.1-2010 Compliant

TABLE OF CONTENTS

		ŋ		s	
	r	б		7	ь
r	u		9	١,	и


Unit Features & Benefits	3-8
Model Number Identification	9
Options	10
Selection Procedure	11
General Data	
RKNL-C/H Series	12-25
General Data Notes	26
Gross Systems Performance Data	
RKNL-C/H Series	27-29
Indoor Airflow Performance	
RKNL-C/H Series	30-34
Electrical Data	
RKNL-C/H Series	35-38
Dimensional Data	39-42
Accessories	43-65
Mechanical Specifications	66-72
Wiring Diagrams	73-82
Limited Marranty	0.0

RKNL-C/H STANDARD FEATURES INCLUDE:

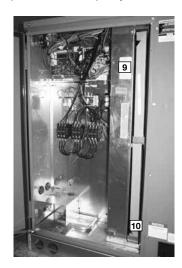
- R-410A HFC refrigerant.
- Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Single compressor on 6 ton model.
- Two compressors on 7.5-12.5 ton models.
- · Convertible airflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintained high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece base pan with drawn supply and return opening for superior water management.
- Forkable base rails for easy handling and lifting.

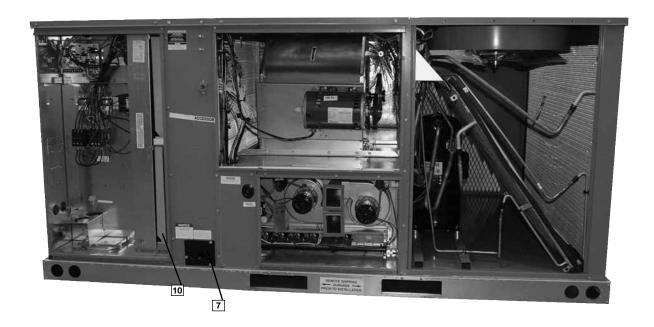
- Single point electrical and gas connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- · 2 inch filter standard with slide out design.
- Two stage gas valve and direct spark ignition.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils (12¹/₂ ton uses MicroChannel condenser).
- Molded compressor plug.
- Factory Installed ClearControl[™], a Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.
- -H models with supply fan Variable Frequency Drive (VFD) meets ASHRAE 90.1-2010 and California Title 24.

Ruud Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and service-ability that goes into each unit. Outwardly, the large Ruud Commercial SeriesTM label (1) identifies the brand to the customer.

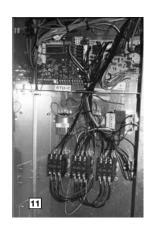
The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The Ruud hail guard (4) (optional) is its trademark, and sets the standard for coil protection in the industry. Every Ruud package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

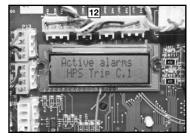



During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Ruud-required reliability tests. Ruud adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (8). Contractors can rest assured that when a Ruud package unit arrives at the job, it is ready to go with a factory charge and quality checks.

Access is granted with 1/4 turn fasteners and hinged access panels. Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large hinged-access panel. The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test

assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.



Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and colorcoded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKNL-C/H Package Gas Electric Unit has a Rooftop Unit Con-

troller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/Integral control algorithms perform specific unit functions

that govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system (12). New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-C/H Package Gas/Electric with the RTU-C is specifically designed to be applied in four distinct applications:

The RKNL-C/H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RKNL-C/H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKNL-C/H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-C/H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

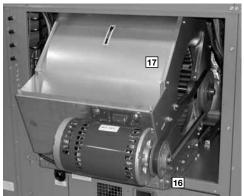
A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

-H models with factory installed supply fan Variable Frequency Drive (VFD) (13) optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 126%

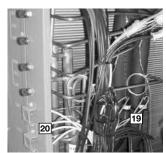
more moisture is removed improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desired speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the number 1 compressor contactor. The suggested

mounting for the field-installed disconnect is on the exterior side of the electrical control box.


To the right of the electrical and filter compartment are the externally mounted gauge ports, which are permanently identified by

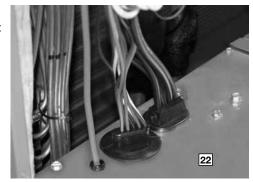
embossed wording that clearly identifies the compressor circuit, high pressure connection and low pressure connection (15). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily. Brass caps on the schrader fitting assure that the gauge parts are leak proof.

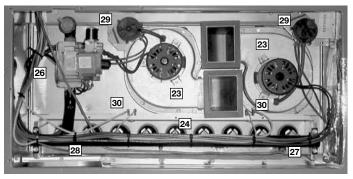


The blower compartment is to the right of the gauge ports and can be accessed by 1/4 turn fastener. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing two 3/8" screws from the blower retention bracket. The adjustable motor pulley (16) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static, Ruud has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions. proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing

which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft. creating burrs that make blower-pulley removal difficult.

Also inside the blower compartment is the low-ambient control (18), low-pressure switch (19), high-pressure switch (20) and freeze sensor (21). The lowambient control allows for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch will shut off the compressors if pressures in excess of 610 PSIG are detected, as may occur if the outdoor fan motor fails. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow and allows monitoring of the suction line temperature on the controller display. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs and schrader fittings allow for easy field installation.

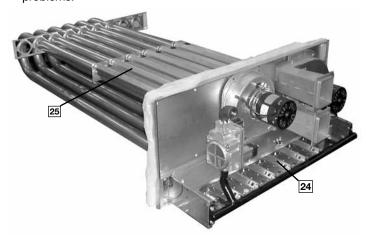



Inside the blower compartment the interlaced evaporator can also

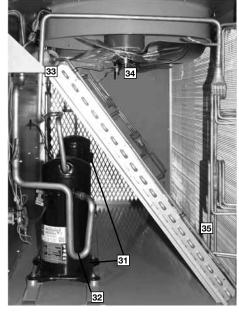
be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator. (Note: the single stage 6 ton utilizes an orifice).

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly ([22]) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken

to tuck raw edges of insulation behind sheet metal to improve indoor air quality.



The furnace compartment contains the latest furnace technology on the market. The draft inducers (23) draw the flame from the Ruud exclusive in-shot burners (24) into the aluminized tubular heat exchanger (25) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipment with a two-stage gas valve (26), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.


The direct spark igniter (27) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (28) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (29) to assure adequate combustion airflow before ignition.
- Rollout switches (30) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.

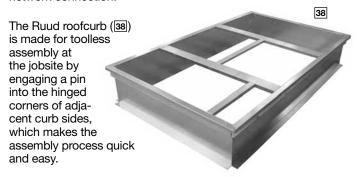
The compressor compartment houses the heartbeat of the unit. The scroll compressor (31) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (32) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and

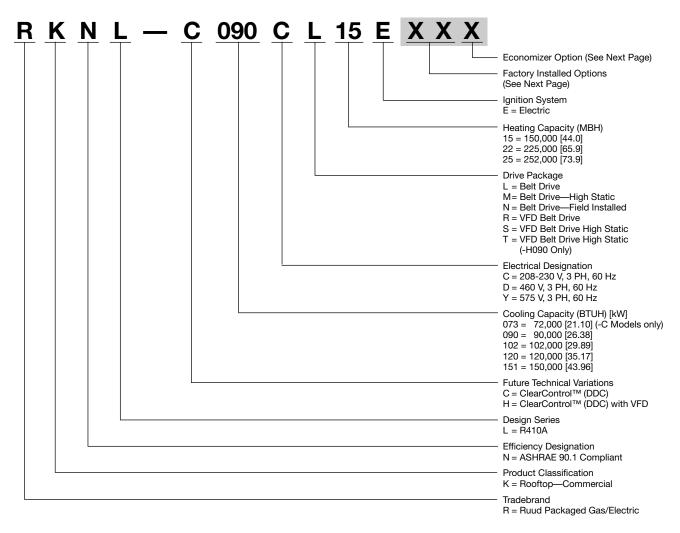
each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage. (072 single stage)

Each unit comes standard with filter dryer 33. The condenser fan motor (34) can easily be accessed and maintained through the top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (35) for the most effective method of heat transfer. The outdoor coil is protected by optional* louvered panels, which allow unobstructed airflow while protecting the unit from both Mother Nature and vandalism.

Each unit is designed for both downflow or horizontal applications (36) for job configuration flexibility. The return air compartment can also contain an economizer (37)


Three models exist, two for downflow applications, and one for horizontal applications (a downflow


detector in the return section is available. Each unit is pre-wired for the economizer to allow guick plug-in installation. The economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The

economizer control has a minimum position setpoint, an outdoor-air setpoint, a mixair setpoint, and a CO2 setpoint. Barometric relief is standard on all economizers. Power Exhaust (37) is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plugin assembly. The wire harness to the economizer also has accommodations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

FACTORY INSTALLED OPTION CODES FOR KNL-C/H (6 TO 12.5 TON) [21.1 TO 44.0 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AD	X			
AJ		X		
AH			х	
AR				Х
BF	Х			
BG	Х	х		
JD	X			Х
JB		х	х	Х
KA	Х	х		Х
DP	X	Х	х	Х

NOTES: (1) High and low pressure is standard on all models.

ECONOMIZER SELECTION FOR KNL-C/H (6 TO 12.5 TON) [21.1 TO 44.0 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer w/Barometric Relief	DDC Single Enthalpy Economizer w/Barometric Relief and Smoke Detector
А	Х		
Н		X	
J			Х

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

RKNL-C120CL22Ethis unit has no factory installed options.

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

RKNL-C120CL22E**BGA**this unit is equipped with <u>hail guard and stainless steel heat exchanger.</u>

RKNL-C120CL22E**AHA**.....this unit is equipped with a <u>non-powered convenience outlet</u> and <u>unfused service disconnect.</u>

RKNL-C120CL22E**AHH**this unit is equipped as above and includes an <u>Economizer</u>

with single enthalpy sensor and with barometric relief.

RKNL-C120CL22E**AAH**.....this unit is equipped with an <u>Economizer with single enthalpy sensor and Barometric Relief.</u>

[&]quot;x" indicates factory installed option.

To select an RKNL-C Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

208/240V-3 Phase 60 Hz Voltage-Total cooling capacity— 106,000 BTUH [31.0 kW] Sensible Cooling Capacity — 82,000 BTUH [24.0 kW] Heating Capacity -150,000 BTUH [43.9 kW] *Condenser Entering Air — 95°F [35.0 °C] DB - 65°F [18.3 °C] WB *Evaporator Mixed Air Entering -78°F [25.6 °C] DB *Indoor Air Flow (vertical) — 3600 CFM [1699 L/s] *External Static Pressure — 0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 3750 CFM [1770 L/s] indoor air flow (table basis):

Total Cooling Capacity = 118,900 BTUH [34.82 kW] Sensible Cooling Capacity = 99,950 BTUH [29.27 kW] Power Input (Compressor and Cond. Fans) = 8,950 watts

Use formula in note (1) to determine sensible capacity at 78° F [25.6 $^{\circ}$ C] DB evaporator entering air:

99,950 + (1.10 x 3,600 x (1 – 0.03) x (78 – 80))

Sensible Cooling Capacity = 92,268 BTUH [27.02 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $118,900 \times 0.98 = 116,522$ BTUH [34.12 kW] Sensible Capacity = $92,268 \times 0.95 = 87,655$ BTUH [25.67 kW] Power Input = $8,950 \times 0.99 = 8,861$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.076 in. WG [.02 kPa] for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.476 (0.5) in. WG [.12 kPa], and determine:

RPM = 796 WATTS = 1,576 DRIVE = L (standard 2 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

 $1,576 \times 3.412 = 5,377 BTUH [1.57 kW]$

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 116,522 - 5,377 = 111,145 BTUH [32.54 kW]

Net Sensible Capacity = 87,655 - 5,377 = 82,278 BTUH [24.09 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 8,861 (step 3) + 1,576 (step 4) = 10,437 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{111,145}{10,437} = 10.65$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 182,250 BTUH [53.4 kW]

9. CHOOSE MODEL RKNL-C120CL22E

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RKNL- Series Model RKNL- Series (with VFD)	C073CL15E	C073CM15E	C073DL15E	C073DM15E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	75,000 [21.97]	75,000 [21.97]	75,000 [21.97]	75,000 [21.97]
EER/SEER ²	11/NA	11/NA	11/NA	11/NA
Nominal CFM/AHRI Rated CFM [L/s]	2400/2325 [1133/1097]	2400/2325 [1133/1097]	2400/2325 [1133/1097]	2400/2325 [1133/1097]
AHRI Net Cooling Capacity Btu [kW]	72,000 [21.1]	72,000 [21.1]	72,000 [21.1]	72,000 [21.1]
Net Sensible Capacity Btu [kW]	52,800 [15.47]	52,800 [15.47]	52,800 [15.47]	52,800 [15.47]
Net Latent Capacity Btu [kW]	19,200 [5.63]	19,200 [5.63]	19,200 [5.63]	19,200 [5.63]
IEER ³ Latent (Standard / VFD)	19,200 [3.03]	19,200 [3.03]	19,200 [5.05]	
,	6.42	6.42	6.42	11.8 6.42
Net System Power kW	0.42	0.42	0.42	0.42
Heating Performance (Gas)4	75 000/450 000 104 07/40 051	75 000/450 000 [04 07/40 05]	75 000/450 000 [04 07/40 05]	75 000/450 000 104 07/40 05
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	75,000/150,000 [21.97/43.95]	75,000/150,000 [21.97/43.95]	75,000/150,000 [21.97/43.95
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	60,750/121,500 [17.8/35.6]	60,750/121,500 [17.8/35.6]	60,750/121,500 [17.8/35.6]
Temperature Rise Range °F [°C]	30-60 [16.7-33.3] 30-60 [16.7-33.3]	30-60 [16.7-33.3] 30-60 [16.7-33.3]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]
(1st Stage / 2nd Stage)	81	81	81	81
Steady State Efficiency (%)				
No. Burners	6	6	6	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]
Compressor	4/0 !!	4 (0 11	4.0	4.0
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
Indoor Fan—Type	•	· ·	•	•
No. Used/Diameter in. [mm]	1/11x12 [279x305]	1/11x12 [279x305]	1/11x12 [279x305]	1/11x12 [279x305]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single	Single	Single	Single
No. Motors	1 1 1/0	1	1 1/0	1 1/0
Motor HP	1 1/2	1 1/2	1 1/2	1 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	125 [3544]	125 [3544]	125 [3544]	125 [3544]
Weights				
Net Weight lbs. [kg]	901 [409]	901 [409]	901 [409]	901 [409]

Model RKNL- Series Model RKNL- Series (with VFD)	C073YL15E	C073YM15E	C090CL15E H090CR15E	C090CL22E H090CR22E
Cooling Performance ¹				CONTINUED-
Gross Cooling Capacity Btu [kW]	75,000 [21.97]	75,000 [21.97]	93,000 [27.25]	93,000 [27.25]
EER/SEER2	11/NA	11/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	2400/2325 [1133/1097]	2400/2325 [1133/1097]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
AHRI Net Cooling Capacity Btu [kW]	72,000 [21.1]	72,000 [21.1]	90,000 [26.37]	90,000 [26.37]
Net Sensible Capacity Btu [kW]	52,800 [15.47]	52,800 [15.47]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	19,200 [5.63]	19,200 [5.63]	26,900 [7.88]	26,900 [7.88]
IEER3 Latent (Standard / VFD)	11.8	11.8	11.9/14.5	11.9/14.5
Net System Power kW	6.42	6.42	7.99	7.99
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	75,000/150,000 [21.97/43.95]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	60,750/121,500 [17.8/35.6]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C]	30-60 [16.7-33.3] /	30-60 [16.7-33.3] /	25-55 [13.9-30.6] /	40-70 [22.2-38.9] /
(1st Stage / 2nd Stage)	30-60 [16.7-33.3]	30-60 [16.7-33.3]	25-55 [13.9-30.6]	40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	6	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]	0.75 [19]
Compressor				
No./Type	1/Scroll	1/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
• •	TX Valves	TX Valves	TX Valves	TX Valves
Refrigerant Control				
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/11x12 [279x305]	1/11x12 [279x305]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single	Single	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	1 1/2	1 1/2	2	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	125 [3544]	125 [3544]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]
Weights				
Net Weight lbs. [kg]	901 [409]	901 [409]	1017 [461]	1053 [478]
Ship Weight lbs. [kg]	938 [425]	938 [425]	1054 [478]	1054 [478]
only mendin ins. [vil]	JUU [72J]	JUU [72J]	[] Desig	1007 [017]

Gooling Performance1 Gross Cooling Capacity Btu [kW] EER/SEER2 Nominal CFM/AHRI Rated CFM [L/s] AHRI Net Cooling Capacity Btu [kW] Net Sensible Capacity Btu [kW]	93,000 [27.25] 11.2/NA 3000/2775 [1416/1310]	93,000 [27.25]	93,000 [27.25]	CONTINUED
EER/SEER ² Nominal CFM/AHRI Rated CFM [L/s] AHRI Net Cooling Capacity Btu [kW] Net Sensible Capacity Btu [kW]	11.2/NA		02 000 [27 25]	
Nominal CFM/AHRI Rated CFM [L/s] AHRI Net Cooling Capacity Btu [kW] Net Sensible Capacity Btu [kW]				93,000 [27.25]
AHRI Net Cooling Capacity Btu [kW] Net Sensible Capacity Btu [kW]	3000/2775 [1416/1310]	11.2/NA	11.2/NA	11.2/NA
Net Sensible Capacity Btu [kW]		3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]
Net Letest Conseit, Dt., [IAM]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]
IEER3 Latent (Standard / VFD)	11.9/14.5	11.9/14.5	11.9/14.5	11.9/14.5
Net System Power kW	7.99	7.99	7.99	7.99
Heating Performance (Gas)4				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Rows / FPI [FPcm]	TX Valves	TX Valves	TX Valves	TX Valves
Refrigerant Control				
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]
Weights	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Net Weight lbs. [kg]	1025 [465]	1053 [478]	1025 [465]	1050 [476]
Ship Weight Ibs. [kg]	1054 [478]	1054 [478]	1054 [478]	1054 [478]

Model RKNL- Series Model RKNL- Series (with VFD)	C090DL15E H090DR15E	C090DL22E H090DR22E	C090DM15E H090DS15E	C090DM22E H090DS22E
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]
IEER ³ Latent (Standard / VFD)	11.9/14.5	11.9/14.5	11.9/14.5	11.9/14.5
Net System Power kW	7.99	7.99	7.99	7.99
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
	0.0 [12.7]	0.70 [18]	0.0 [12.1]	נפון ניוט
Compressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
	Direct/1	Direct/1	2/24 [003.0] Direct/1	2/24 [003.0] Direct/1
Drive Type/No. Speeds				
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	2	2	2	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]
Weights				
Net Weight lbs. [kg]	1025 [465]	1053 [478]	1017 [461]	1053 [478]
Ship Weight lbs. [kg]	1054 [478]	1054 [478]	1054 [478]	1054 [478]

Model RKNL- Series Model RKNL- Series (with VFD)	CO90DN15E Ho90DT15E	C090DN22E H090DT22E	C090YL22E	C090YM22E
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]
IEER3 Latent (Standard / VFD)	11.9/14.5	11.9/14	11.9	11.9
Net System Power kW	7.99	7.99	7.99	7.99
Heating Performance (Gas) ⁴				
	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	112,500/225,000 [32.96/65.92]	112,500/225,000 [32.96/65.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C]	25-55 [13.9-30.6] /	40-70 [22.2-38.9] /	40-70 [22.2-38.9] /	40-70 [22.2-38.9] /
(1st Stage / 2nd Stage)	25-55 [13.9-30.6]	40-70 [22.2-38.9]	40-70 [22.2-38.9]	40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	9	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	[]	2 []		[]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Type Tube Size in. [mm] OD				
	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single	Single
No. Motors	1	1	1	1
Motor HP	3	3	2	2
	3 1725	1725	1725	1725
Motor Frame Size		1725 56		1725 56
Motor Frame Size	56		56	
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]
Weights				
Net Weight lbs. [kg]	1025 [465]	1050 [476]	1053 [478]	1053 [478]
Ship Weight lbs. [kg]	1054 [478]	1054 [478]	1054 [478]	1054 [478]

Model RKNL- Series Model RKNL- Series (with VFD)	C090YN22E	C102CL15E H102CR15E	C102CL22E H102CR22E	C102CM15E H102CS15E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	101,000 [29.59]	101,000 [29.59]	101,000 [29.59]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3200/3200 [1510/1510]	3200/3200 [1510/1510]	3200/3200 [1510/1510]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	97,000 [28.42]	97,000 [28.42]	97,000 [28.42]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	74,000 [21.68]	74,000 [21.68]	74,000 [21.68]
Net Latent Capacity Btu [kW]	26,900 [7.88]	23,000 [6.74]	23,000 [6.74]	23,000 [6.74]
IEER ³ Latent (Standard / VFD)	11.9	12/14.4	12/14.4	12/14.4
Net System Power kW	7.99	8.59	8.59	8.59
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6
Temperature Rise Range °F [°C]	40-70 [22.2-38.9] /	25-55 [13.9-30.6] /	40-70 [22.2-38.9] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor		*** [****]	2	*** []
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
	Rifled	Rifled	Rifled	Rifled
Tube Type				
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable) Single / Multiple	Belt (Adjustable) Single / Multiple	Belt (Adjustable) Single / Multiple
No. Speeds (Standard / VFD)	Single		,	9
No. Motors	1	1	1	1
Motor HP	3	2	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	107.5/110.7 [3048/3138]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]
Weights				
Net Weight lbs. [kg]	1050 [476]	1059 [480]	1095 [497]	1067 [484]
Ship Weight lbs. [kg]	1054 [478]	1096 [497]	1096 [497]	1096 [497]
5 - 5 F. 61				nates Metric Conversi

Model RKNL- Series Model RKNL- Series (with VFD)	C102CM22E H102CS22E	C102DL15E H102DR15E	C102DL22E H102DR22E	C102DM15E H102DS15E
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	101,000 [29.59]	101,000 [29.59]	101,000 [29.59]	101,000 [29.59]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3200/3200 [1510/1510]	3200/3200 [1510/1510]	3200/3200 [1510/1510]	3200/3200 [1510/1510]
AHRI Net Cooling Capacity Btu [kW]	97,000 [28.42]	97,000 [28.42]	97,000 [28.42]	97,000 [28.42]
Net Sensible Capacity Btu [kW]	74,000 [21.68]	74,000 [21.68]	74,000 [21.68]	74,000 [21.68]
Net Latent Capacity Btu [kW]	23,000 [6.74]	23,000 [6.74]	23,000 [6.74]	23,000 [6.74]
IEER3 Latent (Standard / VFD)	12/14.4	12/14.4	12/14.4	12/14.4
Net System Power kW	8.59	8.59	8.59	8.59
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.0
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor	r - 1		r -1	
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Rows / FPI [FPcm]				
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	2	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]
Weights	-		-	
Net Weight lbs. [kg]	1090 [494]	1059 [480]	1095 [497]	1067 [484]

