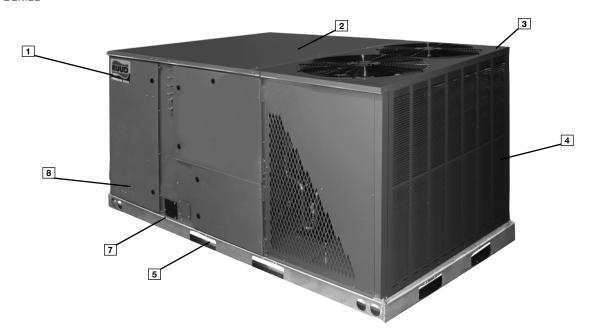


RLNL-G Series

With ClearControl™ and VFD Technology
Nominal Sizes 7.5,10 & 12.5 Tons [26.4, 35.2 & 44 kW]
ASHRAE 90.1-2010 Compliant

TABLE OF CONTENTS

	и		۰
m	œ.	8	А
14	•		п
м	я	e	


Unit Features & Benefits	3-10
Model Number Identification	11
Options	12
Selection Procedure	13
General Data	
RLNL-G Series	14-17
General Data Notes	18
Gross Systems Performance Data	
RLNL-G Series	19-21
Gross Systems Performance Data - Reheat	
RLNL-G Series	22-24
Airflow Performance	
RLNL-G Series	25-27
Electrical Data	
RLNL-G Series	28-29
Electric Heater Kits	30-33
Dimensional Data	34-37
Accessories	38-61
Mechanical Specifications	62-67
Wiring Diagrams	68-79
Limited Warranty	70

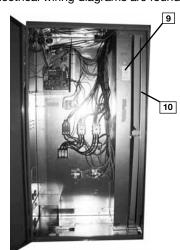
RLNL-G STANDARD FEATURES INCLUDE:

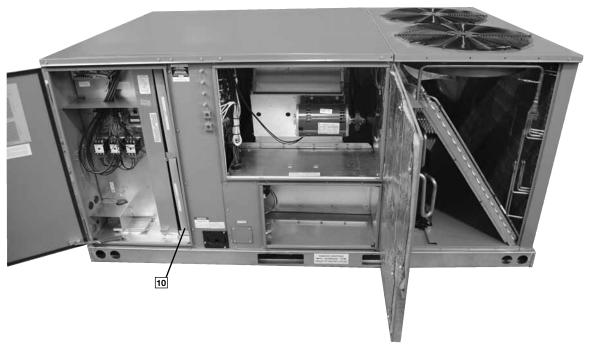
- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Two independent scroll compressors provide two stage operation.
- · Convertible airflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintained high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.

- Forkable base rails for easy handling and lifting.
- Single point electrical connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils (12¹/₂ ton uses MicroChannel condenser).
- Molded compressor plug.
- Supplemental electric heat provides 100% efficient heating.
- Factory Installed ClearControl[™] (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.
- Variable Frequency Drive (VFD).
- HumidiDry™ Dehumidification System.

Ruud Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Ruud Commercial Series™ label (1) identifies the brand to the customer. The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The Ruud hail guard (optional) (4) is its trademark, and sets the standard for coil protection in the industry. Every Ruud package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return cover and has eliminated the worry of water entering the conditioned space (6). The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden. The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning.


During development, each unit was tested to U.L. 1995, AHRI 340-370 and other Ruud-required reliability tests. Ruud adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (a). Contractors can rest assured that when a Ruud package unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, heating section, and outdoor section. Each compartment has 1/4 turn fasteners and hinged access. Each panel is permanently embossed with the compartment name (control/filter access, blower access and electric heat access).

Electrical and filter compartment access is through a large, hinged-access panel. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found

on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (111), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor and compressor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the

RLNL-G Package Air Conditioner has a Rooftop Unit Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board

that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that govern unit operation in response to: zone conditions, system temperatures, system pressures,

ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. (12) New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RLNL-G Package Air Conditioner with ClearControl™ is specifically designed to be applied in four distinct applications:

The RLNL-G is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RLNL-G is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RLNL-G is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RLNL-G is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

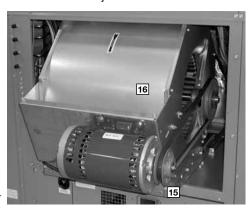
A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

Factory installed VFD (variable frequency drive) supply fan optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's by up to 33% over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed

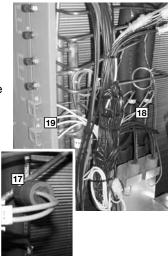
improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desired speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet (13) is available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made integrated cooling control. The high-voltage connection is terminated at the number 1

compressor contactor. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.


To the right of the electrical and filter compartment are the externally mounted gauge ports, which are permanently identified by

embossed wording that clearly identifies the compressor circuit, high pressure connection and low pressure connection (14). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily. The blower compartment is to the right of the gauge ports and can be

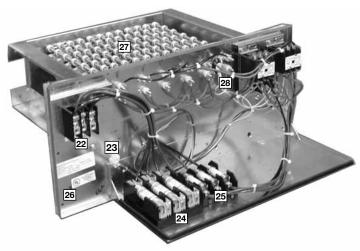

accessed by 1/4 turn fasteners. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing the 3/8" screws from the blower retention bracket. The adjustable motor pulley (15) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the pulley is removed, the motor sheave can be adjusted to the desired num-

ber of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static, Ruud has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static

pressure and CFM requirements can be dialed in. The scroll housing ([16]) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

Also inside the blower compartment is the low-ambient control (17), low-pressure switch (18), high-pressure switch (19) and freeze sensor refrigerant safety device (20). The low-ambient control allows for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch will shut off the compressors if pressures in excess of 610 PSIG are detected, this may occur if the outdoor fan motor fails. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. The freeze sensor protects the compres-

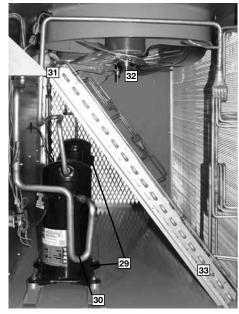
sor if the evaporator coil gets too cold (below freezing) due to low airflow, and allows monitoring of the suction line temperature on the controller display. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs and schrader fittings allow for easy field installation.


Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator. (Note:

6 ton single stage has an orifice refrigerant control.)

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (20) provides an air-tight and water-tight seal, and provides strain

relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.



The heating compartment contains the latest electric furnace technology on the market. The 100% efficient electric furnace can be factory-installed or easily field-installed. Built with ease-of-installation in mind, the electric furnace is completely wired for slide-in, plug-and-play installation in the field. With choices of up to six kilowatt offerings, the contractor is assured to get the correct amount of heating output to meet the designed heating load.

Power hook-up in the field is easy with single-point wiring to a terminal block ([22]) and a polarized plug for the low-voltage connection ([23]). The electric furnace comes with fuses for the unit ([24]) and for the electric furnace ([25]), and is UL certified ([26]). The electric heating elements are of a wound-wire construction ([27]) and isolated with ceramic bushings. The limit switch ([28]) protects the design from over-temperature conditions. Each electric furnace has the capability to be converted from single-stage operation to two-stage operation by removing a jumper on the low-voltage terminal strip.

The compressor compartment houses the heartbeat of the unit. The scroll compressor (29) is known for its long life, and for reliable, quiet, and efficient operation. Each compressor has molded compressor plug eliminating potential for mis wiring. The suction and discharge lines are designed with shock loops (30) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose

on the refrigerant

tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage (single stage).

Each unit comes standard with filter dryer (31). The condenser fan motor (32) can easily be accessed and maintained through the compressor compartment. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (33) for the most effective method of heat transfer. The outdoor coil is protected by optional louvered panels, which allow unobstructed airflow while protecting the unit from both Mother Nature and vandalism.