Model RKNL- Series Model RKNL- Series (with VFD)	C102DM22E H102DS22E	C102YL15E	C102YL22E	C102YM15E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	101,000 [29.59]	101,000 [29.59]	101,000 [29.59]	101,000 [29.59]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3200/3200 [1510/1510]	3200/3200 [1510/1510]	3200/3200 [1510/1510]	3200/3200 [1510/1510]
AHRI Net Cooling Capacity Btu [kW]	97,000 [28.42]	97,000 [28.42]	97,000 [28.42]	97,000 [28.42]
Net Sensible Capacity Btu [kW]	74,000 [21.68]	74,000 [21.68]	74,000 [21.68]	74,000 [21.68]
Net Latent Capacity Btu [kW]	23,000 [6.74]	23,000 [6.74]	23,000 [6.74]	23,000 [6.74]
IEER3 Latent (Standard / VFD)	12/14.4	12	12	12
Net System Power kW	8.59	8.59	8.59	8.59
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112.500/225.000 [32.96/65.92]	75.000/150.000 [21.97/43.95]	112.500/225.000 [32.96/65.92]	75.000/150.000 [21.97/43.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6
Temperature Rise Range °F [°C]	40-70 [22.2-38.9] /	25-55 [13.9-30.6] /	40-70 [22.2-38.9] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor	. ,			. ,
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
	Rifled	Rifled	Rifled	Rifled
Tube Type				
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single	Single	Single
No. Motors	1	1	1	1
Motor HP	3	2	2	3
Motor RPM	1725	1725	1725	1725
		56		1725 56
Motor Frame Size	56		56	
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]
Veights				
Net Weight lbs. [kg]	1090 [494]	1095 [497]	1095 [497]	1095 [497]
Ship Weight lbs. [kg]	1096 [497]	1096 [497]	1096 [497]	1096 [497]
See Page 26 for Notes.			[] Desig	nates Metric Conversion

Model RKNL- Series Model RKNL- Series (with VFD)	C102YM22E	C120CL15E H120CR15E	C120CL22E H120CR22E	C120CM15E H120CS15E
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	101,000 [29.59]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3200/3200 [1510/1510]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]
AHRI Net Cooling Capacity Btu [kW]	97,000 [28.42]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]
Net Sensible Capacity Btu [kW]	74,000 [21.68]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]
Net Latent Capacity Btu [kW]	23,000 [6.74]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]
IEER3 Latent (Standard / VFD)	12	11.9/14.4	11.9/14.4	11.9/14.4
Net System Power kW	8.59	10.49	10.49	10.49
Heating Performance (Gas)4				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.5
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
<u> </u>		Louvered		
Indoor Coil—Fin Type	Louvered Rifled	Rifled	Louvered Rifled	Louvered Rifled
Tube Type				
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	2	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	154.4/166.6 [4377/4723]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126
Weights	1 71	£ ·+1	į 7j	
Net Weight lbs. [kg]	1095 [497]	1112 [504]	1148 [521]	1120 [508]
Ship Weight lbs. [kg]	1096 [497]	1149 [521]	1149 [521]	1149 [521]
omp wogni ing. [rg]	1000 [101]	1130 [021]	[] Desig	1130 [021]

Model RKNL- Series Model RKNL- Series (with VFD)	C120CM22E H120CS22E	C120DL15E H120DR15E	C120DL22E H120DR22E	C120DM15E H120DS15E
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]
AHRI Net Cooling Capacity Btu [kW]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]
Net Sensible Capacity Btu [kW]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]
Net Latent Capacity Btu [kW]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]
IEER ³ Latent (Standard / VFD)	11.9/14.4	11.9/14.4	11.9/14.4	11.9/14.4
Net System Power kW	10.49	10.49	10.49	10.49
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor	r - i	. 1	r -1	L J
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
CFM [L/s]	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
No. Motors/HP Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	2	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]
Weights				
Net Weight lbs. [kg]	1145 [519]	1112 [504]	1148 [521]	1120 [508]
Ship Weight lbs. [kg]	1149 [521]	1149 [521]	1149 [521]	1149 [521]

123,000 [36.04] 11.2/NA	123,000 [36.04]	122 000 221	CONTINUED -
11.2/NA	123,000 [36.04]	100 000 106 041	
		123,000 [36.04]	146,000 [42.78]
	11.2/NA	11.2/NA	10.8/NA
4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	5000/4225 [2360/1994]
118,000 [34.57]	118,000 [34.57]	118,000 [34.57]	140,000 [41.02]
88,800 [26.02]	88,800 [26.02]	88,800 [26.02]	99,500 [29.15]
29,200 [8.56]	29,200 [8.56]	29,200 [8.56]	40,500 [11.87]
11.9/14.4	11.9	11.9	10.8/13.5
10.49	10.49	10.49	12.73
112,500/225,000 [32.96/65.92]	$112,\!500/225,\!000\;[32.96/65.92]$	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.9
91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6
25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]
81	81	81	81
9	9	9	6
2	2	2	2
0.75 [19]	0.75 [19]	0.75 [19]	0.5 [12.7]
2/Scroll	2/Scroll	2/Scroll	2/Scroll
88	88	88	88
Louvered	Louvered	Louvered	Louvered
Rifled	Rifled	Rifled	MicroChannel
0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	1 [25.4]
27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 23 [9]
Louvered	Louvered	Louvered	Louvered
Rifled	Rifled	Rifled	Rifled
0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	4 / 15 [6]
TX Valves	TX Valves	TX Valves	TX Valves
1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Propeller	Propeller	Propeller	Propeller
2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Direct/1	Direct/1	Direct/1	Direct/1
8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/2 HP
1075	1075	1075	1075
FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
Single / Multiple	Single	Single	Single / Multiple
1	1	1	1
3	2	3	3
1725	1725	1725	1725
56	56	56	56
Disposable		Disposable	Disposable
Yes	Yes	Yes	Yes
			(6)2x18x18 [51x457x457
		172.8/180.8 [4899/5126]	147.2/152 [4173/4309]
[[[[
1145 [519]	1148 [521]	1145 [519]	1266 [574]
			1303 [591]
	11.9/14.4 10.49 112,500/225,000 [32.96/65.92] 91,125/182,250 [26.7/53.4] 25-55 [13.9-30.6] / 25-55 [13.9-30.6] / 25-55 [19] 2/Scroll 88 Louvered Rifled 0.375 [9.5] 27 [2.51] 2 / 22 [9] Louvered Rifled 0.375 [9.5] 13.5 [1.25] 3 / 18 [7] TX Valves 1/1 [25.4] Propeller 2/24 [609.6] Direct/1 8000 [3775] 2 at 1/3 HP 1075 FC Centrifugal 1/15x15 [381x381] Belt (Adjustable) Single / Multiple 1 3 1725 56 Disposable	11.9/14.4 11.9 10.49 112,500/225,000 [32.96/65.92] 112,500/225,000 [32.96/65.92] 91,125/182,250 [26.7/53.4] 25-55 [13.9-30.6] / 25-55 [13.9-30.6	11.9/14.4 11.9 11.9 10.49 10.49 10.49 112,500/225,000 [32,96/65.92] 112,500/225,000 [32,96/65.92] 112,500/225,000 [32,96/65.92] 91,125/182,250 [26.7/53.4] 91,125/182,250 [26.7/53.4] 91,125/182,250 [26.7/53.4] 25-55 [13,9-30.6] / 25-55 [13,9-30.6] / 25-55 [13,9-30.6] / 25-55 [13,9-30.6] 25-55 [13,9-30.6] / 25-55 [3,9-30.6] / 25-55 [3,9-30.6] 81 81 81 81 9 9 9 9 2 C 2 2 0.75 [19] 0.75 [19] 0.75 [19] 2/Scroll 2/Scroll 2/Scroll 88 8 8 Louvered Louvered Rifled Rifled Rifled Rifled 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] 2 / 22 [9] 2 / 22 [9] 2 / 22 [9] Louvered Louvered Rifled Rifled Rifled Rifled 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] 3 18 [7] 3 / 18 [7] 3 / 18 [7] TX Valves

Model RKNL- Series Model RKNL- Series (with VFD)	C151CL25E H151CR25E	C151CM15E H151CS15E	C151CM25E H151CS25E	C151DL15E H151DR15E
Cooling Performance ¹				CONTINUED-
Gross Cooling Capacity Btu [kW]	146,000 [42.78]	146,000 [42.78]	146,000 [42.78]	146,000 [42.78]
EER/SEER2	10.8/NA	10.8/NA	10.8/NA	10.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	5000/4225 [2360/1994]	5000/4225 [2360/1994]	5000/4225 [2360/1994]	5000/4225 [2360/1994]
AHRI Net Cooling Capacity Btu [kW]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]
Net Sensible Capacity Btu [kW]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]
Net Latent Capacity Btu [kW]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]
IEER3 Latent (Standard / VFD)	10.8/13.5	10.8/13.5	10.8/13.5	10.8/13.5
Net System Power kW	12.73	12.73	12.73	12.73
Heating Performance (Gas) ⁴		· -····	· - ··-	
Heating Input Btu [kW] (1st Stage / 2nd Stage)	126 000/252 000 [36 92/73 84]	75 000/150 000 [21 97/43 95]	126 000/252 000 [36 92/73 84]	75 000/150 000 [21 97/43 9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	-	60,750/121,500 [17.8/35.6]	102,000/204,000 [29.89/59.77]	60,750/121,500 [17.8/35.6
Temperature Rise Range °F [°C]	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /
(1st Stage / 2nd Stage)	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
	0.70 [10]	0.0 [12.7]	0.70 [10]	0.0 [12.7]
Compressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
	Louvered	Louvered	Louvered	Louvered
Outdoor Coil—Fin Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Type				
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
				Belt (Adjustable)
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	, , ,
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	5	5	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	184	184	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	147.2/152 [4173/4309]
Weights				
Net Weight lbs. [kg]	1266 [574]	1238 [562]	1265 [574]	1230 [558]
ivet vveigiit ibs. [kg]	.=00 [0]			

Model RKNL- Series Model RKNL- Series (with VFD)	C151DL25E H151DR25E	C151DM15E H151DS15E	C151DM25E H151DS25E	C151YL25E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	146,000 [42.78]	146,000 [42.78]	146,000 [42.78]	146,000 [42.78]
EER/SEER2	10.8/NA	10.8/NA	10.8/NA	10.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	5000/4225 [2360/1994]	5000/4225 [2360/1994]	5000/4225 [2360/1994]	5000/4225 [2360/1994]
AHRI Net Cooling Capacity Btu [kW]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]
Net Sensible Capacity Btu [kW]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]
Net Latent Capacity Btu [kW]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]
IEER3 Latent (Standard / VFD)	10.8/13.5	10.8/13.5	10.8/13.5	10.8
Net System Power kW	12.73	12.73	12.73	12.73
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	126,000/252,000 [36.92/73.84]	75,000/150,000 [21.97/43.95]	126,000/252,000 [36.92/73.84]	126,000/252,000 [36.92/73.8
Heating Output Btu [kW] (1st Stage / 2nd Stage)	102,000/204,000 [29.89/59.77]	60,750/121,500 [17.8/35.6]	102,000/204,000 [29.89/59.77]	102,000/204,000 [29.89/59.]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.0 [12.7]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
· · · · · · · · · · · · · · · · · · ·	Louvered	Louvered	Louvered	
Indoor Coil—Fin Type	Rifled	Rifled	Rifled	Louvered Rifled
Tube Type				
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single
No. Motors	1	1	1	1
Motor HP	3	5	5	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	184	184	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	147.2/152 [4173/4309]
	171.2/132 [41/3/4303]	171.2/132 [4113/4303]	171.41104 [4110/4003]	171.2/132 [41/3/4309]
Weights	1066 [574]	1000 [560]	1066 [674]	1065 [574]
Net Weight lbs. [kg]	1266 [574]	1238 [562]	1265 [574]	1265 [574]
Ship Weight lbs. [kg]	1267 [575]	1267 [575]	1267 [575]	1267 [575]

146,000 [42.78]	
10.8/NA	
5000/4225 [2360/1994]	
140,000 [41.02]	
TE.TO	
126 000/252 000 [36 92/73 84]	
· · · · · · · · · · · · · · · · · · ·	
0.73 [18]	
2/Carall	
0.375 [9.5]	
13.5 [1.25]	
4 / 15 [6]	
TX Valves	
1/1 [25.4]	
Propeller	
2/24 [609.6]	
Direct/1	
8000 [3775]	
·	
(6)2x18x18 [51x457x457]	
147.2/152 [4173/4309]	
1265 [574]	
	10.8/NA 5000/4225 [2360/1994] 140,000 [41.02] 99,500 [29.15] 40,500 [11.87] 10.8 12.73 126,000/252,000 [36.92/73.84] 102,000/204,000 [29.89/59.77] 25-55 [13.9-30.6] / 25-55 [13.9-30.6] / 25-55 [13.9-30.6] 81 9 2 0.75 [19] 2/Scroll 88 Louvered MicroChannel 1 [25.4] 27 [2.51] 2 / 23 [9] Louvered Rifled 0.375 [9.5] 13.5 [1.25] 4 / 15 [6] TX Valves 1/1 [25.4] Propeller 2/24 [609.6] Direct/1 8000 [3775] 2 at 1/2 HP 1075 FC Centrifugal 1/15x15 [381x381] Belt (Adjustable) Single 1 5 1725 184 Disposable Yes (6)2x18x18 [51x457x457]

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 340/360.
- 4. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

GROSS SYSTEMS PERFORMANCE DATA—C073

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CF	M [L/s]	2790 [1317]	2325 [1097]	1860 [878]	2790 [1317]	2325 [1097]	1860 [878]	2790 [1317]	2325 [1097]	1860 [878]
		DR ①	.06	.01	.15	.06	.01	.15	.06	.01	.15
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	92.8 [27.2] 58.8 [17.2] 4.7	89.5 [26.2] 50.5 [14.8] 4.6	86.3 [25.3] 42.9 [12.6] 4.5	86.4 [25.3] 67.9 [19.9] 4.6	83.4 [24.4] 59.1 [17.3] 4.5	80.3 [23.5] 50.8 [14.9] 4.5	81.8 [24.0] 75.4 [22.1] 4.6	78.9 [23.1] 66.1 [19.4] 4.5	76.1 [22.3] 57.4 [16.8] 4.4
Ŭ T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	90.8 [26.6] 58.1 [17.0] 4.9	87.6 [25.7] 49.9 [14.6] 4.8	84.4 [24.7] 42.3 [12.4] 4.7	84.4 [24.7] 67.0 [19.6] 4.9	81.4 [23.8] 58.3 [17.1] 4.8	78.5 [23.0] 50.2 [14.7] 4.7	79.8 [23.4] 74.7 [21.9] 4.8	77.0 [22.6] 65.5 [19.2] 4.7	74.2 [21.7] 56.8 [16.6] 4.7
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	88.6 [26.0] 57.0 [16.7] 5.2	85.5 [25.1] 49.0 [14.4] 5.1	82.4 [24.1] 41.6 [12.2] 5.0	82.2 [24.1] 66.0 [19.3] 5.1	79.4 [23.3] 57.6 [16.9] 5.1	76.5 [22.4] 49.6 [14.5] 5.0	77.7 [22.8] 73.7 [21.6] 5.1	74.9 [21.9] 64.6 [18.9] 5.0	72.2 [21.2] 56.1 [16.4] 4.9
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	86.3 [25.3] 55.9 [16.4] 5.5	83.2 [24.4] 48.0 [14.1] 5.4	80.2 [23.5] 40.8 [12.0] 5.3	79.9 [23.4] 64.9 [19.0] 5.4	77.1 [22.6] 56.6 [16.6] 5.3	74.3 [21.8] 48.8 [14.3] 5.2	75.3 [22.1] 72.5 [21.2] 5.4	72.7 [21.3] 63.7 [18.7] 5.3	70.0 [20.5] 55.3 [16.2] 5.2
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	83.7 [24.5] 54.4 [15.9] 5.8	80.8 [23.7] 46.9 [13.7] 5.7	77.9 [22.8] 39.9 [11.7] 5.6	77.4 [22.7] 63.6 [18.6] 5.7	74.7 [21.9] 55.5 [16.3] 5.6	71.9 [21.1] 47.8 [14.0] 5.5	72.8 [21.3] 71.2 [20.9] 5.7	70.2 [20.6] 62.5 [18.3] 5.6	67.7 [19.8] 54.4 [15.9] 5.5
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	81.0 [23.7] 52.9 [15.5] 6.1	78.2 [22.9] 45.6 [13.4] 6.0	75.4 [22.1] 38.8 [11.4] 5.9	74.7 [21.9] 62.1 [18.2] 6.1	72.1 [21.1] 54.2 [15.9] 6.0	69.4 [20.3] 46.7 [13.7] 5.9	70.1 [20.5] 69.6 [20.4] 6.0	67.6 [19.8] 61.2 [17.9] 5.9	65.2 [19.1] 53.3 [15.6] 5.8
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	78.2 [22.9] 51.3 [15.0] 6.5	75.4 [22.1] 44.1 [12.9] 6.4	72.7 [21.3] 37.5 [11.0] 6.2	71.8 [21.0] 60.2 [17.6] 6.4	69.3 [20.3] 52.6 [15.4] 6.3	66.8 [19.6] 45.4 [13.3] 6.2	67.2 [19.7] 67.2 [19.7] 6.4	64.8 [19.0] 59.7 [17.5] 6.3	62.5 [18.3] 52.0 [15.2] 6.2
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	75.1 [22.0] 49.2 [14.4] 6.8	72.5 [21.2] 42.4 [12.4] 6.7	69.8 [20.5] 36.0 [10.5] 6.6	68.7 [20.1] 58.3 [17.1] 6.8	66.3 [19.4] 50.9 [14.9] 6.7	63.9 [18.7] 44.0 [12.9] 6.6	64.2 [18.8] 64.2 [18.8] 6.8	61.9 [18.1] 58.0 [17.0] 6.6	59.6 [17.5] 50.5 [14.8] 6.5
[C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	71.9 [21.1] 47.1 [13.8] 7.2	69.3 [20.3] 40.5 [11.9] 7.1	66.8 [19.6] 34.5 [10.1] 7.0	65.5 [19.2] 56.2 [16.5] 7.2	63.2 [18.5] 49.1 [14.4] 7.1	60.9 [17.8] 42.4 [12.4] 6.9	60.9 [17.8] 60.9 [17.8] 7.1	58.8 [17.2] 56.2 [16.5] 7.0	56.6 [16.6] 49.0 [14.4] 6.9

GROSS SYSTEMS PERFORMANCE DATA—C/H090

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		-M [L/s]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]
		DR ①	.06	.13	.17	.06	.13	.17	.06	.13	.17
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	111.2 [32.6] 68.2 [20.0] 5.8	105.5 [30.9] 54.2 [15.9] 5.6	102.9 [30.2] 48.3 [14.2] 5.6	107.2 [31.4] 84.6 [24.8] 5.7	101.7 [29.8] 68.8 [20.2] 5.6	99.2 [29.1] 62.1 [18.2] 5.5	101.3 [29.7] 93.5 [27.4] 5.7	96.1 [28.2] 76.9 [22.5] 5.5	93.8 [27.5] 69.9 [20.5] 5.4
U T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power		104.0 [30.5] 54.3 [15.9] 6.0	101.5 [29.7] 48.5 [14.2] 5.9	105.7 [31.0] 84.6 [24.8] 6.0	100.3 [29.4] 68.9 [20.2] 5.9	97.8 [28.7] 62.2 [18.2] 5.8	99.8 [29.2] 93.5 [27.4] 6.0	94.7 [27.8] 77.0 [22.6] 5.8	92.3 [27.1] 69.9 [20.5] 5.8
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power		102.2 [30.0] 54.0 [15.8] 6.3	99.7 [29.2] 48.3 [14.2] 6.2	103.7 [30.4] 84.0 [24.6] 6.4	98.4 [28.8] 68.5 [20.1] 6.2	96.0 [28.1] 61.9 [18.2] 6.2	97.8 [28.7] 92.9 [27.2] 6.3	92.8 [27.2] 76.6 [22.5] 6.2	90.5 [26.5] 69.6 [20.4] 6.1
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	105.3 [30.9] 66.6 [19.5] 6.8	99.9 [29.3] 53.1 [15.6] 6.7	97.5 [28.6] 47.5 [13.9] 6.6	101.4 [29.7] 83.1 [24.4] 6.8	96.2 [28.2] 67.8 [19.9] 6.6	93.8 [27.5] 61.3 [18.0] 6.5	95.4 [28.0] 91.9 [26.9] 6.7	90.5 [26.5] 75.8 [22.2] 6.5	88.3 [25.9] 69.0 [20.2] 6.4
L B T	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power		97.3 [28.5] 52.0 [15.2] 7.0	94.9 [27.8] 46.5 [13.6] 6.9	98.5 [28.9] 81.5 [23.9] 7.2	93.5 [27.4] 66.6 [19.5] 7.0	91.2 [26.7] 60.2 [17.7] 6.9	92.6 [27.1] 90.4 [26.5] 7.1	87.9 [25.8] 74.7 [21.9] 6.9	85.7 [25.1] 67.9 [19.9] 6.8
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	99.3 [29.1] 63.2 [18.5] 7.6	94.2 [27.6] 50.4 [14.8] 7.4	91.9 [26.9] 45.1 [13.2] 7.3	95.3 [27.9] 79.6 [23.3] 7.6	90.4 [26.5] 65.0 [19.1] 7.4	88.2 [25.8] 58.8 [17.2] 7.3	89.4 [26.2] 88.4 [25.9] 7.5	84.8 [24.9] 73.0 [21.4] 7.3	82.7 [24.2] 66.4 [19.5] 7.2
A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	95.6 [28.0] 60.6 [17.8] 8.1	90.7 [26.6] 48.3 [14.2] 7.9	88.5 [25.9] 43.2 [12.7] 7.8	91.6 [26.8] 77.0 [22.6] 8.0	86.9 [25.5] 62.9 [18.4] 7.8	84.8 [24.9] 57.0 [16.7] 7.7	85.7 [25.1] 85.7 [25.1] 7.9	81.3 [23.8] 71.0 [20.8] 7.7	79.3 [23.2] 64.6 [18.9] 7.6
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	91.5 [26.8] 57.6 [16.9] 8.5	86.8 [25.4] 45.9 [13.5] 8.3	84.7 [24.8] 41.0 [12.0] 8.2	87.5 [25.6] 73.9 [21.7] 8.4	83.0 [24.3] 60.4 [17.7] 8.2	81.0 [23.7] 54.7 [16.0] 8.1	81.6 [23.9] 81.6 [23.9] 8.4	77.4 [22.7] 68.5 [20.1] 8.2	75.5 [22.1] 62.4 [18.3] 8.1
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	87.0 [25.5] 54.1 [15.9] 9.0	82.5 [24.2] 43.0 [12.6] 8.8	80.5 [23.6] 38.4 [11.3] 8.6	83.0 [24.3] 70.5 [20.7] 8.9	78.7 [23.1] 57.6 [16.9] 8.7	76.8 [22.5] 52.2 [15.3] 8.6	77.1 [22.6] 77.1 [22.6] 8.8	73.1 [21.4] 65.7 [19.3] 8.6	71.3 [20.9] 59.9 [17.6] 8.5

DR —Depression ratio dbE —Entering air dry bulb wbE —Entering air wet bulb Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA—C/H102

				EN	ITERING INDO	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4100 [6035]	3200 [1510]	2700 [1274]	4100 [6035]	3200 [1510]	2700 [1274]	4100 [6035]	3200 [1510]	2700 [1274]
<u> </u>		DR ①	0	.05	.08	0	.05	.08	0	.05	.08
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	113.8 [33.4] 69.9 [20.5] 6.4	108.3 [31.7] 56.3 [16.5] 6.3	105.2 [30.8] 49.3 [14.5] 6.2	110.1 [32.3] 91.3 [26.8] 6.3	104.7 [30.7] 75.3 [22.1] 6.2	101.7 [29.8] 67.0 [19.6] 6.1	105.0 [30.8] 103.1 [30.2] 6.2	99.9 [29.3] 86.0 [25.2] 6.1	97.0 [28.4] 77.0 [22.6] 6.0
ÜTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	113.7 [33.3] 71.7 [21.0] 6.7	108.2 [31.7] 57.9 [17.0] 6.6	105.1 [30.8] 50.8 [14.9] 6.5	110.0 [32.2] 93.1 [27.3] 6.7	104.6 [30.7] 76.9 [22.5] 6.5	101.7 [29.8] 68.6 [20.1] 6.4	104.9 [30.7] 104.9 [30.8] 6.6	99.8 [29.2] 87.6 [25.7] 6.4	96.9 [28.4] 78.5 [23.0] 6.3
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	112.9 [33.1] 72.6 [21.3] 7.1	107.5 [31.5] 58.8 [17.2] 6.9	104.4 [30.6] 51.6 [15.1] 6.8	109.2 [32.0] 94.0 [27.6] 7.0	103.9 [30.5] 77.8 [22.8] 6.8	101.0 [29.6] 69.4 [20.3] 6.7	104.1 [30.5] 104.1 [30.5] 6.9	99.1 [29.0] 88.5 [25.9] 6.7	96.2 [28.2] 79.4 [23.3] 6.7
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	111.5 [32.7] 72.9 [21.4] 7.4	106.1 [31.1] 59.0 [17.3] 7.3	103.1 [30.2] 51.9 [15.2] 7.2	107.8 [31.6] 94.2 [27.6] 7.4	102.5 [30.0] 78.0 [22.9] 7.2	99.6 [29.2] 69.6 [20.4] 7.1	102.7 [30.1] 102.7 [30.1] 7.3	97.7 [28.6] 88.7 [26.0] 7.1	94.9 [27.8] 79.6 [23.3] 7.0
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	109.4 [32.1] 72.2 [21.2] 7.8	104.1 [30.5] 58.5 [17.2] 7.6	101.1 [29.6] 51.5 [15.1] 7.5	105.7 [31.0] 93.6 [27.4] 7.7	100.5 [29.5] 77.5 [22.7] 7.6	97.7 [28.6] 69.3 [20.3] 7.4	100.6 [29.5] 100.6 [29.5] 7.7	95.7 [28.0] 88.2 [25.9] 7.5	93.0 [27.3] 79.3 [23.3] 7.4
H M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	106.6 [31.2] 70.7 [20.7] 8.2	101.4 [29.7] 57.3 [16.8] 8.0	98.6 [28.9] 50.5 [14.8] 7.9	102.9 [30.2] 92.1 [27.0] 8.1	97.9 [28.7] 76.4 [22.4] 8.0	95.1 [27.9] 68.2 [20.0] 7.8	97.8 [28.7] 97.8 [28.7] 8.1	93.0 [27.3] 87.0 [25.5] 7.9	90.4 [26.5] 78.2 [22.9] 7.8
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	103.2 [30.2] 68.4 [20.1] 8.7	98.1 [28.8] 55.4 [16.2] 8.4	95.4 [28.0] 48.9 [14.3] 8.3	99.4 [29.1] 89.7 [26.3] 8.6	94.6 [27.7] 74.5 [21.8] 8.4	91.9 [26.9] 66.6 [19.5] 8.2	94.3 [27.6] 94.3 [27.6] 8.5	89.8 [26.3] 85.2 [25.0] 8.3	87.2 [25.6] 76.6 [22.5] 8.2
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	99.0 [29.0] 65.2 [19.1] 9.1	94.2 [27.6] 52.8 [15.5] 8.9	91.5 [26.8] 46.4 [13.6] 8.8	95.3 [27.9] 86.7 [25.4] 9.0	90.7 [26.6] 72.0 [21.1] 8.8	88.1 [25.8] 64.3 [18.9] 8.7	90.2 [26.4] 90.2 [26.4] 8.9	85.8 [25.1] 82.5 [24.2] 8.7	83.4 [24.4] 74.3 [21.8] 8.6
[0]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	94.2 [27.6] 61.3 [18.0] 9.6	89.6 [26.3] 49.6 [14.5] 9.3	87.1 [25.5] 43.7 [12.8] 9.2	90.5 [26.5] 82.7 [24.2] 9.5	86.1 [25.2] 68.7 [20.1] 9.3	83.7 [24.5] 61.5 [18.0] 9.1	85.4 [25.0] 85.4 [25.0] 9.4	81.3 [23.8] 79.4 [23.3] 9.2	78.9 [23.1] 71.4 [20.9] 9.1

GROSS SYSTEMS PERFORMANCE DATA—C/H120

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]
		DR ①	0	.03	.07	0	.03	.07	0	.03	.07
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	149.3 [43.8] 99.7 [29.2] 7.3	142.1 [41.6] 81.0 [23.7] 7.2	138.3 [40.5] 71.9 [21.1] 7.1	139.6 [40.9] 117.9 [34.6] 7.2	132.8 [38.9] 97.5 [28.6] 7.0	129.3 [37.9] 87.6 [25.7] 6.9	130.9 [38.4] 130.9 [38.4] 7.1	124.6 [36.5] 109.7 [32.2] 6.9	121.3 [35.5] 99.1 [29.1] 6.8
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	147.2 [43.1] 99.2 [29.1] 7.8	140.0 [41.0] 80.5 [23.6] 7.6	136.3 [39.9] 71.5 [21.0] 7.5	137.4 [40.3] 117.1 [34.3] 7.7	130.8 [38.3] 97.0 [28.4] 7.5	127.3 [37.3] 87.1 [25.5] 7.4	128.8 [37.7] 128.8 [37.8] 7.6	122.6 [35.9] 109.3 [32.0] 7.4	119.3 [35.0] 98.7 [28.9] 7.3
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	144.7 [42.4] 98.0 [28.7] 8.3	137.7 [40.4] 79.7 [23.4] 8.1	134.0 [39.3] 70.8 [20.8] 8.0	135.0 [39.6] 116.2 [34.1] 8.2	128.5 [37.7] 96.3 [28.2] 8.0	125.0 [36.6] 86.4 [25.3] 7.9	126.4 [37.0] 126.4 [37.1] 8.0	120.2 [35.2] 108.4 [31.8] 7.8	117.0 [34.3] 98.0 [28.7] 7.7
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	142.0 [41.6] 96.8 [28.4] 8.8	135.1 [39.6] 78.7 [23.1] 8.6	131.5 [38.5] 70.0 [20.5] 8.5	132.3 [38.8] 114.9 [33.7] 8.7	125.9 [36.9] 95.2 [27.9] 8.5	122.5 [35.9] 85.5 [25.1] 8.4	123.6 [36.2] 123.6 [36.2] 8.6	117.7 [34.5] 107.5 [31.5] 8.4	114.5 [33.6] 97.2 [28.5] 8.3
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	139.0 [40.7] 95.1 [27.9] 9.4	132.3 [38.8] 77.4 [22.7] 9.1	128.8 [37.7] 68.8 [20.2] 9.0	129.3 [37.9] 113.2 [33.2] 9.2	123.0 [36.0] 93.8 [27.5] 9.0	119.7 [35.1] 84.3 [24.7] 8.9	120.7 [35.4] 120.7 [35.4] 9.1	114.8 [33.6] 106.1 [31.1] 8.9	111.8 [32.8] 96.0 [28.1] 8.8
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	135.8 [39.8] 93.1 [27.3] 9.9	129.2 [37.9] 75.7 [22.2] 9.7	125.7 [36.8] 67.3 [19.7] 9.6	126.0 [36.9] 111.1 [32.6] 9.8	119.9 [35.1] 92.2 [27.0] 9.6	116.7 [34.2] 82.9 [24.3] 9.5	117.4 [34.4] 117.4 [34.4] 9.7	111.7 [32.7] 104.4 [30.6] 9.5	108.7 [31.9] 94.5 [27.7] 9.3
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	132.2 [38.7] 90.7 [26.6] 10.6	125.8 [36.9] 73.8 [21.6] 10.3	122.5 [35.9] 65.7 [19.3] 10.2	122.5 [35.9] 108.8 [31.9] 10.4	116.5 [34.1] 90.2 [26.4] 10.2	113.4 [33.2] 81.1 [23.8] 10.1	113.8 [33.4] 113.8 [33.4] 10.3	108.3 [31.7] 102.5 [30.0] 10.1	105.4 [30.9] 92.8 [27.2] 9.9
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	128.4 [37.6] 88.0 [25.8] 11.2	122.2 [35.8] 71.6 [21.0] 10.9	118.9 [34.8] 63.6 [18.6] 10.8	118.7 [34.8] 106.2 [31.1] 11.1	112.9 [33.1] 88.1 [25.8] 10.8	109.9 [32.2] 79.3 [23.3] 10.7	110.0 [32.2] 110.0 [32.2] 11.0	104.7 [30.7] 100.3 [29.4] 10.7	101.9 [29.9] 90.8 [26.6] 10.6
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	124.3 [36.4] 85.0 [24.9] 11.9	118.3 [34.7] 69.2 [20.3] 11.6	115.1 [33.7] 61.5 [18.0] 11.4	114.6 [33.6] 103.1 [30.2] 11.7	109.0 [31.9] 85.6 [25.1] 11.5	106.1 [31.1] 77.0 [22.6] 11.3	105.9 [31.0] 105.9 [31.0] 11.6	100.8 [29.5] 97.9 [28.7] 11.3	98.1 [28.8] 88.7 [26.0] 11.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input **NOTES:** ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA—C/H151

					ENTERING IND	OOR AIR @ 80°	°F [26.7°C] ①				Ī
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		-M [L/s]	5800 [2737]	4225 [1994]	3800 [1793]	5800 [2737]	4225 [1994]	3800 [1793]	5800 [2737]	4225 [1994]	3800 [1793]
		DR ①	0	.03	.06	0	.03	.06	0	.03	.06
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	196.8 [57.7] 135.5 [39.7] 10.2	184.4 [54.0] 103.0 [30.2] 9.9	181.0 [53.0] 94.9 [27.8] 9.8	186.8 [54.7] 156.7 [45.9] 10.0	175.0 [51.3] 121.7 [35.7] 9.7	171.8 [50.3] 112.9 [33.1] 9.6	178.6 [52.3] 177.9 [52.1] 9.7	167.3 [49.0] 140.2 [41.1] 9.4	164.2 [48.1] 130.7 [38.3] 9.3
Ŭ T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	192.1 [56.3] 132.7 [38.9] 10.7	179.9 [52.7] 100.8 [29.6] 10.3	176.6 [51.8] 92.9 [27.2] 10.3	182.1 [53.4] 153.9 [45.1] 10.5	170.6 [50.0] 119.6 [35.1] 10.1	167.4 [49.1] 110.9 [32.5] 10.0	173.9 [51.0] 173.9 [51.0] 10.2	162.9 [47.7] 138.2 [40.5] 9.9	159.9 [46.9] 128.9 [37.8] 9.8
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	187.2 [54.9] 129.7 [38.0] 11.2	175.3 [51.4] 98.6 [28.9] 10.9	172.1 [50.4] 90.9 [26.7] 10.8	177.2 [51.9] 151.1 [44.3] 11.0	166.0 [48.6] 117.5 [34.4] 10.6	162.9 [47.7] 109.0 [32.0] 10.5	169.0 [49.5] 169.0 [49.5] 10.7	158.3 [46.4] 136.0 [39.9] 10.4	155.4 [45.5] 126.9 [37.2] 10.3
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	182.1 [53.4] 126.8 [37.2] 11.8	170.5 [50.0] 96.4 [28.3] 11.4	167.4 [49.1] 88.9 [26.1] 11.3	172.1 [50.4] 148.0 [43.4] 11.5	161.2 [47.2] 115.2 [33.8] 11.2	158.2 [46.4] 106.9 [31.3] 11.1	163.9 [48.0] 163.9 [48.0] 11.3	153.5 [45.0] 133.7 [39.2] 10.9	150.7 [44.2] 124.8 [36.6] 10.8
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	176.8 [51.8] 123.6 [36.2] 12.3	165.6 [48.5] 94.1 [27.6] 11.9	162.5 [47.6] 86.7 [25.4] 11.8	166.8 [48.9] 144.9 [42.5] 12.1	156.2 [45.8] 112.8 [33.1] 11.7	153.3 [44.9] 104.7 [30.7] 11.6	158.6 [46.5] 158.6 [46.5] 11.9	148.5 [43.5] 131.3 [38.5] 11.5	145.8 [42.7] 122.6 [35.9] 11.4
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	171.3 [50.2] 120.3 [35.3] 13.0	160.4 [47.0] 91.6 [26.9] 12.5	157.5 [46.2] 84.5 [24.8] 12.4	161.3 [47.3] 141.6 [41.5] 12.7	151.0 [44.3] 110.3 [32.3] 12.3	148.3 [43.5] 102.5 [30.0] 12.2	153.1 [44.9] 153.1 [44.9] 12.5	143.3 [42.0] 128.8 [37.8] 12.1	140.7 [41.2] 120.3 [35.3] 12.0
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	165.6 [48.5] 116.9 [34.3] 13.6	155.1 [45.5] 89.1 [26.1] 13.2	152.2 [44.6] 82.2 [24.1] 13.0	155.6 [45.6] 138.2 [40.5] 13.4	145.7 [42.7] 107.8 [31.6] 12.9	143.0 [41.9] 100.2 [29.4] 12.8	147.4 [43.2] 147.4 [43.2] 13.1	138.0 [40.4] 126.3 [37.0] 12.7	135.5 [39.7] 118.0 [34.6] 12.6
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	159.7 [46.8] 113.4 [33.2] 14.3	149.6 [43.8] 86.5 [25.4] 13.8	146.8 [43.0] 79.8 [23.4] 13.7	149.7 [43.9] 134.7 [39.5] 14.0	140.2 [41.1] 105.2 [30.8] 13.6	137.6 [40.3] 97.8 [28.7] 13.5	141.5 [41.5] 141.5 [41.5] 13.8	132.5 [38.8] 123.7 [36.3] 13.4	130.1 [38.1] 115.6 [33.9] 13.3
[0]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	153.6 [45.0] 109.8 [32.2] 15.0	143.9 [42.2] 83.8 [24.6] 14.5	141.2 [41.4] 77.3 [22.7] 14.4	143.6 [42.1] 131.0 [38.4] 14.7	134.5 [39.4] 102.5 [30.0] 14.3	132.0 [38.7] 95.3 [27.9] 14.2	135.4 [39.7] 135.4 [39.7] 14.5	126.8 [37.2] 121.0 [35.5] 14.1	124.5 [36.5] 113.1 [33.2] 13.9

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

AIRFLOW PERFORMANCE—6 TON [21.1 kW]

	Capa	city	Capacity 6 Ton [21.1 kW]	1.1 kW																									
Air		nge 208	Voltage 208/230, 460, 575 — 3 phase	50, 575	— 3 pt	lase																							
Flow												Exter	nal Stat	lic Pres	External Static Pressure—Inches of Water [kPa]	nches o	f Water	[kPa]											
CFM [L/s]		.02]	0.1 [.02] 0.2 [.05]	02]	0.3 [.07]	120	0.4[.]	[0]	0.4 [.10] 0.5 [.12]		0.6[.15]		0.7 [.17]		0.8 [.20]		0.9[.22]		1.0 [.25]	+:	1.1 [.27]	1.2	1.2 [.30]	1.3	1.3 [.32]	1.4 [.35]	35]	1.5[;	[.37]
	RPM	Μ	RPM	M	RPM	_ M	RPM	M	RPM	W	RPM	W	RPM	W	RPM V	W RP	RPM V	W RPM	M.	RPM	M	RPM	Μ	RPM	M	RPM	8	RPM	8
1800 [849]	I	I	ı	ı	1	1	1	1	835	631	088	989	924	740	965 7	794 10	1005 8	847 1043	43 898	8 1079	949	1113	666	1146	1048	1177	1096	1206	1144
1900 [897]	I	ı	I	ı	ı	ı	808	622	854	681	668	739	941	362	982 8	851 10	1021 9	906 1058	28 960	0 1093	1013	1127	1065	1159	1117	1189	1167	1217	1217
2000 [944]	I	I	I	ı	1	ı	828	673	874	734	918	794	626	853	666	911 10	1037 9	968 1074	74 1025	5 1108	1080	1141	1135	1172	1189	1201	1242	1228	1293
2100 [991]	I	I	I	ı	803	663	820	727	894	790	937	853	826	914 10	1017 9	974 10	1055 10	1034 1090	90 1093	3 1124	1151	1156	1208	1186	1264	1214	1319	1241	1373
2200 [1038]	I	I	ı	ı	826	718	871	784	915	850	957	914	266	978 10	1036 10	1041 10	1072 11	1103 1107	07 1164	4 1140	1224	1171	1283	1201	1342	1228	1399	1254	1456
2300 [1085]	I	I	802	902	849	775	894	844	937	912	8/6	979 1	1017 1	1045 10	1055 11	1110 10	1091 11	1174 1125	25 1238	8 1157	1300	1187	1362	1216	1423	1242	1482	1267	1541
2400 [1133]	ı	١	826	764	872	836	916	206	929	977	999	1047	1038	1115 10	1075 11	1183 11	1110 12	1249 1143	43 1315	5 1174	1380	1204	1444	1231	1507	1257	1569	1282	1630
2500 [1180]	802	751	852	826	268	006	940	973	981 1		1021 1	1118 1	1059 1	1188 10	1095 12	1258 11	1129 13	1327 1162	52 1395	5 1192	1462	1221	1529	1248	1594	1273	1658	ı	1
2600 [1227]	831	813	877	890	922	296	. 64	1043	1005 1		1044	1191	1081	1265 1	1116 13	1337 11	1149 14	1408 1181	81 1478	8 1211	1548	1239	1616	1265	1684	I	ı	ı	ı
2700 [1274]	828	878	904	928	947	1037	686	1115	1029 1		1067	1268	1103 1:	1344 1	1137 14	1418 11	1170 14	1492 1201	01 1565	5 1230	1637	1257	1708	1282	1778	1	1	1	1
2800 [1321]	886	947	931	1029	623	1110 1014 1190	1014	1190	1053 1270	1270	1091	1349 1	1126 1.	1426 1	1160 15	1503 11	1191 15	1579 1221	21 1654	4 1250	1728	1276	1802	I	I	I	I	I	
	:	:	:																										

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				5	1015
				7	1064
	[9.8]	9	20	3	1113
Σ	1.5 [1118.6]	AK66	1VP-50	2	1163
				1	1215
				0	1267
				9	628
				4	912
	1.5 [1118.6]	AK66	1VP-44	3	296
_	1.5 [1	AK	1VF	2	1019
				-	1072
				0	1119
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

Do not set motor sheave below minimum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance to duct resistance to determine total E.S.P.