Each unit is designed for both downflow or horizontal applications (34) for job configuration flexibility. The return air compartment can also contain an economizer (35). Three models exist, two

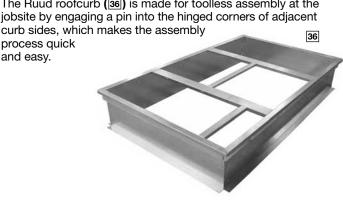
for downflow applications, and one for horizontal applications (A

downflow economizer with factory installed smoke detector in the return section is available).

Each unit is pre-wired for the economizer to allow guick plug-in installation. The economizer is also available as a factoryinstalled option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the

field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. Power 35

Exhaust is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in


with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

The Ruud roofcurb (36) is made for toolless assembly at the jobsite by engaging a pin into the hinged corners of adjacent

HUMIDIDRY™ SYSTEM FEATURES

HumidiDry™ is Ruud's exclusive dehumidification package unit solution. It delivers maximum humidity control without compromising desired temperature set point for a high degree of comfort. HumidiDry maintains humidity levels at a desired set point when there's little or no demand for air conditioning. The HumidiDry rooftop unit is controlled by a thermostat and humidistat. The thermostat takes priority on single-stage system. When the thermostat is activated by temperatures that exceed it set point, HumidiDry operates like a standard rooftop unit. It can operate on first stage cooling when demand is low or at full capacity when air conditioning load is high. Unlike other rooftop or reheat units, HumidiDry is uniquely designed so the VFD (37) will operate at a low speed, increasing moisture removal during first-stage cooling operation. This provides initial defense for controlling humidity. When temperature is desirable but humidity exceeds the humidistat set point, the HumidiDry rooftop unit initiates a dehumidification cycle using a combination of hot gas and sub-cooled liquid reheat and the VFD operates at low speed. During this cycle, the HumidiDry rooftop unit delivers dry, neutral air. On a two-stage system, it is possible for both a thermostat and humidistat to register readings above set point. Under this condition, the first-stage system runs in the dehumidification cycle, the second-stage system runs in a cooling cycle and the VFD operates on high speed. This provides dry conditioned air.

Figure 1 shows the refrigerant path during the normal cooling mode. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The superheated refrigerant vapor next carries the heat to the outside coil where the heat is then rejected and the refrigerant condenses into a subcooled liquid where the process repeats itself.

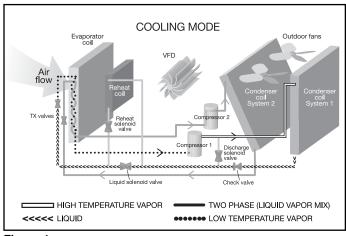


Figure 1

Figure 2 shows the refrigerant path during the reheat mode. When the reheat cycle is energized by the RTU-C, the reheat solenoid valve (38), downstream of the reheat coil (39), opens. The liquid solenoid valve (40), ahead of the TXV, closes. The discharge solenoid valve (41), in the compressor discharge line, opens. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The refrigerant next carries the heat to a parallel path between the outside condenser coil and a bypass circuit. Some of the heat is rejected outdoors. The ratio of heat rejected outdoors versus indoors is controlled by an outdoor fan motor controller (OFMC) (42) that monitors the two phase temperature (43) and varies the fan speed. This 2-phase refrigerant vapor is then sent to the reheat coil. As the refrigerant travels through the reheat coil it condenses into a subcooled liquid where the process repeats itself.