AIRFLOW CORRECTION FACTORS 6 TON [21.1 kW]

ACTUAL—CFM	1800	2000	2200	2400	2600	2800
TOTAL MBH	0.97	0.98	0.99	1.00	1.01	1.02
SENSIBLE MBH	0.91	0.94	0.97	1.00	1.02	1.05
POWER KW	0.99	0.99	0.99	1.00	1.00	1.01

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 6 TON [21.1 kW]

		Stan	dard Indoor A	Standard Indoor Airflow—CFM [L/s]	[S/]	
Component	1800 [849]	2000 [944]	2200 [1038]	2400 [1133]	2600 [1227]	2800 [1321]
		Re	sistance—Inc	Resistance—Inches Water [kPa]	[a]	
Wet Coil	0.031 [0.008]	0.036 [0.009]	0.041 [0.01]	0.047 [0.012]	0.051 [0.013]	0.055 [0.014]
Concentric Diffuser RXRN-FA65 or FA75 & Transition RXMC-CD04	DNA	DNA	DNA	DNA	0.017 [0.042]	0.02 [0.050]
Concentric Diffuser RXRN-AA61 or AA71 & Transition RXMC-CE05	DNA	DNA	DNA	DNA	DNA	DNA
Economizer 100% R.A. Damper Open	0.02 [0.005]	0.03 [0.007]	0.04	0.05 [0.012]	0.06 [0.015]	0.07 [0.017]
Horizontal Economizer 100% R.A. Damper Open	0.02 [0.005]	0.02 [0.005]	0.03 [0.007]	0.03 [0.007]	0.04 [0.01]	0.04
Horizontal Economizer 100% O.A. Damper Open	0.07 [0.017]	0.07 [0.017]	0.07 [0.017]	0.08	0.08 [0.02]	0.08 [0.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure. $DNA = Data \ not \ Available.$

AIRFLOW PERFORMANCE—7.5 TON [26.4 kW]

		_	_	9	4	ထ	က	77	<u>-</u>	ζ.	6	က္	7	Ξ	ڥ	0	ı
		$[2.0\ [.50]$	8	1965 1105 2050	1944 1083 2029 1112 2114	2093 1119 2178	7 2243	4 2307	1 2371	3 2435	3 2499	3 2563	7 262	3 2691	5 2756	282	
		2.0	RPM	1105	1112	1116	1127	1134	2285 1141	1148	1156	1163	1170	1178	1185	1192	
		[47]		1965	2029	2093	2157	2221	2285	2350	2414	2478	2542	2606	2670	2734	
		1.9[3PM	1075	1083	060	1097	104	1112	1119	126	134	141	148	155	163	
		45]	8	1879 1075	944	2008 1090	2072 1097	2136 1104	5200	2264 1119 2350 1148	. 328	392	. 954	. 221	. 282	. 649	
		1.7 [.42] 1.8 [.45] 1.9 [.47]	PM	1046	1053	061	890	1075	1082	060	2 260	104	111	119	126	133 2	
		. [21	W	794 1	858	922 1	986	050	115 1	179 1	243 1	307 1	371 1	435 1	499 1	563 1	
		.7 [.	PM	1017 1794	024 1	1031 1922 1061	1038 1986 1068	1046 2050	1053 2115	090	068 2	075 2	082 2	089 2	097 2	104 2	
		[0]	W		773 1	837 1	1901 1	965 1	029 1	093 1	157 1	222	286 1	350 1	414 1	478 1	
		.6 [.4	PM	987 1709	995 1773 1024 1858	1002 1837	100	1880 1016 1965	994 1944 1024 2029	331 2	338 2	345 2	353 2	360 2	367 2	375 2	
		7] 1	N R		_		116 10	1088	14 10	108	172 10	36 10	100	94 10	10	93 10	
		5 [.3	M	958 1623	965 1687	972 1751	980 1816 1009	987 18	94 16	02 20	09 20	16 21	23 22	31 22	38 23	45 23	
		5] 1.	V R				ı			23 10	87 10	51 10	15 10	79 10	43 10	07 10	
		4 [.3	N.	929 1538	936 1602	943 1666	950 1730	958 1794	965 1858	972 1923 1002 2008 1031 2093 1060 2179 1090	979 1987 1009 2072 1038 2157 1068 2243 1097 2328 1126 2414 1156	87 20	94 21	01 21	09 22	16 23	
		0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40]	W MARI W	1261 9	1322 9:		1645 9	1709 9	1773 9	1837 9	01 9	928 1880 957 1965 987 2051 1016 2136 1045 2222 1075 2307 1104 2392 1134 2478 1163	1555 877 1617 906 1859 935 1944 965 2029 994 2115 1023 2200 1053 2286 1082 2371 1111 2456 1141 2542 1170 2627	886 1677 913 1923 943 2008 972 2094 1001 2179 1031 2264 1060 2350 1089 2435 1119 2521 1148 2606 1178	1737 920 1987 950 2072 979 2158 1009 2243 1038 2328 1067 2414 1097 2499 1126 2586 1155 2670 1185	1612 844 1674 874 1735 903 1797 928 2051 957 2136 986 22221 1016 2307 1045 2393 1075 2478 1104 2563 1133 2649 1163 2734 1192 2820	
		3 [.32	N	7 12	5 13	4 1581				943 18	921 1816 950 1901	7 19	5 20	.5 20	9 21	6 22	
	kPa]	1.	/ RP	288 00	30 895	1320 914	30 921	10 928	38 936	52 94	16 95	30 95	14 96	26 80	72 97	36 98	
	ater [2 [.30	M	7 1200	9 126		3 1380	2 1440	906 1688	913 1752	1 181	8 188	2 192	3 200	0 207	7 213	
	of Wa	1.2	RP	1138 857	837 1198 866 1260	846 1258 875	1318 883	8 892	8	8 91:	9 92	9 92	93	3 94	7 95	1 95.	
	ches	[.27	M	113	119	125		1378	1438	1498	1559	898 1619	185	192	198	3 205	
	<u>_</u>	1.1	RPI	1076 828	3 837		3 854	3 863	3 872	088 2	688 2	368 2	2 906	7 913	7 920	3 8 2	
	essur	[.25]	8	107	1136	1196	1256	1316	1376	1437	1497	1557	161	167	173	179	
	iic Pri	1.0	RPI	1014 799	808	816	825	834	842	851	1435 860	1495 868	877	988	894	903	
	ıl Sta	[.22]	8	101	1074	1134	1194	1254	1315	1375			1556	1615	1675	1735	
	External Static Pressure—Inches of Water [kPa]	0.9	RPI	0//	27.8	787	962	804	813	822	830	839	848	928	965	874	
	Ω	[.20]	8	952	1012	1072	1132	1192	1253	1313	1373	810 1433	1493	1553	1613	167	
		0.8	W RPM	740	749	758	992	775	784	792	801	810	818	827	836	844	
		[11]	\vdash	890	920	1010	1070	1131	1191	1251	1311	1371	1431	1491	1552	1612	
		1 2'0	RPM	711	720	945 729	737	746	222	292	772	781	789	86/	807	815	
			>	812 711	878	945	1017	1069	1129	1189	1249	1309	1369	1430	1490	1550	
		0.6	RPM	645	929	299	089	708	725	734	743	751	09/	69/	777	98/	ı
		.12]	×	729	791	853	923	993	1069	1144	1187	1247	1307	1368	1428	1488	1
		0.5	RPM	664 612 729 645	633 593 717 624 791 656	635	648	099	926 673	931 650 1024 685 1144 734	713	722	731	739	748	757	
		10]	>	664	717	769 635	828 648	887	926	1024	1107	1189	1274	1306	1366	1426	1
		0.4 [.	RPM		593	603	_	625	889	650	664	8/9	692	710	719	728	
1 kW]		07]	8	580 582	633	289	744 614	801	998	931	1010	1089	1168	1247	1344	1440	
[26.4		0.3 [.	RPM	540	225	564	670 577	290	604	869 617	940 632 1010 664 1107 713 1187 743 1249	949	099	673	689	704	
5 Ton		02]	8		1	I	670	733	801	869	940	1011	1096	1180	1271	1361	:
7.		0.2[.	RPIM	1	I	I	539	554	269	854		612	628	643	658	672	
Capacity 7.5 Ton [26.4 kW]		02]	×	Ι	Ι	Ι	Ι	ı	Т	741	804 598	876 612 1011 646 1089 678 1189 722 1247 751 1309	954	1030	1112	1202	
Cap		0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	RPM W RPM W RPM W RPM W RPM W RPM W RPM	1	1	ı	ı	ı	Π	246		9/9	3300 [1557] 592 954 628 1096 660 1168 692 1274 731 1307 760	3400 [1605] 607 1030 643 1180 673 1247 710 1306 739 1368 769	3500 [1652] 622 [1112] 658 [1271] 689 [1344] 719 [1366] 748 [1428] 777 [1490	3600 [1699] 638 1202 672 1361 704 1440 728 1426 757 1488 786 1550	1
		ا ا		133]	180]	227]	274]	321]	369]	416]	3100 [1463] 560	3200 [1510] 576	557]	605]	652]	[669	
1	A P	CEM [1 /c]		2400 [1133]	2500 [1180]	2600 [1227]	2700 [1274]	2800 [1321	2900 [1369]	3000 [1416]	100 [1.	200 [1:	300 [1:	100 [1]	500 [1]	300 [1]	
_			,	24	25	2	27	182	153	g	က	33	8	34	33	36	1

NOTE: L-Drive left of 1st bold line, M-Drive in middle of bold lines, N-Drive right of 2nd bold line.

				9	904
				2	954
_	37.1]	55	44	4	1005
N, T	3.0 [2237.1]	BK65	1VP-44	3	1056
				2	1106
				-	1157
				9	710
				2	742
S	91.4]	0	44	4	774
M, S	2.0 [1491.4]	BK90	1VP-44	3	806
				2	838
				-	869
				9	523
				2	555
L, R	2.0 [1491.4]	BK110	1VP-44	4	287
Ĺ,	2.0 [1	器	1VF	3	620
				2	029
				-	682
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Do not operate above blower RPM shown as motor overloading will occur.
 Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 7.5 TON [26.4 kW]

ACTUAL—CFM	2600	2800	3000	3200	3400	3600	3800
[L/s]	[1227]	[1321]	[1416]	[1510]	[1605]	[1699]	[1793]
TOTAL MBH	26.0	0.98	66'0	1.00	1.01	1.02	1.03
SENSIBLE MBH	0.91	0.94	26.0	1.00	1.02	1.05	1.08
POWER KW	0.99	0.99	0.99	1.00	1.00	1.01	1.02

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 7.5 TON [26.4 kW]

			Standard In	Standard Indoor Airflow—CFM [L/s]	—CFM [L/s]		
Component	2400	2600	2800	3000	3200	3400	3600
			Resistance	Resistance—Inches Water [kPa]	ater [kPa]		
Wet Coil	0.047 [0.012]	0.051 [0.013]	0.055 [0.014]	0.060 [0.015]	0.065 [0.016]	0.071 [0.018]	0.076 [0.019]
Concentric Diffuser RXRN-FA65 or FA75 & Transition RXMC-CD04	DNA	.017 [0.042]	.020 [0.050]	.025 [0.062]	.031 [0.077]	.037 [0.092]	DNA
Concentric Diffuser RXRN-AA61 or AA71 & Transition RXMC-CE05	DNA	DNA	DNA	DNA	DNA	DNA	.017 [0.042]
Economizer	0.05	90.0	0.07	0.08	0.09	0.10	0.11
100% R.A. Damper Open	[0.012]	[0.015]	[0.017]	[0.020]	[0.022]	[0.025]	[0.027]
Horizontal Economizer	0.03	0.04	0.04	0.05	0.05	90.0	90.0
100% R.A. Damper Open	[0.007]	[0.009]	[0.010]	[0.011]	[0.012]	[0.014]	[0.015]
Horizontal Economizer	0.08	0.08	0.08	0.10	0.11	0.12	0.13
100% O.A. Damper Open	[0.020]	[0.020]	[0.020]	[0.024]	[0.027]	[0:030]	[0.032]

NOTE: Add component resistance to duct resistance to determine total external static pressure. $\mathsf{DNA} = \mathsf{Data}$ not Available.

AIRFLOW PERFORMANCE—8.5 TON [29.9 kW]

П		<u>-</u>	>	43	2307	121	2435	П	ı	П	ı	П	П	1	П		П	П
		1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	PM \	127 2243	134 23	141 2371	148 24	1	 -	1	 -	1	<u>'</u>	1	<u>'</u>	· 	1	1
		7] 2	W RPM W RPM	157 1	2221 1	285 1	350 1	414	478	245	5606	Ī	Ī	Ī	<u> </u>	Ī	1	ı
		9 [.4	Mc	97 2	04 23	12 2	19 23	26 2	34 2	1111 2456 1141 2542	48 26	i I	Ė	i	Ė	<u>.</u> 	· 	1
		-	/ BF	72 10	36 11	11	34 11	28 11	32 11	11	21 11	Ľ	l '			Ė	Ė	Н
		3 [.45	× ×	8 207	5 213	2 220	0 226	7 232	4 239	1 24	1119 2521 1148	1126 2585	3 26	1140 2864	7 2983	 -	1	1
		1.8	RPI	3 106	107	5 108	9 109	3 109	7 110		5 111	9 112	3 113	1114	1114	8		
		[.42]	<u>×</u>	1966	505	211	12179	224	230	237	243	249	1 256	275	1 287	2988	310	322
		1.7	RPIV	950 1730 980 1816 1009 1901 1038 1966 1068 2072 1097 2157	958 1794 987 1880 1016 1965 1046 2050 1075 2136 1104	965 1858 994 1944 1024 2029 1053 2115 1082 2200 1112 2285 1141	972 1923 1002 2008 1031 2093 1060 2179 1090 2264 1119 2350 1148	979 987 1009 2072 1038 2157 1068 2243 1097 2328 1126 2414	987 2051 1018 2136 1045 2222 1075 2307 1104 2392 1134 2478	994 2115 1023 2200 1053 2286 1082 2371	1089	1097	1104	1111	1119	1127	1135	1144
		[.40]	≥	1901	1962	2029	2093	2157	2222	2286	2350	2414	2478	2637	2756	2875	2994	3112
		1.6	RPM	1009	1016	1024	1031	1038	1045	1053	1060	1067	1071	1075	1082	1090	1097	1105
		.37]	≥	1816	1880	1944	2008	2072	2136	2200	2264	2328	2393	2524	2643	2761	2880	2999
		1.5[RPIM	980	987	994	1002	1009	1018	1023	1031	1038	1045	1054	1062	1069	1077	1084
		32]	<u>-</u>	730	794	828	923	286	051	115	1179	243	307	410	525	. 648	. 292	885
		1.4	PM	. 026	. 826	. 962	972	626	286	994	001	600	016	030	043	057	020	084 2
		32]	W RPM	1645							972 2094 1001 2179 1031 2264 1060 2350 1089 2435	979 2158 1009 2243 1038 2328 1067 2414 1097 2499	957 2136 986 2222 1016 2307 1045 2393 1071 2478 1104 2563 1133 2649	993 2183 1002 2297 1030 2410 1054 2524 1075 2637 1111 2751	981 2189 1001 2302 1016 2416 1043 2529 1062 2643 1082 2756 1119 2870 1147	988 2307 1008 2421 1029 2534 1057 2648 1069 2761 1090 2875 1127 2988	996 2426 1016 2539 1043 2653 1070 2767 1077 2880 1097 2994 1135 3107	942 2204 963 2318 983 2431 1003 2545 1024 2658 1056 2772 1084 2885 1084 2999 1105 3112 1144 3226
		0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32]	PM	921 1	928 1709	936 1773	943 1837	950 1961	937 1965	968 2029	972 2	979 2	986	002 2	016 2	029 2	043 2	056 2
	[kPa	0	N R		440	388						372	136	183 1	302 1	121	539 1	358 1
	Vater	.2 [.3	Mc	883 1380	892 1440	906 1688	913 1752	921 1816	928 1880	935 1944	943 2008	950 2072	327 2	93 2	101 23	008 2	116 29	124 26
	s of V	7] 1	V R			l							_	3 02	89 10	07 10	26 10	45 10
	nche	1 [.2]	N N	854 1318	863 1378	872 1438	880 1498	889 1559	898 1619	906 1856	913 1923	920 1987	928 2051	973 2070	31 21	38 23	36 24	33 25
	re—I	-	뮨			ı					_						l	31 100
	essu)[.25	× ×	5 1256	1316	2 1376	1 1437	1497	3 1557	7 1617	3 1677	1737	3 1797	3 1956) 207	968 2194	5 2312	3 243
	External Static Pressure—Inches of Water [kPa]	-	R	4 825	804 1254 834	784 1253 813 1315 842	1375 851	2 860	898	2 877	988	5 894	1735 903	933 1896 953	940 2003 960 2075	396 0	9 975	8 98
	al Sta	[.22]	×	1194	125	131	137	1435	1495	1555	1615	1675	173	189	200	2080	955 2199	231
	kterna	0.9	RPM	962 7	804	813	822	830	839	848	928	3 865	874	933	940	948		1 963
	Ê	[.20]	≥	1132	1192	1253	1313	1373	1433	1493	1553	1613	844 1674	865 1882	878 1965	927 2015	935 2085	220
		9.0	RPM	99/	775	784	792	801	810	818	827	836	844	865	878	927	935	942
		[.17]	≥	1070	1131	1191	1251	1311	1371	1431	1491	1552	1612	1808	1890	1973	2056	2091
		0.7	RPM	737					781	789	798		815	837			878	
		15]	≥	708 1009	717 1069 748	1129	1189	1249	1309	1369	1430	1490	1550	1733	1816	1899	1981	2064
		0.6	RPM	708	717	725 1129 755	734	743	761	260	692	777	786	810	823	837	850	864
		12]	>	Ī	1	I	1127 734 1189 763	1187	1247	1307	1368 769 1430	1428	1488	1659	1741	1824	1907	1990
		0.5 [.	3PM	ı	Ι	ı	. 202	713 1187 743 1249 772	722	731	739	748	757	782	962	809	823	836
		10]	8	ī	Ι	ı	I	1	185	246	306	366	426	584	299	1220	832	915
		14[PM	ī	ı	ı	ı	ı	693 1185 722 1247 761 1309	701 1246 731 1307 760 1369 789	1244 710 1306 739	673 1270 690 1304 719 1366 748 1428 777 1490 807	686 1352 698 1364 728 1426 757 1488 786 1550 815	755 1	768 1	782 1	795 1	1841 809 1915 836 1990 864 2064 922
KW]		1/2	W	Ī	Ī	1	Ī	1		1	244	304	364	510	592	. 929	758	841
129.9		.3 [.0	PM	Ė	İ	Ī	i I	1	İ	İ	681 13	90	98 1	727	41 1	.24	168	781
Ton		5] 0	N R	Ė	İ	1	Ī	1	Ī	Ī	9	9 02	352 6	135 7	18 7	301 7	83 7	2 99,
8.5		.2 [.0	Mc	ı T	i T	1	ı İ	1	<u> </u>	ı.	<u> </u> 	73 12	86 13	00 17	13 15	27 16	40 16	54 17
Capacity 8.5 Ton [29.9 kW]		CEM II & 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPW	<u> </u> 	<u>'</u> 	 	 - 	1	<u> </u> 	 -	 -	9	39	3700 [1746] 672 1361 700 1435 727 1510 755 1584 782 1659 810 1733 837	3800 [1793] 686 1443 713 1518 741 1592 768 1667 796 1741 823 1816 851	3900 [1841] 699 1526 727 1601 754 1675 782 1750 809 1824 837 1899 864	4000 [1888] 713 [1609 740 [1683 768 [1758 795 [1832 823 1907 850 1981 878	4100 [1935] 726 1692 754 1766 781
Capa		1 [.0]	Σ.	H					-		Н	\vdash	\vdash	72 13	36 14	99 15	3 16	<u>3</u> 6 16
L		<u>.</u>	문	4]	1	9]	<u>-</u> [9	3]	0]	7]	5] —	2] —	9] —	6] 67	3] 68	1] 65	8] 71	5] 72
	A II	% _ - -	'' [L/:	2700 [1274]	2800 [1321]	2900 [1369]	3000 [1416]	3100 [1463]	3200 [1510]	3300 [1557]	3400 [1605]	3500 [1652]	3600 [1699]	7 [174	7 [179.	7 [184	7 [188	7 [193,
		- 5	5	270(2800	290(3000	3100	320(3300	3400	3200	3600	3700	3800	3900	4000	410(

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	899
				2	949
	17.1]	10	14	4	666
M, S	3.0 [2237.1]	BK65	1VP-44	3	1049
				2	1098
				-	1148
				9	069
				9	723
L, R	2.0 [1491.4]	BK90	1VP-44	4	757
Ļ	2.0 [1	æ	1VF	3	791
				2	824
				-	860
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Do not operate above blower RPM shown as motor overloading will occur.
 Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS

8.5 TON [29.9 kW]

COMPONENT AIR RESISTANCE, IWC 8.5 TON [29.9 kW]

			Standard	Indoor A	Standard Indoor Airflow—CFM [L/s]	FM [L/s]			
Component	2600 [1227]	2800 [1321]	3000 [1416]	3200 3400 [1510] [1604]	3400 [1604]	3600 [1699]	3800 [1793]	4000 [1888]	4200 [1982]
			Resista	ınce—Inc	Resistance—Inches Water [kPa]	r [kPa]			
Wet Coil	0.051 [0.013]	0.055 [0.014]	0.060 [0.015]	0.065 [0.016]	0.071 [0.018]	0.076 [0.019]	0.082 [0.020]	0.087 [0.022]	0.093 [0.023]
Concentric Diffuser RXRN-FA65 or FA75 & Transition RXMC-CD04	0.17 [0.042]	0.20 [0.050]	0.25 [0.062]	0.31 [0.077]	0.37 [0.092]	DNA	DNA	DNA	DNA
Concentric Diffuser RXRN-AA61 or AA71 & Transition RXMC-CE05	DNA	DNA	DNA	DNA	DNA	0.17	0.18 [0.045]	0.21 [0.052]	0.24 [0.060]
Economizer	90.0		0.08	0.09	0.10		0.12	0.13	0.14
100% R.A. Damper Open	[0.015]	[0.017]	[0.020]	[0.022]	[0.025]	[0.027]	[0.030]	[0.032]	[0.035]
Horizontal Economizer	0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.08	0.09
100% R.A. Damper Open	[0.009]	[0.010]	[0.011]	[0.012]	[0.014]	[0.015]	[0.017]	[0.020]	[0.021]
Horizontal Economizer	0.08	80.0	0.10	0.11	0.12	0.13	0.15	0.16	0.18
100% O.A. Damper Open	[0.020]	[0.020]	[0.024]	[0.027]	[0:030]	[0.032]	[0.036]	[0.040]	[0.044]

4200 [1982] 1.04 1.09

4000 [1888] 1.03 1.07 1.02

3800 [1793] 1.02 1.05 1.01

3600 [1699]

3400 [1605]

3200 [1510] 0.99 0.97 1.00

3000 [1416] 0.98 0.94 0.99

2800 [1321]

2600 [1227]

ACTUAL—CFIM [L/s]

0.97 0.91

1.03 1.01

1.00 1.00

1.01

1.00

NOTE: Add component resistance to duct resistance to determine total external static pressure. $\mathsf{DNA} = \mathsf{Data}$ not Available.

[] Designates Metric Conversions

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

0.99

0.99 0.88 96.0

> SENSIBLE MBH POWER KW

TOTAL MBH

AIRFLOW PERFORMANCE—10 TON [35.2 kW]

External Static Pressure—Inches of Water (RPa) Capacity 10 Ton [35.2 kW] 1.6 (3.71) 0.6 (1.15) 0.7 (1.17) 0.6 (2.01) 0.9 (2.20) 1.1 (2.71) 1.2 (3.01) 1.2 (3.21) 1.4 (3.51) 1.6 (3.71) 1.6 (4.01) 1.7 (4.21) 1.6 (4.01) 1.7 (4.21) 1.6 (4.01) 1.7 (4.21) 1.6 (4.01) 1.7 (4.21) 1.6 (4.01) 1.7 (4.21) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7 (4.01) 1.6 (4.01) 1.7			2.3 [.57]	W I	Ī		I	I	I	I	Ι	I	I	1	1	Ι	1	Ī		1	Ι
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			2.3	RPM	1	1	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			[.55]	_	1	1	1	1	I	I	1	1	1	1	1	1	1	1	1	1	I
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			2.2	RPIV	1	1	1	-	1	1	1	1	1	1	-	1	1	1	1	1	1
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			[.52]	8	2611	I	I	Ι	I	I	1	I	I	1		Ι	Ι	1	I	1	I
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			2.1	RPM	1138	Ι	Ι	1	ı	ı	Ι	Ι	Ι	1	1	Ι	Ι	I	Ι	1	1
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			.50]	M	2498	2617	Ι	-	Ι	Ι	Ι	Ι	Ι	Ι	-	Ι	Ι	Ι	Ι	Ι	Τ
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			2.0[RPM	1118	1125	Ι		ī	Ι	Ι	Ι	Ι	1	1	Ι	Ι	Ι	Ι	1	Π
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			47]	≥	2384	2503	2622	2740	2859	2978	Ι	Ι	Ι	Ι	1	Ι	Ι	Ι	Ι	Ι	Ι
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			1.9 [.	8PM	860	105	113	1120	128	135	Ι	Ι	Ι	Ι	1	Ι	Ι	Ι	Ι	Ι	Ι
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM RPM RPM RPM RPM RPM RPM RPM RPM RPM			45]	8					2746		5983	3102	3221	Ι	T	Ι	Ι	ı	I	Ι	П
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM R RP			.8	PM	2 2 2 0	085	092	100	108	115	123	130	138	ī	1	Π	Ι	ı	ı	ı	П
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM R RP			12] 1	WB	157 1	276 1	395 1	513 1	632 1	751 1	870 1	988	107 1	226	345	453	П	1	П	П	<u> </u>
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM R RP			.7 [.4	PM	057 2	365 2	072 2	380 2	087 2	395 2	102 2	1102	1173	125 3	133 3	140 3	<u> </u>	1	Г	П	<u> </u>
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM R RP			0]	WR	11	162 1	281 1	100	519 1	337 1	1 992	375 1	994 1	112 1		320 1	l '	Ľ	Ė	Ė	Ė
W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM R RP			6 [.4	Me	37 20	744 5	152 23	128 2	167 29	75 26	182 27	190 28	197 29	05 3	12 33	20 33	27 34	35 38	H	Ė	Ė
W RPM W 1468 1465			7] 1.	٧R	130 1C	149 10	68 10	16 10	05 10	24 10	43 10	.61 ₁ C	380 10	199	17 11	36 11	155 11	-			
W RPM W 1468 1465			5[.3	١	17 19	24 20	32 21	39 22	47 24	54 25	62 26	69 27	77 28	84 29	92 31	99 32	07 33	15 34	22 35	30 37	37 38
W RPM W 1468 1465		_	1.	/ RP	1 10.	35 102	54 100	73 100	32 10	100	39 106	18 106	37 107	35 108)4 109	23 109	11 11		79 112	38 113	113
W RPM W 1468 1465		[kPa]	1.35	M	181	.6 193	9 205	13 217	6 229	0 241	3 252	7 264	.0 276	4 288) 300	1 312	4 324	8 336	1 347	5 356	8 371
W RPM W 1468 1465		ater	1.4	RPI				9 100	8 101	7 103	6 104	4 105	3 107	2 108	0 109	9 111	8 112	7 113	5 115	4 116	3 117
W RPM W 1468 1465		of W	[.32	M	3 170	3 182	2 194	5 205	3 217	2 229	3 241	9 253	3 265	3 277) 289	3 300	7 312	324	1 336	7 348	360
W RPM W 1468 1465		ches	1.3	RPI					ı	3 100	1016	1029	104	1056	1070	3 108	109	3 111	112	113	112
W RPM W RP		투	[.30]	8	1698	1708	1827	1946	206	2183	2302	245	2538	2658	277.	12896	301	3133	3252	337	3486
W RPM W RP		ssure	1.2	RPN					_	ı	1001	1008	1016	1024	1031	1036	1046	1054	1061	1069	1076
W RPM W RP		: Pre	[.27]	٨	1692	1705	1811	1832	1951	2070	2189	2307	2426	2545	2663	2782	2901	3020	3138	3257	3376
W RPM W RP		Stati	1.1	RPM	880	943	920	l	996		ı		966	1003	1011	1018	1026	1033	1041	1048	1056
W RPM W RP		rnal	.25]		1617	1700	1763	1813	1892	1956	2075	2194	2312	2431	2550	2669	2787	2906	3025	3143	3262
		Exte	1.0	RPM	852	998	879	938	945	953	096	896	975	983	066	866	1006	1013	1021	1028	1036
			.22]		1543	1626	1708	1791	1874	1896	2003	2080	2199	2318	2438	2555	2674	2793	2911	3030	3149
			0.9	RPIM	825	838		865	879	933	940	948	922	963	970	8/6	985	993	0001	1008	1015
			20]	M	468	551	634	717	799	882	965	2015	3085	204	323	442	290	629	. 862	. 916	3035
Capacity 10 Ton 135.2 kM Capacity 10 Ton 135.2 kM Capacity 10 Ton 135.2 kM Capacity 10 Ton 135.2 kM Capacity Ca				PM	-	,-	<u> </u>	_	÷	-											
Capacity 10 Ton [35.2 kW] Capacity 10 Ton [35.2 kW] Capacity 10 Ton [35.2 kW] Capacity Capacit			17] [W			929	642	725		890	973	920	091		328				803	922
Capacity 10 Ton 35.2 kW 1			71.	PM	70 1	183	97 1	10 1	24 1	37 1		194	78 2	122 2		37 2	45 2	52 2	160 2		75 2
Capacity 10 Ton [35.2 kM] C. C. C. C. C. C. C. C			5] 0	WR	319 7	402 7	485 7		350 8	733 8	318	3 668	361 8	J64 S	147 5	215 5	333 6	452 5	571 5	389	308
Capacity 10 Ton [35.2 kW] Capacity 10 Ton [35.2 kW] Capacity 10 Ton [35.2 kW] Capacity 10 Ton [35.2 kW] Capacity 10			.6[.1	PM	42 1.	.56 1	.69	83 10	.36	10	23 1	37 18	50 1	64 2	77 2	17 2.	24 2.	32 2	40 2	47 2	55 2
Capacity 10 Ton 13.2.2 kW			2] 0.	N R	7 245	328 7	110 7	193 7	2 929	359 8		324 8	307 8		72 8	55 9	38 9		157 9	929	395 9
Capacity 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 10 Ton 135.2 kW 135.2 kW			5[.1	\ Mc	15 12	28 15	42 14	55 14	59 15	82 16	96 17	99 18	23 15	36 15	50 20	53 21	77 22	12 23	19 24	27 25	34 26
Capacity 10 Ton [35.2 kW] Flux Ltd L			0] 0	V RF	70 7	53 72	36 74	19 7	01 7	84 7	12 29	.20 8(32 82	15 8.	8 86	81 8	63 8,	48 9	29 9	62 93	81 9.
Capacity 10 Ton [35.2 kM]			4 [.1	N N	57 11	112	4 13	28 14	11	55 15	38 16	32 17	35 18	9 19	22 19	36 20	19 21	33 22	76 23)6 24	4 25
Capacity 10 Ton [35.2]	KW]		7] 0.	/ RP	_	79 70	31 71	44 72	27 74	10 75	32 76	75 78	58 75	41 80	23 82	36 85	39 84	72 86	54 87	37 90	20 91
Capacity 10 Ton	35.2		3 [.07	M	-	3 11,	7 12t	0 132	4 14;	7 15	1 15	4 16,	8 17.	1 18	5 192	8 200	2 20k	5 21,	0 22!	2 23;	6 242
Capacity 10	Ton] 0.	R	Ь	-	_	20 70	52 71	15 72	8 74	75	33 76	92 99	62 61	32 80	4 82	77 83	30 84	33 86	15 87
Capacity Capacity Flow Capacity Flow Capacity Capaci	10		[.05	N	⊢	\vdash	\vdash	127	3 135	143	3 151	7 160	168	176	7 184	193	1 201	3 209	218	5 226	3 234
Air Flow Cape Cape Cape Cape Cape Cape Cape Cape	Ξį		0.2	RPI	⊢	⊢		_	-	1 700	3 713	3 727	3 740	2 754	1 767	7 781	794	3 808	5 821	3 835	1 848
Air Flow OT 18 12 12 12 12 12 12 12 12 12 12 12 12 12	apac		[.02]	W					\vdash	1361	1443	1526	1609	1692	1774	1857	1940	2023	2105	2188	2271
Air Flow CFM [L/s] Fl	ت		0.1	RPN	_	_				672	989	669	713	726	740	753	767	780	794	807	821
FEM P P P P P P P P P P P P P P P P P P P	,	= }	ر ا		1510]	1557]	1605]	1652]	1699]	1746]	1793]	1841]	1888]	1935]	1982]	2029]	2077]	2124]	2171]	2218]	2265]
		₹ 5	, FM		3200 [3300	3400 [3200	3600 [3700 [3800	3000	1000	1100	1200 [1300 [1400 [.	1500 [1600 [.	1700 [.	1800

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	894
				2	943
	7.1]	.0	14	4	992
M, S	3.0 [2237.1]	BK65	1VP-44	3	1041
				2	1089
				-	1138
				9	699
				2	704
L, R	491.4]	BK90	1VP-44	4	739
L,	2.0 [1491.4]	BK	1VP	3	775
				2	810
				-	845
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Do not operate above blower RPM shown as motor overloading will occur.
 Do not set motor sheave below one turn open.

COMPONENT AIR RESISTANCE, IWC 10 TON [35.2 kW]

			Sta	ndard Indo	Standard Indoor Airflow—CFM [L/s]	/—CFM [I	[S/]		
-	3200	3400	3600	3800	4000	4200	4400	4600	4800
	[1510]	[1604]	[1699]	[1793]	[1888]	[1982]	[2076]	[2171]	[2265]
			Resist	ance—Inc	Resistance—Inches Water [kPa]	r [kPa]			
Wet Coil	0.065 [0.016]	0.071 [0.018]	0.076 [0.019]	0.082 [0.020]	0.087 [0.022]	0.093 [0.023]	0.099 [0.025]	0.105 [0.026]	0.110 [0.027]
Concentric Diffuser RXRN-FA65 or FA75 & Transition RXMC-CD04	0.31	0.37 [0.092]	DNA	DNA	DNA	DNA	DNA	DNA	DNA
Concentric Diffuser RXRN-AA61 or AA71 & Transition RXMC-CE05	DNA	DNA	0.17 [0.042]	0.18 [0.045]	0.21 [0.052]	0.24 [0.060]	0.27 [0.067]	DNA	DNA
Concentric Diffuser RXRN-AA66 or AA76 & Transition RXMC-CF06	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.31 [0.077]	0.32 [0.080]
Economizer 100% R.A. Damper Open	0.09 [0.022]	0.10 [0.025]	0.11 [0.027]	0.12 [0.030]	0.13 [0.032]	0.14 [0.035]	0.15 [0.037]	0.16 [0.040]	0.17 [0.042]
Horizontal Economizer 100% R.A. Damper Open	0.05 [0.012]	0.06 [0.014]	0.06 [0.015]	0.07 [0.017]	0.08 [0.020]	0.09 [0.021]	0.09 [0.022]	0.10 [0.024]	0.10 [0.025]
Horizontal Economizer 100% O.A. Damper Open	0.11 [0.027]	0.12 [0.030]	0.13 [0.032]	0.15 [0.0.36]	0.16 [0.040]	0.18 [0.044]	0.19 [0.047]	0.20 [0.50]	0.21 [0.052]

1.09 1.04

> 1.05 1.01

1.02 1.00

1.00 1.00

1.02

1.01

1.00

4600 [2171] 1.03 1.07 1.01

4400

4200 [1982]

4000 [1888]

3800 [1793] 0.99 0.97 0.99

3600 [1699] 0.98 0.95 0.99

3400 [1605]

3200 [1510]

ACTUAL—CFM [L/s]

0.97 0.93

AIRFLOW CORRECTION FACTORS

10 TON [35.2 kW]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

DNA = Data not Available.

[] Designates Metric Conversions

NOTES: 1. Multiply correction factor times gross performance data. Resulting sensible capacity cannot exceed total capacity.

0.98

0.98

0.91 96.0

> SENSIBLE MBH POWER KW

TOTAL MBH

AIRFLOW PERFORMANCE—12.5 TON [44.0 kW]

			[5] 1.9 [.47] 2.0 [.50]	W RPM W RPM W	2714 1192 2819 1215 2928	3002 1213 3114 1235 3230	3312 1234 3430 1256 3553	3642 1256 3768 1278 3897	3994 1279 4127 1300 4263	4367 — — — — —	 		1	 	 	
			[] 1.8 [.45]	/ RPM	1169	1190	1212	1235	1258	1282	4618 —	_	I	1	 	
			1.7 [.42	RPM V	2514 1146 2613	1168 2894	1190 3196	1213 3520	1236 3865	1261 4231	1285		1	1		
			1.6 [.40] 1.7 [.42]	RPM W RPM W RPM	1123 2211	1145 2789	1168 3084	1191 3401	3616 1215 3739	3969 1239 4098	1264 4479	1290 4880	1	1	1	
			1.5 [.37]	RPM W	2420	1122 2687	2975	3285		218 3969	244 4342	1270 4737	1296 5153	 	-	
				RPM W R	1076 2328 1099	1099 2589 1	22 2870 1145	46 3173 1169	71 3497 1193	96 3843 1218	1222 4209 1244	1249 4597 1	1276 5007 1	1	1	
			1.3 [.32] 1.4 [.35]		2241	2494	9 2769 1122	2959 1124 3065 1146	3270 1149 3382 1171	1175 3720 1196	4080	4461	4863	4 5287 —	Ι	
		r [kPa]	.30] 1.3	W RPM W RPM W RPM W RPM W	1028 2156 1052	2403 1075	2670 1099	2959 112	3270 1149	3601	3954 1201	4328 1228	4723 1256	5140 1284	2228 —	
		External Static Pressure—Inches of Water [kPa	1.1 [.27] 1.2 [.30]	W RPM	2075 1028	2315 1052	2575 1076	1078 2858 1101	3161 1127	3485 1153	3831 1179	4199 1207	4587 1235	4997 1263	1232 5137 1252 5281 1272 5428 1292	
		ıre—Inche	5] 1.1 [3	V RPM	1998 1004 2	2230 1028 2	2484 1053 2	2759 1078 2	3056 1104 3	3373 1131 3	3712 1158 3	4072 1186 4	4454 1214 4	4857 1243 4	81 1272	
		atic Pressi	0.8[.20] 0.9[.22] 1.0[.25]	RPM	626	1004	1029	1055	2954 1081 30	5 1108 33	3597 1136 37	1164	4324 1193 44	4720 1222 48	7 1252 52	
		External St	0.9 [.22]	W RPM W	954 1924	979 2149	1005 2396	1031 2664	1058	1086 3265 1108	1114	1142 3950	1171	1201	1232 513	
		_	0.8[.20]	RPM W	929 1853	955 2072	981 2312	1008 2573	1035 2855	1063 3159	1091 3484	1120 3831	1150 4198	1180 4587	1211 4997	
			[117]	W	904 1786	930 1997	957 2230	984 2485	1012 2760	3057	1069 3375	1098 3715	1128 4076	1159 4458	14861	
			.6 [.15] 0.7	RPM W RPM W RPM W RPM W RPM W RPM W RPW W RPW	879 1722 8	905 1927 8	932 2153 (960 2400 8	988 2669 10	970 2772 993 2864 1017 2959 1040	146 3270 10	176 3603 10	06 3956 1	37 4331 1	5800 [2737] 1060 4114 1082 4230 1104 4349 1126 4472 1147 4598 1169 4728 1190	
			5 [.12] 0	M W RF	854 1661 8	880 1859 9	908 2079 6	936 2319 9		33 2864 10	976 2975 1000 3070 1023 3168 1046 3270	1007 3286 1030 3388 1053 3494 1076 3603	34 3841 11	15 4209 11	17 4598 11	
	se 60 Hz		[.10] 0.9	I W RP	1605	1796	883 2008 9	911 2241 9:	940 2496 964 2581	9 2772	3070 103	3388 10	2 3728 10	3 4089 11	3 4472 11	
0 kW]	5 — 3 pha		.07] 0.4	M RPN	828 —	1735 855	858 1941 883	886 2167 91	916 2415 940	946 2684 970	2975 1000	3286 1030	3619 1062	3974 1093	4349 1126	
5 Ton (44.)	0, 460, 57		05] 0.3 [W RPM	1	- 830	_						1039	1071	1230 1104	
Capacity 12.5 Ton [44.0 kW	Voltage 208/230, 460, 575 — 3 phase 60 Hz		2] 0.2 [.(W RPM	 - -	1	— 832 1877	329 862 2096	93 891 2337	18 922 2599	953 2883	193 984 3188	993 3412 1016 3514 1039 3619 1062 3728 1084 3841 1106 3956	752 1049 3	14 1082 4	
Capa	Volta		CFM [L/s] 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	RPM	I	1	I	3] 836 2029	1] 867 2263	5] 897 2518	9] 929 2795	1] 961 3093	_	5600 [2643] 1026 3752 1049 3861 1071 3974 1093 4089 1115 4209 1137 4331	7] 1060 41	
	Air	Flow	CFM [L/s		3800 [1793]	4000 [1888]	4200 [1982]	4400 [2076]	4600 [2171]	4800 [2265]	5000 [2359]	5200 [2454]	5400 [2548]	5600 [2643	5800 [2737	

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	1094
				2	1136
	8.5]	Ŧ	10	4	1177
M, S	5.0 [3728.5]	BK85H	1VP-65	3	1216
				2	1256
				1	1294
				9	824
				2	876
L, R	237.1]	BK72H	1VP-44	4	920
L,	3.0 [2237.1]	BK7	1VP	8	996
				2	1009
				1	1051
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

Do not set motor sheave below minimum or maximum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS 12.5 TON [44.0 kW]

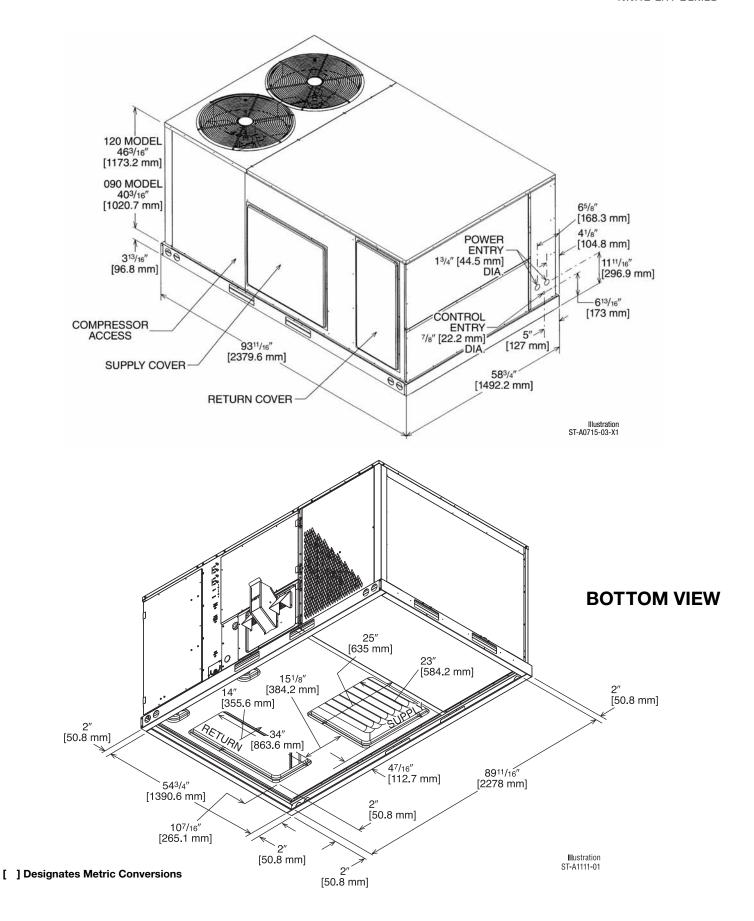
ACTUAL-CFM 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800	3800	4000	4200	4400	4600	4800	2000	5200	5400	2600	2800
[F/s]	[1793]	[L/s] [1793] [1888]	[1982]	[2077]	[2171]	[2265]	[2077] [2171] [2265] [2360] [2454] [2549] [2643] [2737]	[2454]	[2549]	[2643]	[2737]
TOTAL MBH	0.98	0.99 1.00 1.01 1.02 1.02 1.03	1.00	1.01	1.02	1.02	1.03	1.04 1.05 1.06 1.07	1.05	1.06	1.07
SENSIBLE MBH 0.93	0.93	0.96 1.00 1.04 1.07 1.11 1.14 1.18 1.21 1.25 1.28	1.00	1.04	1.07	1.11	1.14	1.18	1.21	1.25	1.28
POWER KW	0.99	1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.03 1.03 1.03	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03
					ŀ	ľ					

NOTES: 1. Multiply correction factor times gross performance data.

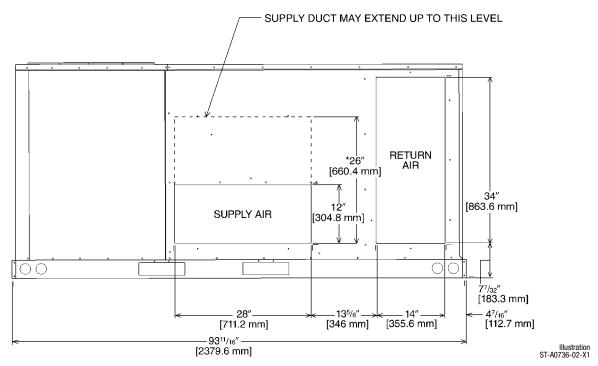
2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 12.5 TON [44.0 kW]

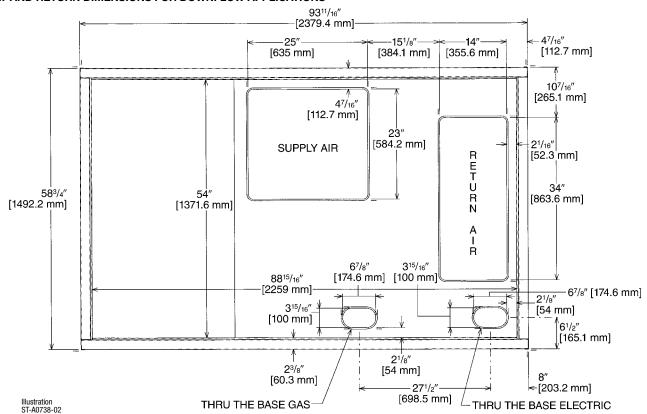

9					Standa	ırd Indo	Standard Indoor Airflow—CFIM [L/s]	w—CFI	[F/S]			
7	Component	3800 [1793]	4000 [1888]	4000 4200 [1888] [1982]	4400 [2076]	4600 [2171]	4800 [2265]	5000 [2359]	3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 1793] [1888] [1982] [2076] [2171] [2265] [2359] [2454] [2548] [2643]	5400 [2548]	5600 [2643]	5800 [2737]
ω					Resi	stance-	Resistance—Inches Water [kPa]	Water [kPa]			
8	Wet Coil	0.08	0.09	0.09	0.10		0.10 0.11 0.11 [.02] [.03] [.03]	0.11	0.12	0.13	0.13	0.14
	Downflow Economizer RA Damper Open	0.12	0.13	0.14	0.15	0.16 [.04]	0.17	0.18	0.19	0.20	0.21	0.22
	Horizontal Economizer RA Damner Onen	0.07	0.07	0.08	0.08	0.09	0.10	0.10	0.11	0.11	0.12	0.13
	Concentric Grill RXRN-AA61 or	0.19	0.21		0.27	0.30	0.33	0.36	0.40	0.44	0.48	0.52
	RXRN-AA71 & Transition RXMC-CE05	[.05]	[.05]	[.05]	[.07]	[.07]	[.08]	[.09]	[.10]	[1]	[.12]	[.13]
	Concentric Grill RXRN-AA66 or RXRN-AA76 & Transition RXMC-CF06	0.23 [0.6]	0.25 [0.6]	0.27 [0.7]	0.29	0.30	0.32 [0.8]	0.32 0.34 [0.8] [0.8]	0.36	0.38	0.40 [.10]	0.43
	NOTE: Add component resistance to duct resistance to determine total external static pressure.	t resista	ince to c	letermin	e total e	xternal	static pr	essure.				

			ELECTRI	ICAL DATA	A – RKNL	- SERIES				
		C073CL	C073CM	C073DL	C073DM	C073YL	C073YM	C090CL H090CR	CO90CM HO90CS	C090CN H090CT
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632	187-253	187-253	187-253
ioi	Volts	208/230	208/230	460	460	575	575	208/230	208/230	208/230
mat	Minimum Circuit Ampacity	35/35	35/35	16	16	13	13	43/43	43/43	48/48
Unit Information	Minimum Overcurrent Protection Device Size	40/40	40/40	20	20	15	15	45/45	45/45	50/50
5	Maximum Overcurrent Protection Device Size	50/50	50/50	20	20	15	15	50/50	50/50	60/60
	No.	1	1	1	1	1	1	2	2	2
	Volts	200/240	200/240	480	480	600	600	200/240	200/240	200/240
=	Phase	3	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450
Compressor Motor	HP, Compressor 1	6	6	5	6	5	6	3 1/4	3 1/4	3 1/4
res	Amps (RLA), Comp. 1	19.6/19.6	19.6/19.6	8.2	8.2	6.6	6.6	13.1/13.1	13.1/13.1	13.1/13.1
E	Amps (LRA), Comp. 1	136/136	136/136	66.1	66.1	55.3	55.3	83.1/83.1	83.1/83.1	83.1/83.1
3	HP, Compressor 2	_	_	_	_	_	_	3 1/4	3 1/4	3 1/4
	Amps (RLA), Comp. 2	_	_	_	_	_	_	13.1/13.1	13.1/13.1	13.1/13.1
	Amps (LRA), Comp. 2	_	_	_	_	_	_	83.1/83.1	83.1/83.1	83.1/83.1
-	No.	2	2	2	2	2	2	2	2	2
Mot	Volts	208/230	208/230	460	460	575	575	208/230	208/230	208/230
sor	Phase	1	1	1	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
l m	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	1	1	2.4/2.4	2.4/2.4	2.4/2.4
ت	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	1.5	1.5	4.7/4.7	4.7/4.7	4.7/4.7
_	No.	1	1	1	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575	208/230	208/230	208/230
ţe	Phase	3	3	3	3	3	3	3	3	3
Evaporator Fan	HP	1 1/2	1 1/2	1 1/2	1 1/2	1 1/2	1 1/2	2	2	3
Eva	Amps (FLA, each)	5.6/5.6	5.6/5.6	2.8	2.8	1.9	1.9	8/8	8/8	13/13
	Amps (LRA, each)	28.8/28.8	28.8/28.8	14.4	14.4	14	14	56/56	56/56	74.5/74.5


			ELECTR	ICAL DAT	A – RKNL	- SERIES				
		CO90DL HO90DR	CO90DM HO90DS	CO90DN HO90DT	C090YL	C090YM	CO90YN	C102CL H102CR	C102CM H102CS	C102DL H102DR
	Unit Operating Voltage Range	414-506	414-506	414-506	518-632	518-632	518-632	187-253	187-253	414-506
l ë	Volts	460	460	460	575	575	575	208/230	208/230	460
, ja	Minimum Circuit Ampacity	21	21	24	16	16	21	49/49	54/54	23
Unit Information	Minimum Overcurrent Protection Device Size	25	25	25	20	20	25	50/50	55/55	25
5	Maximum Overcurrent Protection Device Size	25	25	30	20	20	25	60/60	60/60	25
	No.	2	2	2	2	2	2	2	2	2
	Volts	480	480	480	600	600	600	200/230	200/230	460
=	Phase	3	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450
μö	HP, Compressor 1	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 3/4	3 3/4	3 3/4
Compressor Motor	Amps (RLA), Comp. 1	6.1	6.1	6.1	4.4	4.4	4.4	16/16	16/16	7.1
	Amps (LRA), Comp. 1	41	41	41	33	33	33	91/91	91/91	46
	HP, Compressor 2	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 3/4	3 3/4	3 3/4
	Amps (RLA), Comp. 2	6.1	6.1	6.1	4.4	4.4	4.4	16/16	16/16	7.1
	Amps (LRA), Comp. 2	41	41	41	33	33	33	91/91	91/91	46
5	No.	2	2	2	2	2	2	2	2	2
Mot	Volts	460	460	460	575	575	575	208/230	208/230	460
S	Phase	1	1	1	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
🖺	Amps (FLA, each)	1.4	1.4	1.4	1	1	1	2.4/2.4	2.4/2.4	1.4
٥	Amps (LRA, each)	2.4	2.4	2.4	1.5	1.5	1.5	4.7/4.7	4.7/4.7	2.4
l _	No.	1	1	1	1	1	1	1	1	1
Evaporator Fan	Volts	460	460	460	575	575	575	208/230	208/230	460
aţ.	Phase	3	3	3	3	3	3	3	3	3
g	HP	2	2	3	2	2	3	2	3	2
Eva	Amps (FLA, each)	4	4	7	4	4	8	8/8	13/13	4
	Amps (LRA, each)	28	28	38.1	19	19	20	56/56	74.5/74.5	28

	ELECTRICAL DATA – RKNL- SERIES										
		C102DM H102DS	C102YL	C102YM	C120CL H120CR	C120CM H120CS	C120DL H120DR	C120DM H120DS	C120YL	C120YM	
	Unit Operating Voltage Range	414-506	518-632	518-632	187-253	187-253	414-506	414-506	518-632	518-632	
ig.	Volts	460	575	575	208/230	208/230	460	460	575	575	
ja j	Minimum Circuit Ampacity	26	19	24	49/49	54/54	25	28	19	24	
Unit Information	Minimum Overcurrent Protection Device Size	30	20	25	50/50	55/55	25	30	20	25	
5	Maximum Overcurrent Protection Device Size	30	20	30	60/60	60/60	30	35	20	30	
	No.	2	2	2	2	2	2	2	2	2	
	Volts	460	575	575	200/240	200/240	480	480	575	575	
₌	Phase	3	3	3	3	3	3	3	3	3	
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450	
<u> </u>	HP, Compressor 1	3 3/4	3 3/4	3 3/4	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4	
Compressor Motor	Amps (RLA), Comp. 1	7.1	5.6	5.6	16/16	16/16	7.8	7.8	5.7	5.7	
Ē	Amps (LRA), Comp. 1	46	37	37	110/110	110/110	52	52	38.9	38.9	
ರ	HP, Compressor 2	3 3/4	3 3/4	3 3/4	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4	
	Amps (RLA), Comp. 2	7.1	5.6	5.6	16/16	16/16	7.8	7.8	5.7	5.7	
	Amps (LRA), Comp. 2	46	37	37	110/110	110/110	52	52	38.9	38.9	
-	No.	2	2	2	2	2	2	2	2	2	
Mot	Volts	460	575	575	208/230	208/230	460	460	575	575	
Compressor Motor	Phase	1	1	1	1	1	1	1	1	1	
res	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	
E	Amps (FLA, each)	1.4	1	1	2.4/2.4	2.4/2.4	1.4	1.4	1	1	
త	Amps (LRA, each)	2.4	1.5	1.5	4.7/4.7	4.7/4.7	2.4	2.4	1.5	1.5	
	No.	1	1	1	1	1	1	1	1	1	
Fan	Volts	460	575	575	208/230	208/230	460	460	575	575	
Evaporator Fan	Phase	3	3	3	3	3	3	3	3	3	
BO	HP	3	2	3	2	3	2	3	2	3	
Eva	Amps (FLA, each)	7	4	8	8/8	13/13	4	7	4	8	
	Amps (LRA, each)	38.1	19	20	56/56	74.5/74.5	28	38.1	19	20	

			RICAL DATA – I				
		C151CL H151CR	C151CM H151CS	C151DL H151DR	C151DM H151DS	C151YL	C151YM
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632
ioi	Volts	208/230	208/230	460	460	575	575
mat	Minimum Circuit Ampacity	67/67	71/71	33	36	28	28
Unit Information	Minimum Overcurrent Protection Device Size	70/70	75/75	35	40	30	30
'n	Maximum Overcurrent Protection Device Size	80/80	90/90	40	45	35	35
	No.	2	2	2	2	2	2
Ī	Volts	208/230	208/230	460	460	575	575
a	Phase	3	3	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450	3450	3450
, j	HP, Compressor 1	5 3/4	5 3/4	5 3/4	5 3/4	5 3/4	5 3/4
res	Amps (RLA), Comp. 1	22.4/22.4	22.4/22.4	10.6	10.6	7.7	7.7
ğ	Amps (LRA), Comp. 1	149/149	149/149	75	75	54	54
<u>ت</u>	HP, Compressor 2	5 1/4	5 1/4	5 1/4	5 1/4	5 1/4	5 1/4
	Amps (RLA), Comp. 2	19/19	19/19	9.7	9.7	7.4	7.4
	Amps (LRA), Comp. 2	123/123	123/123	62	62	50	50
or	No.	2	2	2	2	2	2
Compressor Motor	Volts	208/230	208/230	460	460	575	575
SOL	Phase	1	1	1	1	1	1
res	HP	1/2	1/2	1/2	1/2	1/2	1/2
g [Amps (FLA, each)	2.3/2.3	2.3/2.3	1.5	1.5	1	1
ర	Amps (LRA, each)	5.6/5.6	5.6/5.6	3.1	3.1	2.2	2.2
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575
ato [Phase	3	3	3	3	3	3
pors	HP	3	5	3	5	3	5
Evaporator Fan	Amps (FLA, each)	15/15	18.8/18.8	7	10	8	8
- [Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	41.3	20	33




SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

*RECOMMENDED DUCT DIMENSIONS ARE 26"

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

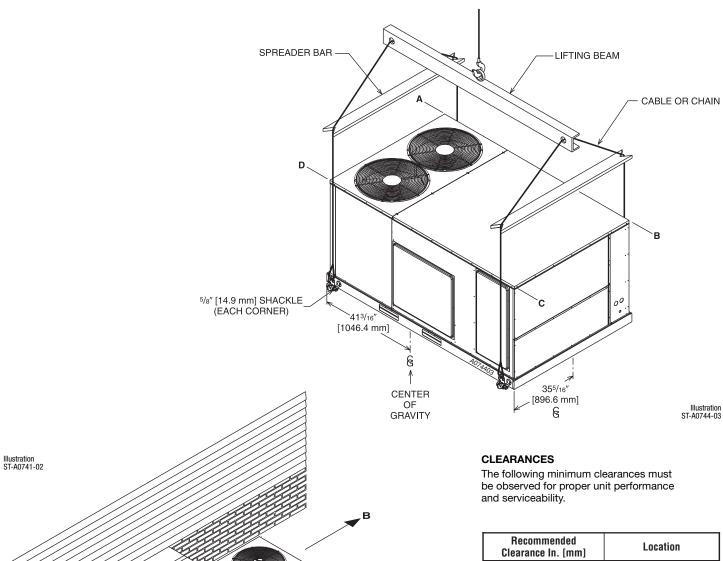

[] Designates Metric Conversions

Illustration ST-A1111-03

WEIGHTS

Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Economizer	90 [40.82]	81 [36.70]
Power Exhaust	44 [19.96]	42 [19.05]
Fresh Air Damper (Manual)	26 [11.79]	21 [9.53]
Fresh Air Damper (Motorized)	43 [19.50]	38 [17.24]
Roof Curb 14"	90 [40.82]	85 [38.60]
Roof Curb 24"	140 [63.50]	135 [61.23]

Capacity Tons [kW]	Corner Weights by Percentage						
	Α	В	С	D			
6-12.5 [21.1-44.0]	33%	27%	17%	23%			

Recommended Clearance In. [mm]	Location
48 [1219]	A - Front
18 [457]	B - Condenser Coil
18 [457]	C - Duct Side
18 [457]	*D - Evaporator End
60 [1524]	E - Above
*Without Economizer. 48" [1219 mm] With Economizer

[] Designates Metric Conversions

VERTICAL CLEARANCE

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Thermostats	See Thermostat Specif	ication Sheet for Deta	ils (T22-001)	No
Economizer w/Single Enthalpy (Downflow)	AXRD-PJCM3	90 [40.8]	81 [36.7]	Yes
Economizer w/Single Enthalpy and Smoke Detector (Downflow)	AXRD-SJCM3	91 [41.3]	82 [37.2]	Yes
Dual Enthalpy Kit	RXRX-AV03	1 [.5]	1 [.5]	No
Horizontal Economizer w/Single Enthalpy	AXRD-RJCM3	94 [42.6]	89 [40.4]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No
Manual Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDA1	26 [11.8]	21 [9.5]	No
Manual Fresh Air Damper (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.1]	No
Motor Kit for RXRF-KDA1 (Left Panel Mounted)	RXRX-AW02	35 [15.9]	27 [12.2]	No
Modulating Motor Kit w/position feedback for RXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No
Motorized Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDB1	43 [19.5]	38 [17.2]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
Roofcurb Adapters	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
Noolcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to 20" Round)	RXMC-CD04 ①	15 [6.8]	13 [5.9]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 ②	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 3	20 [9.1]	18 [8.2]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [1.0]	Yes
Outdoor Coil Louver Kit	AXRX-AAD01C (6-10 Ton)	29 [11.3]	26 [11.8]	Yes
Outdoor Coil Louver Kit	AXRX-AAD02A (12.5 Ton)	29 [11.3]	26 [11.8]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [.7]	Yes
Unfused Service Disconnect	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.5]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No

NOTES: ① Used with RXRN-FA65 and RXRN-FA75 concentric diffusers.

③ Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

NOTICE: Please refer to conversion kit index provided with the unit for LP conversion kit.

② Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

THERMOSTATS

200-Series * Programmable

300-Series * Deluxe Programmable 400-Series *

500-Series * Communicating/ Programmable

Brand	Descripter (3 Characters)		Series (3 Characters)	System (2 Characters)	Type (2 Characters)
UHC	-	TST	213	UN	MS
UHC=Ruud		TST=Thermostat	200=Programmable 300=Deluxe Programmable 400=Special Applications/ Programmable 500=Communicating/ Programmable	GE=Gas/Electric UN=Universal (AC/HP/GE) MD=Modulating Furnace DF=Dual Fuel CM=Communicating	SS=Single-Stage MS=Multi-Stage

^{*} Photos are representative. Actual models may vary.

For detailed thermostat match-up information, see specification sheet form number T22-001.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDS Field Installed

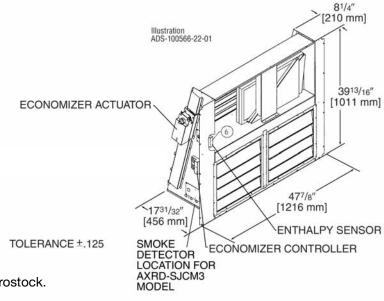
BACnet® COMMUNICATION CARD RXRX-AY01

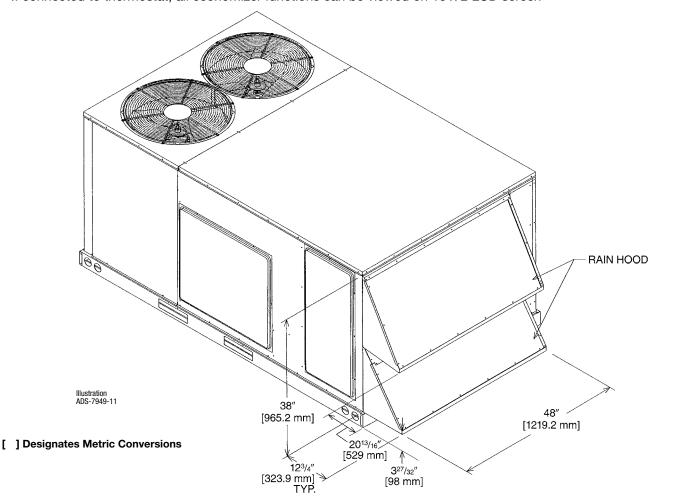
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

ECONOMIZER FOR DOWNFLOW DUCT INSTALLATION

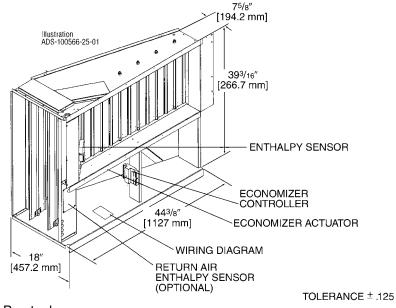

Use to Select Factory Installed Options Only


AXRD-PJCM3—Single Enthalpy (Outdoor) and AXRD-SJCM3 Single Enthalpy with Smoke Detector

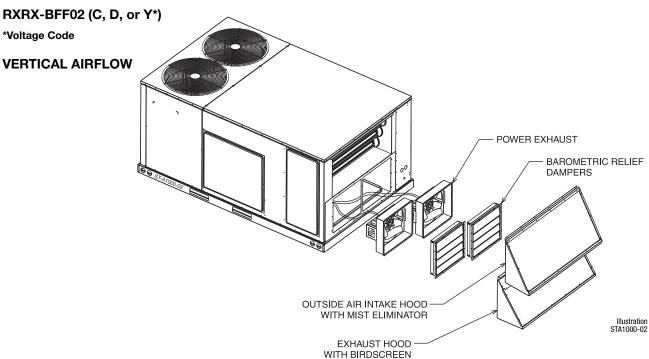
RXRX-AV03—Dual Enthalpy Upgrade Kit

RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

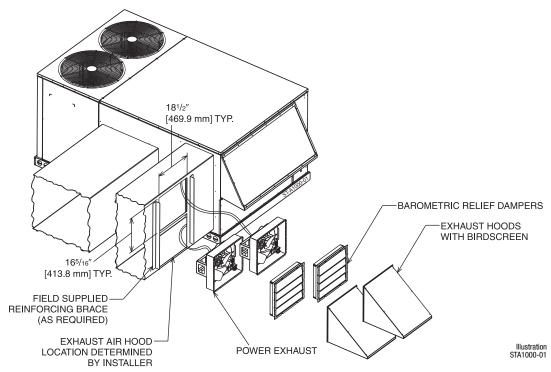
- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer
 (270 ohm) (Honeywell #S963B1136) is Available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



ECONOMIZER FOR HORIZONTAL DUCT INSTALLATIONField Installed Only


AXRD-RJCM3—Single Enthalpy (Outdoor) RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

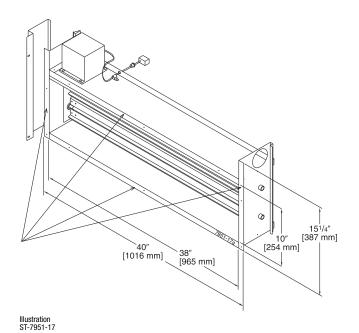
- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



121/32" [306 mm] EXHAUST AIR HOOD LOCATION DETERMINED BY INSTALLER 48" [1219 mm] 4213/16" [1087 mm] 2015/16" [532 mm] 345/9" [879 mm] 181/2" [470 mm] 20 [508 mm]-

POWER EXHAUST KIT FOR AXRD-PJCM3(-), AXRD-SJCM3(-), AXRD-RJCM3 ECONOMIZERS

HORIZONTAL AIRFLOW

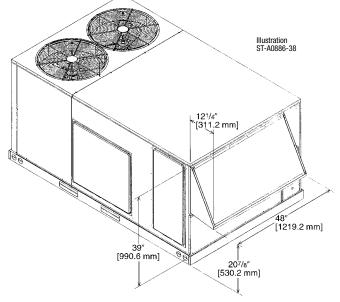

Model No.	No.	Volts	Phase	HP	Low Spe	ed	High Spee	d ①	FLA	LRA
Miduel No.	of Fans	VUIIS	FIIdSE	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8
RXRX-BFF02Y	2	575	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.81	1.5

NOTES: $\textcircled{\scriptsize 10}$ Power exhaust is factory set on high speed motor tap.

② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

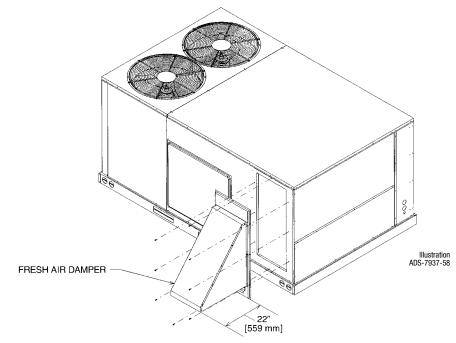
MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for AXRF-KDA1)


AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

[] Designates Metric Conversions

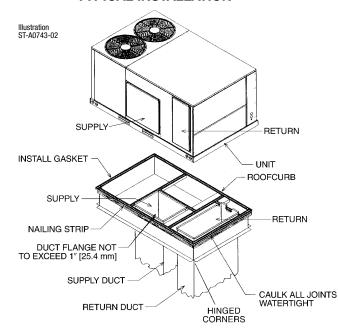
MOTORIZED DAMPER KIT RXRX-AW04 (Modulating Motor Kit with position feedback for AXRF-KDA1)


- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

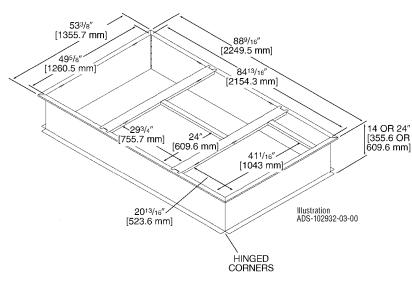
FRESH AIR DAMPER (Cont.)

AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)

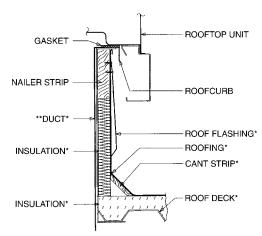
DOWNFLOW APPLICATION



ROOFCURBS (Full Perimeter)

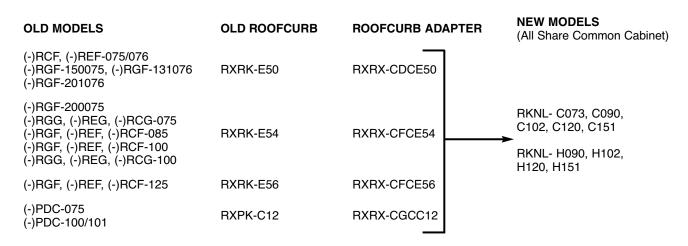

- Ruud's roofcurb design can be utilized on all 6-12.5 ton [21.1-44.0 kW] RKNL- models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 1" [25 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (40' [12.2 m]) provided with Roofcurb.
- Packaged for easy field assembly.

Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]


TYPICAL INSTALLATION

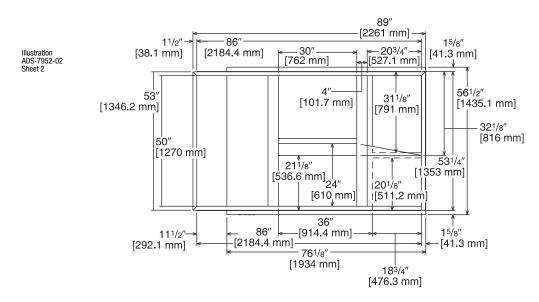
ROOFCURB INSTALLATION

[] Designates Metric Conversions

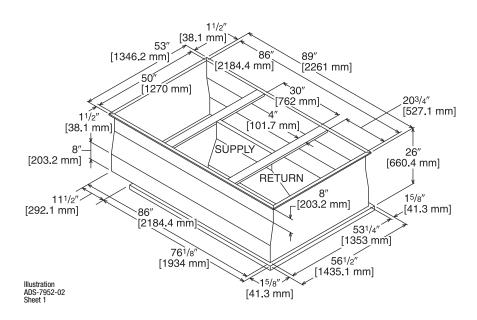


*BY CONTRACTOR

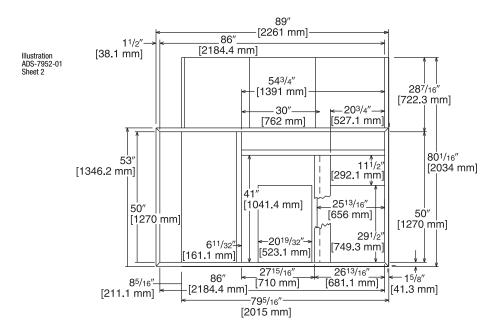
**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

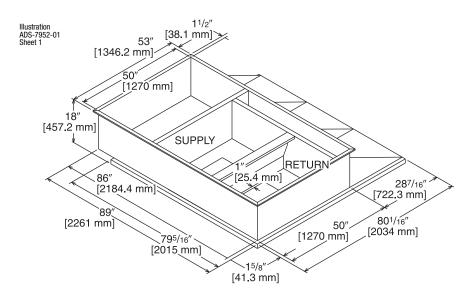

Illustration ST-A0743-02

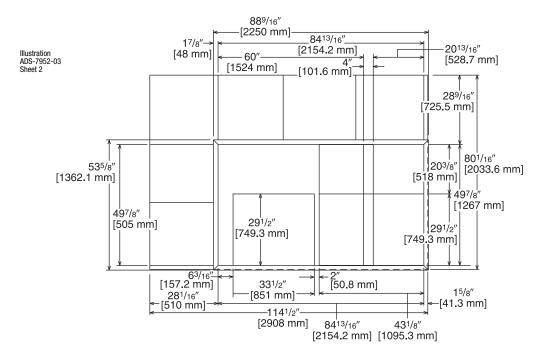
ROOFCURB ADAPTERS

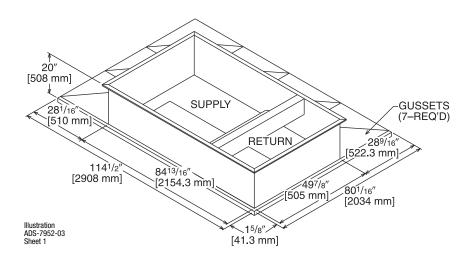


NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced. RKNL-C073, -C/H090, -C/H102, -C/H120, -C/H151 fit on the same curb as the RKKB-A090, A102, A120, A150, A181, RKMB-A090, A102, A120, A150, RKNB-A090, A102, A120, A150, A161, RKMB-A090, A102, A120, A161, RKMB-A090, A102, A161, A1

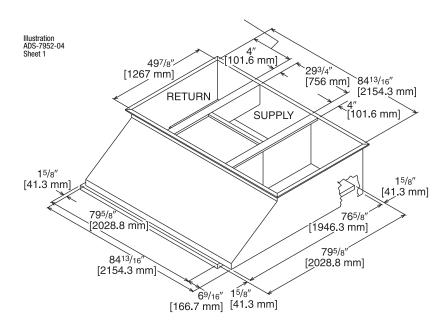

RXRX-CDCE50

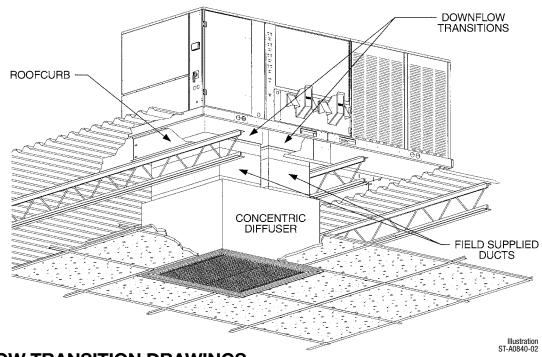

TOP VIEW


RXRX-CFCE54

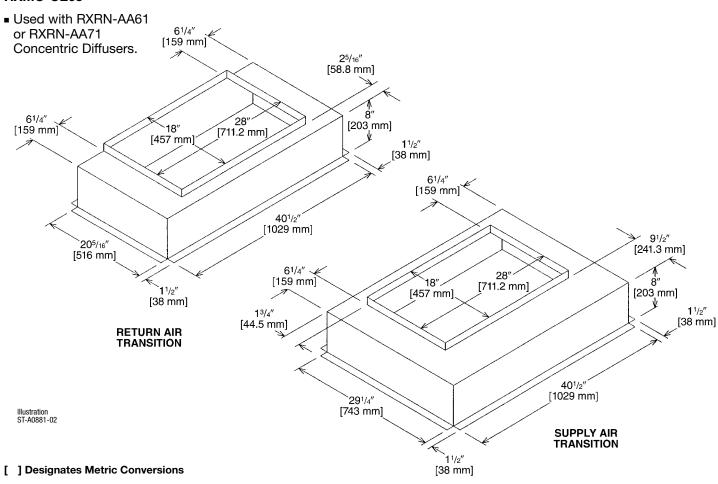

TOP VIEW

RXRX-CFCE56


TOP VIEW

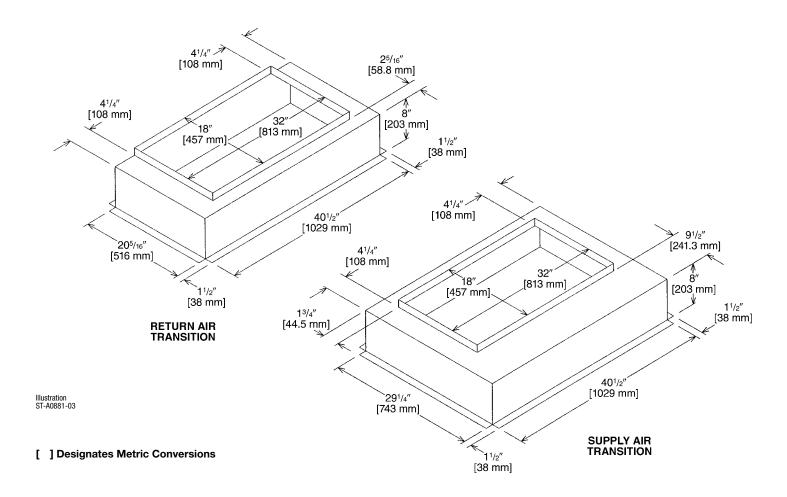

RXRX-CGCC12

TOP VIEW



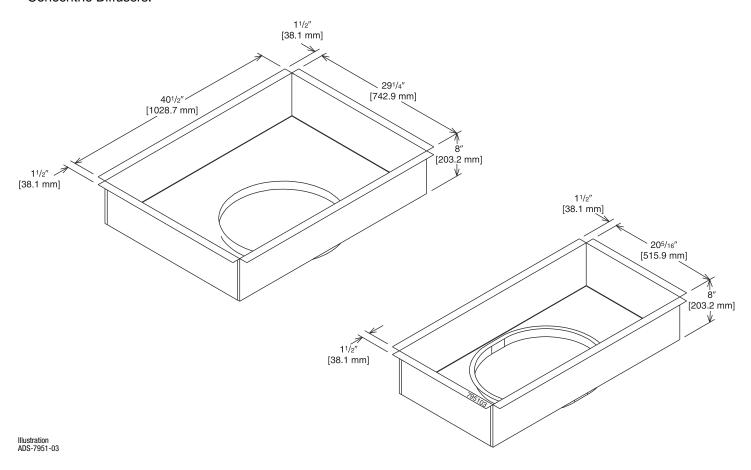
CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS


RXMC-CE05

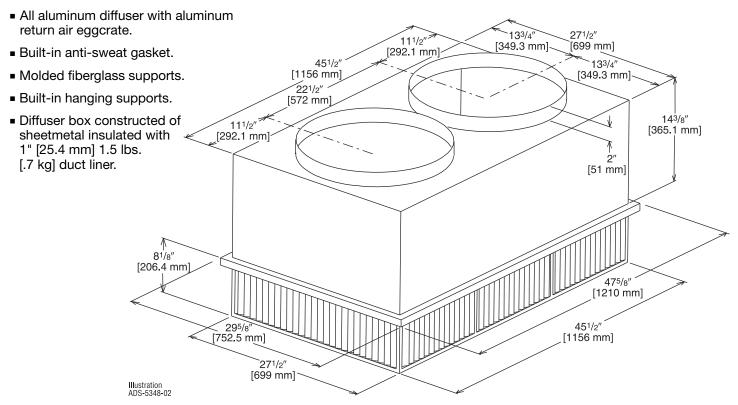
DOWNFLOW TRANSITION DRAWINGS

RXMC-CF06


 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

DOWNFLOW TRANSITION DRAWINGS

RXMC-CD04


 Used with RXRN-FA65 or RXRN-FA75 Concentric Diffusers.

CONCENTRIC DIFFUSER—STEP DOWN

RXRN-FA65 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

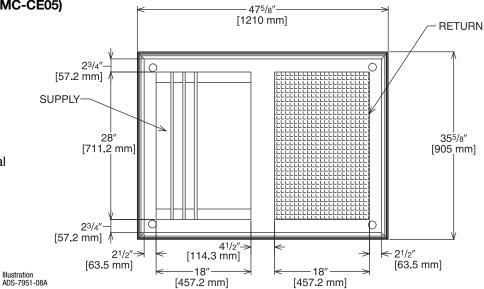
ENGINEERING DATA[®]

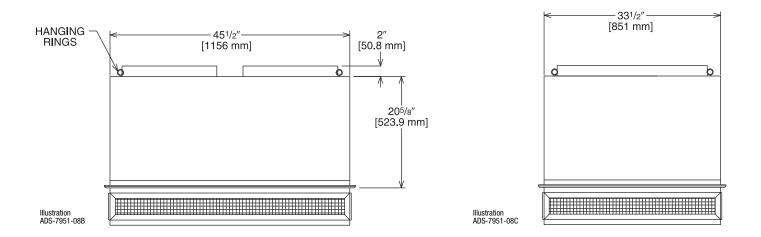
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: ① All data is based on the air diffusion council guidelines.

② Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (8.5 & 10 Ton [29.9 kW & 35.2] Models)

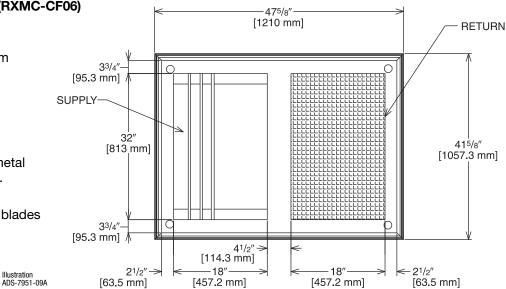
For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm]
Supply and Return Ducts

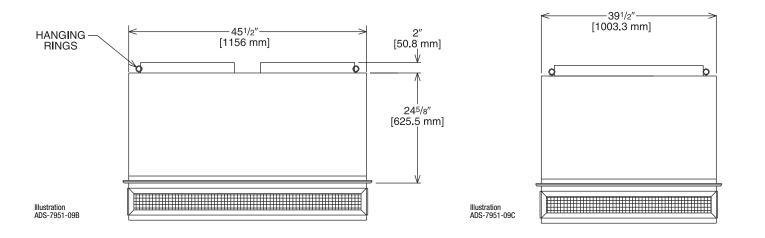
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: ① All data is based on the air diffusion council guidelines.


- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—STEP DOWN 18" x 32" [457.2 x 813 mm]

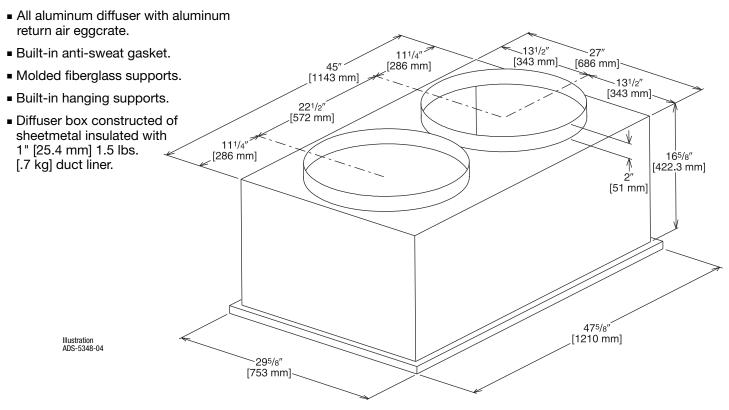
RXRN-AA66 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	26-31 [7.9-9.4]	841 [4.3]	30
	4800 [2265]	0.32 [0.080]	27-32 [8.2-9.8]	878 [4.5]	30
RXRN-AA66	5000 [2359]	0.34 [0.085]	28-33 [8.5-10.1]	915 [4.6]	30
	5200 [2454]	0.36 [0.090]	28-34 [8.5-10.4]	951 [4.8]	30
	5400 [2548]	0.39 [0.097]	29-35 [8.8-10.7]	988 [6.0]	30


NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

FLUSH MOUNT CONCENTRIC DIFFUSER—FLUSH

RXRN-FA75 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

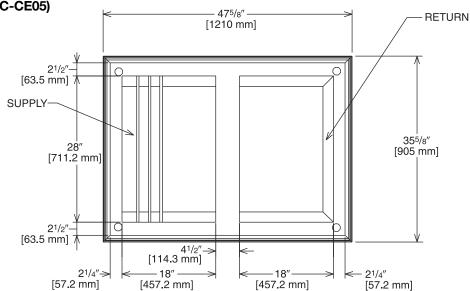
ENGINEERING DATA®

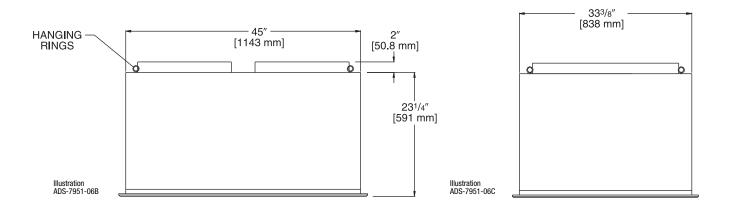
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-FA75	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council quidelines.

② Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (8.5 & 10 Ton [29.9 & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

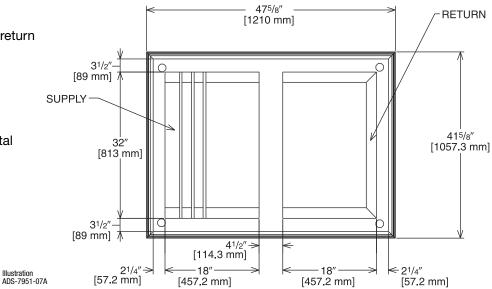
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

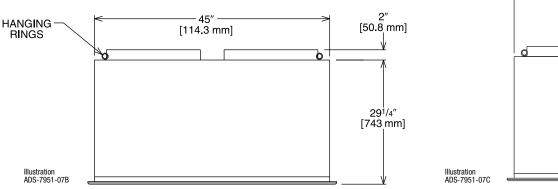
ENGINEERING DATA®

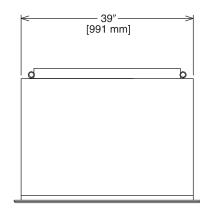
Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-AA71	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: $\scriptsize \textcircled{1}$ All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


Illustration ADS-7951-06A


CONCENTRIC DIFFUSER—FLUSH 18" x 32" [457.2 x 813 mm]


RXRN-AA76 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-AA76	4600 [2171]	0.31 [0.077]	25-34 [7.6-10.4]	922 [4.7]	40
	4800 [2265]	0.32 [0.080]	26-35 [7.9-10.7]	962 [4.9]	40
	5000 [2359]	0.34 [0.085]	27-36 [8.2-11.0]	1002 [5.1]	40
	5200 [2454]	0.36 [0.090]	30-39 [9.1-11.9]	1043 [5.3]	45
	5400 [2548]	0.39 [0.097]	32-41 [9.8-12.5]	1083 [5.5]	45

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

Guide Specifications RKNL-C/H 073 thru C/H151

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification institute. <u>www.csinet.org.</u>

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 6 to 121/2 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

23 07 16.13.A. Evaporator fan compartment:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with foil face on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 07 16.13.B. Gas heat compartment:

- 1. Aluminum foil-faced fiberglass insulation shall be used.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters:

23 09 13.23.A. Thermostats

- 1. Thermostat must
 - a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
 - b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2/ exhaust/occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.
- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust.
- Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 13.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side (C072-C151 units have a resettable circuit breaker).
- 2. Shall utilize color-coded wiring.
- 3. Unit shall be include self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side with a resettable circuit breaker.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 6. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections:
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 33 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 (6-12.5 Ton) Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2010 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115° F (46° C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at \pm 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 50°F (10°C), ambient outdoor temperatures. Low ambient accessory kit is necessary if mechanically cooling at ambient temperatures to 0°F (-17.7°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel.
- 2. Unit cabinet exterior paint shall be: powder coat paint.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1-1/2 lb density, flexible fiberglass insulation, foil faced on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
- 4. Base of unit shall have a location for thru-the-base gas and electrical connections standard.
- 5. Base Rail
 - a. Unit shall have base rails on a minimum of 4 sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop for fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material and be removable for cleaning.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - d. Shall be able to be easily removed.
- 7. Top panel:
 - a. Shall be a single piece top panel over indoor section.
- 8. Gas Connections:
 - a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a continuous raised, flange around opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet a a single, factory-prepared, continuous raised flange opening in the basepan.
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, continuous raised flange opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 10. Component access panels (standard)
 - a. Cabinet panels shall be easily opened for servicing.
 - b. Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and filters shall have hinges with 1/4 turn fasteners.
 - c. 1/4 fasteners shall be permanently attached.

23 81 19.13.I. Gas Heat

- 1. General
 - a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
 - b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
 - c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
 - d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microcompressor.
 - a. IFC board shall notify users of fault using a LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
 - d. Each heat exchanger tube shall contain tubulators for increased heating effectiveness.

- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motor and blower
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.
 - b. Shall be made from steel with a corrosion-resistant finish.
 - c. Shall be permanently lubricated sealed bearings.
 - d. Shall have inherent thermal overload protection.
 - e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall be aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed. (Note: 12-1/2 ton utilizes MicroChannel condensing coil).
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 400 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. TXV metering system shall prevent mal-distribution of two-phase refrigerant. C072 shall use orifice refrigerant control.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. External pressure gauge ports access shall be located in front exterior of cabinet.
- 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - c. Compressors shall be internally protected from high discharge temperature conditions.
 - d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor over-load device.
 - e. Compressor shall be factory mounted on rubber grommets.
 - f. Compressor motors shall have internal line break thermal and current overload protection.
 - g. Crankcase heaters shall not be required for normal operating range.
 - h. Compressor shall have molded electrical plug.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 320 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. Enthalpy sensor shall be provided as standard. Outdoor air sensor set point shall be adjustable and shall range from 40 to 100°F / 4 to 38°C. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Dampers shall be completely closed when the unit is in the unoccupied mode.
 - m. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
 - o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - p. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
 - q. Economizer wire harness will have provision for smoke detector.
- 2. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 3. Liquid Propane (LP) Conversion Kit
 - Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 4. Flue Shield
 - a. Flue shield shall provide protection from the hot sides of the gas flue hood.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered style.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.

7. Convenience Outlet:

- a. Non-Powered convenience outlet.
- b. Outlet shall be powered from a separate 115-120v power source.
- c. A transformer shall not be included.
- d. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.
- e. Outlet shall include 15 amp GFI receptacle with independent fuse protection.
- f. Outlet shall be accessible from outside the unit.

8. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.

9. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- a. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- b. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.

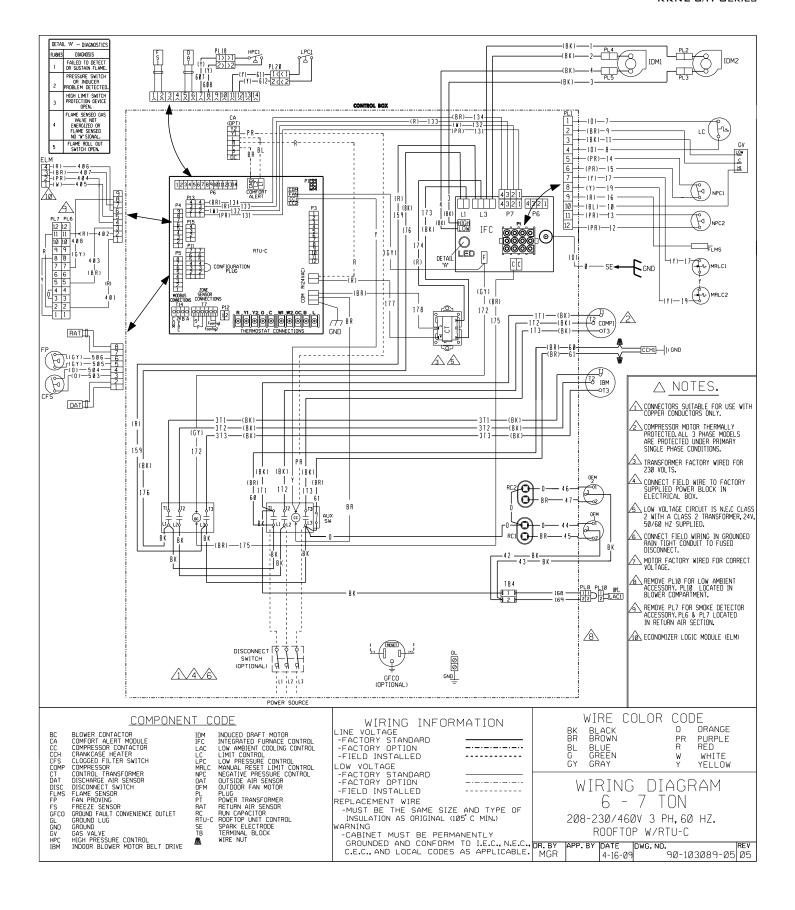
12. Return Air Enthalpy Sensor:

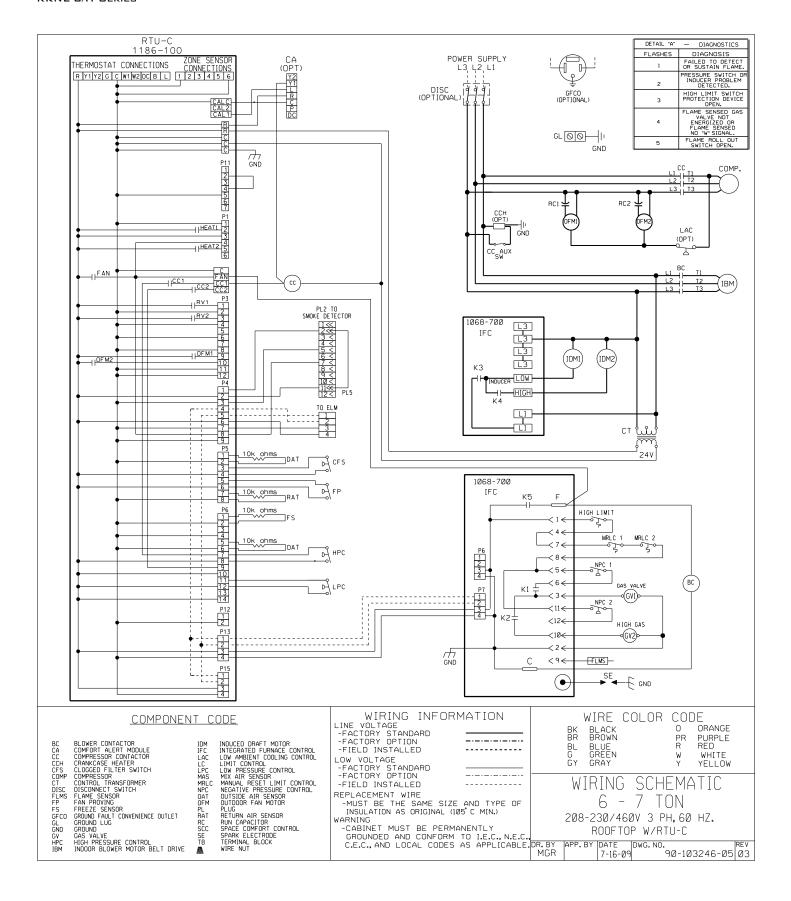
 a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

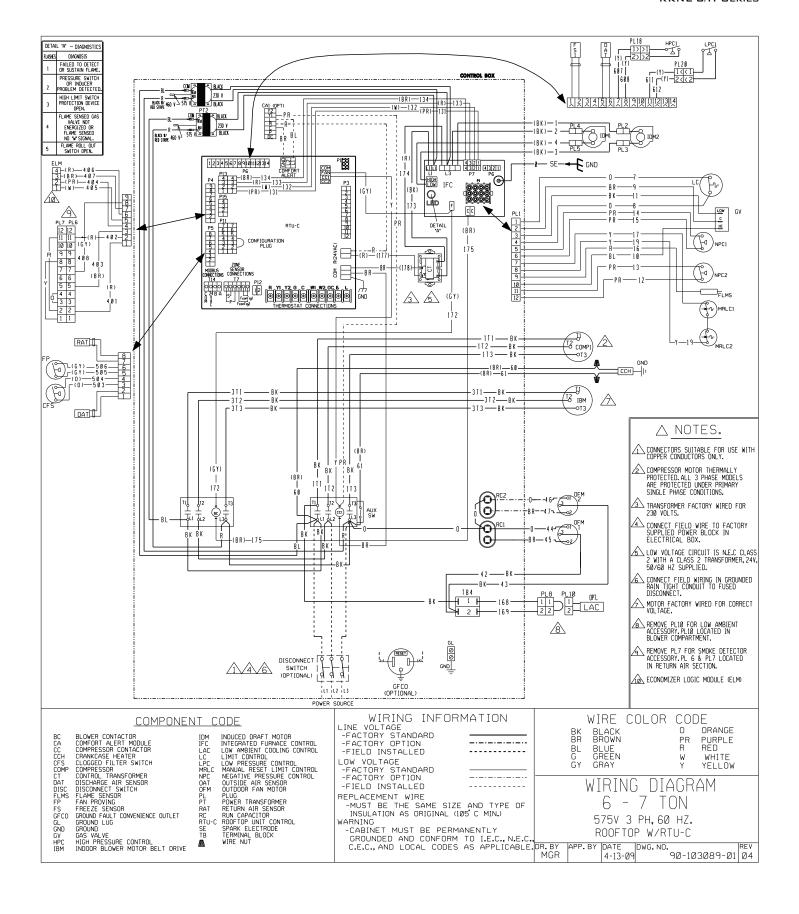
13. Indoor Air Quality (CO2) Sensor:

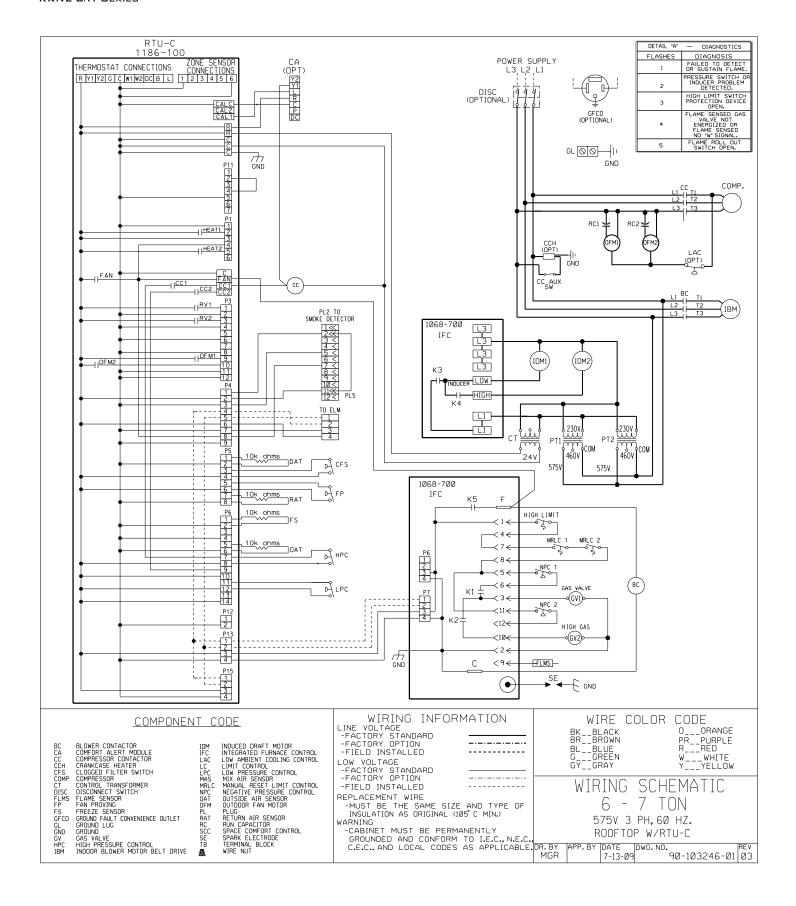
- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display. The set point shall have adjustment capability.

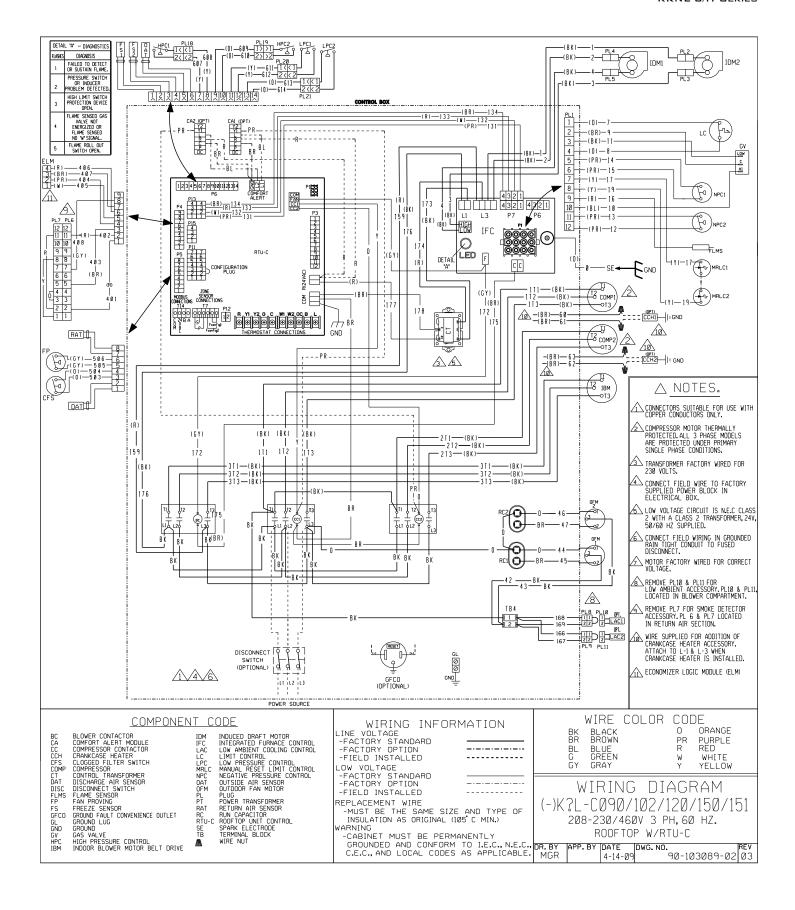
14. Smoke detectors:

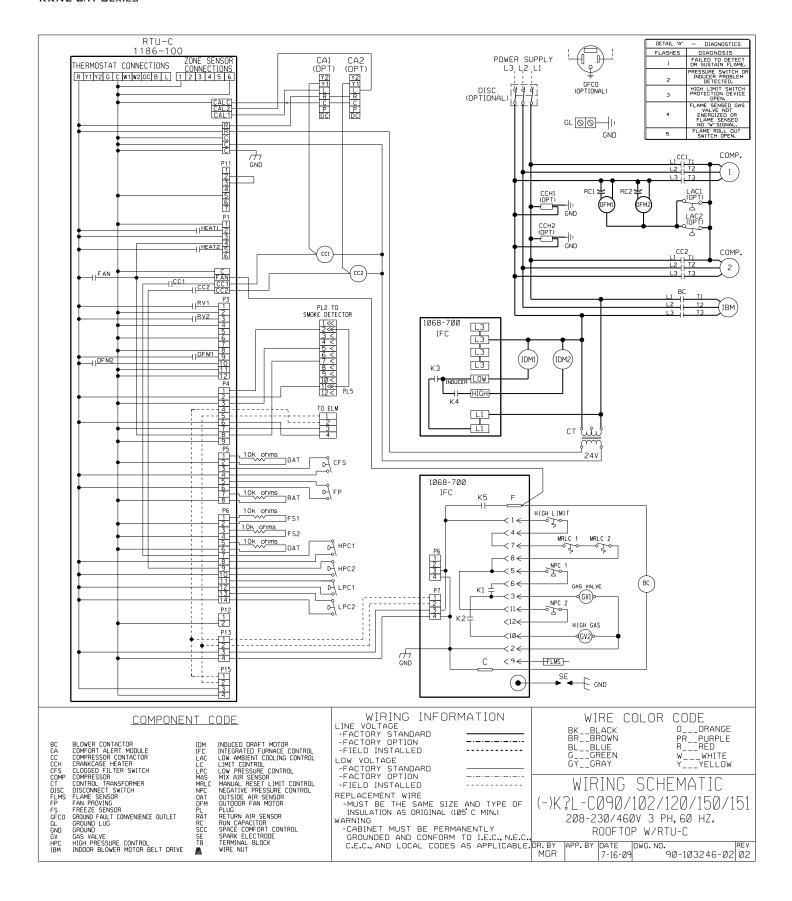

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

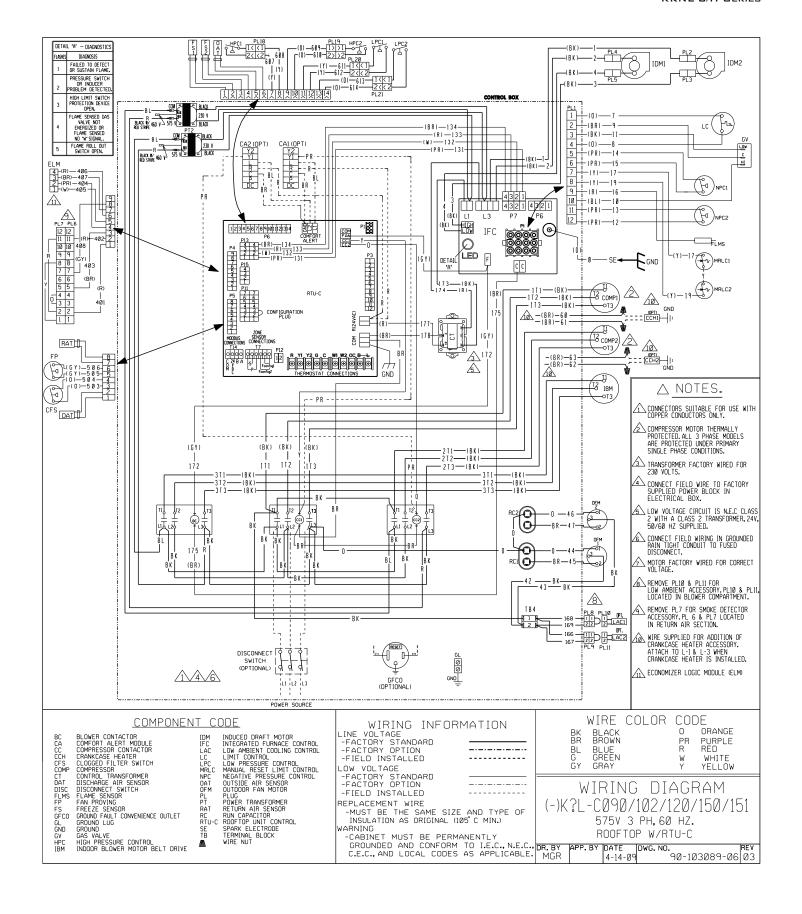

15. Barometric relief

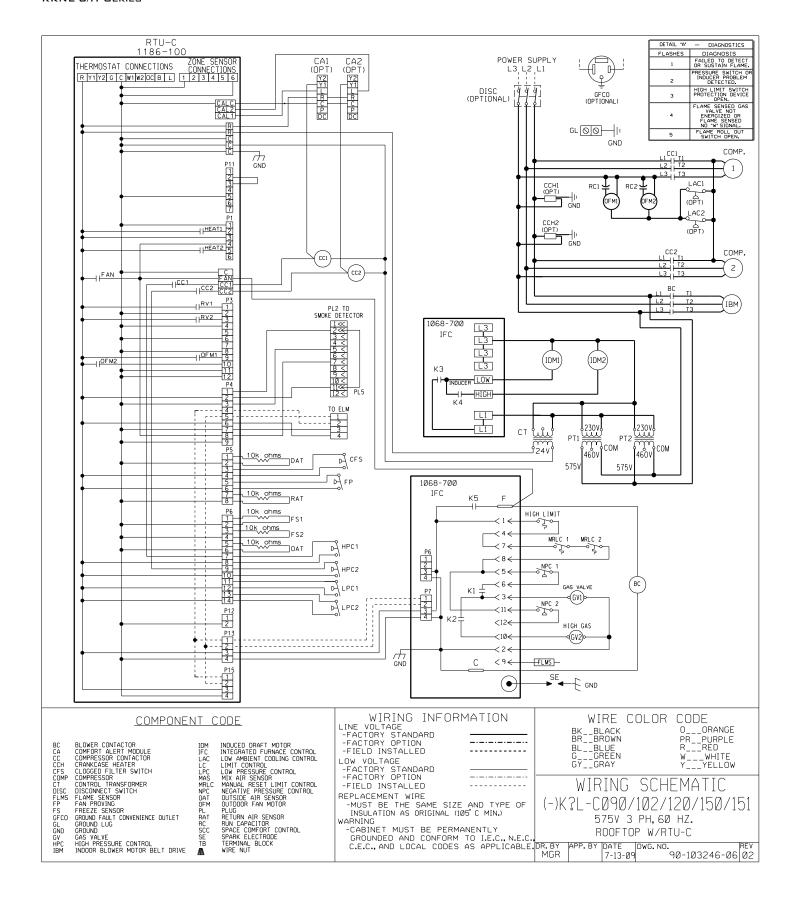

- a. Shall include damper, seals, hard-ware, and hoods to relieve excess building pressure.
- b. Damper shall gravity-close upon shutdown.

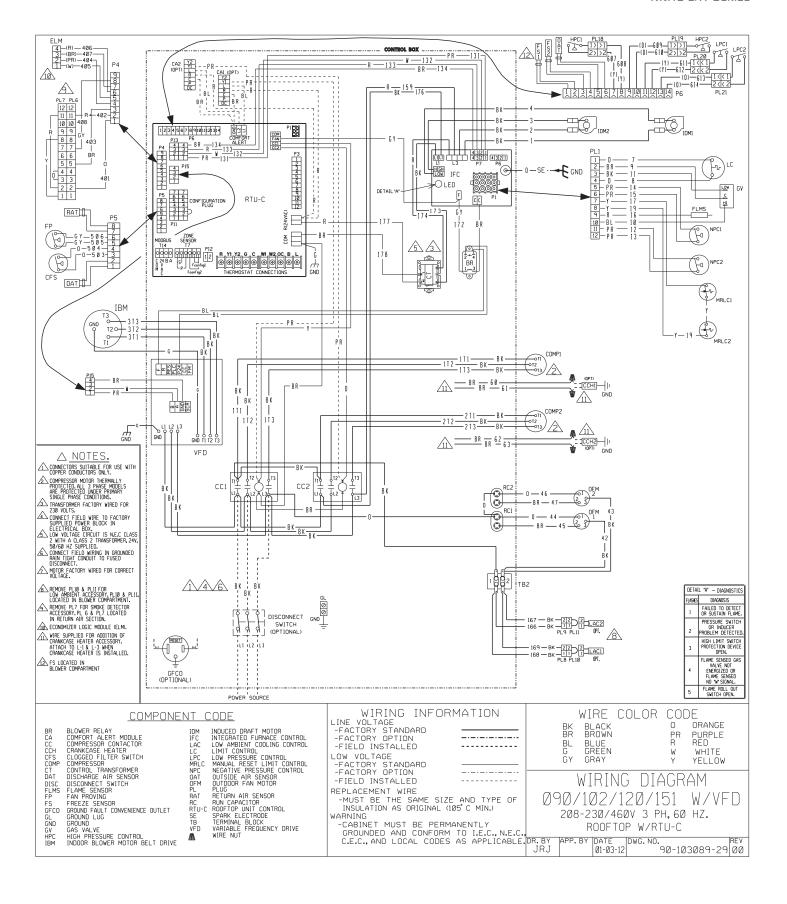

26 29 23.12 Adjustable Frequency Drive

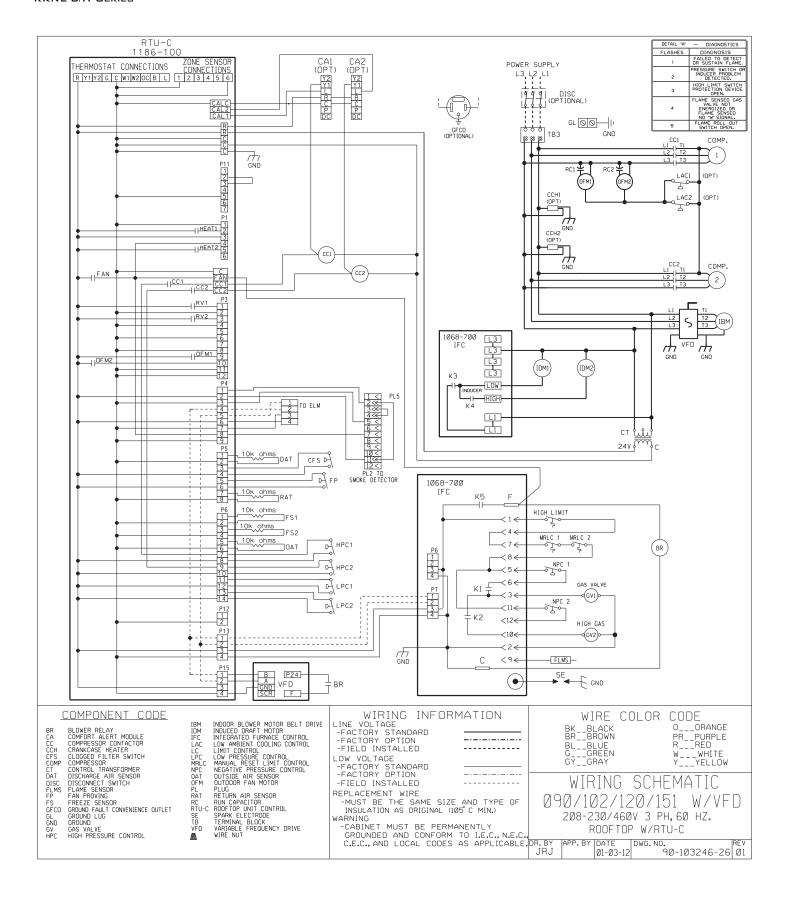

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.











BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Ruud will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Compressor

3 Phase, Commercial ApplicationsFive (5) Years	'ears
	'ears
raits	

3 Phase, Commercial Applications.....One (1) Year

In keeping with its policy of continuous progress and product improvement, Ruud reserves the right to make changes without notice.