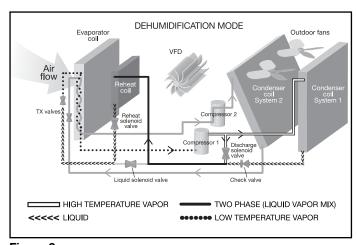
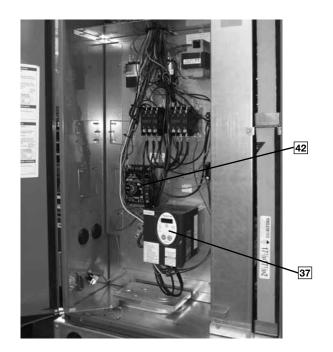
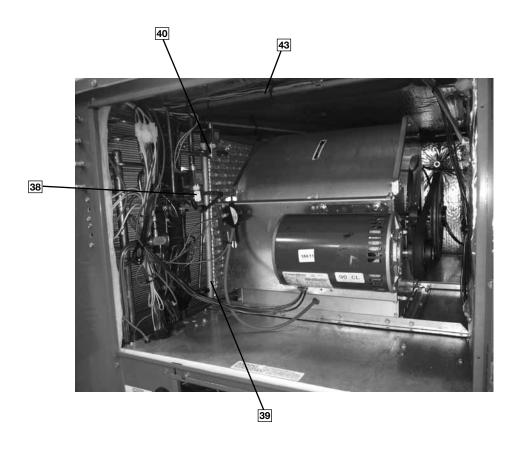




Figure 2

7.5, 10 & 12.5 TON [26.4, 35.2 & 44 kW]

Option Code	Hail Guard	Non-Powered Convenience Outlet	Low Ambient/ Comfort Alert		
AD	х				
AG		X			
AR			Х		
JD	x		Х		
BJ	x	X			
CZ	X	X	X		
JE		X	X		

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR LNL 7.5, 10 & 12.5 TON [26.4, 35.2 & 44 kW]

	Option Code	No Economizer	DDC Single Enthalpy Economizer with Barometric Relief	DDC Single Enthalpy Economizer with Barometric Relief and Smoke Detector
Г	Α	Х		
	Н		Х	
Г	J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

- **Note:** Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.
- **Step 1.** After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

RLNL-G120CR000this unit has no factory installed options.

RLNL-G120CR000**ADA**.....this unit is equipped with *hail guards*.

RLNL-G120CR000**JDA**.....this unit is equipped with *hail guards, low ambient and comfort alert*.

RLNL-G120CR000**JDH**.....this unit is equipped as above and includes an <u>Economizer</u> with single enthalpy sensor and with barometric relief.

RLNL-G120CR000AAEthis unit is equipped with an Economizer with single enthalpy sensor and

barometric relief with smoke detector.

To select an RLNL- Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

Voltage—
Total cooling capacity—
Sensible cooling capacity—
Heating capacity—
*Condenser Entering Air—
*Evaporator Mixed Air Entering—65°F [18°C] DB
*Condenser Entering—65°F [26°C] DB

*Indoor Air Flow (vertical)— 3600 CFM [1699 L/s]

*External Static Pressure— .40 in. WG

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.2 kW] unit, enter cooling performance table at 95°F [35°C] DB condenser inlet air. Interpolate between 63°F [2°C] and 67°F [19°C] to determine total and sensible capacity and power input for 65°F [18°C] WB evap inlet air at 4000 CFM [1888 L/s] indoor air flow (table basis):

Total Capacity = 118,900 BTUH [34.80 kW] Sensible Capacity = 99,950 BTUH [29.29 kW] Power Input (Compressor and Cond. Fans) = 8,950 watts

Use formula [1.10 x CFM x (1 – DR) x (dbE – 80)] in note 1 to determine sensible capacity at 80°F [26.7°C] DB evaporator entering air:

Sensible Capacity = 92,268 BTUH [27.24 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity, $118,900 \times .98 = 116,522$ BTUH [34.15 kW] Sensible Capacity, $92,268 \times .95 = 87,655$ BTUH [25.67 kW] Power Input $11,650 \times .99 = 8,861$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of .40 in. includes the system duct and grilles. Add from the table "Component Air Resistance," .076 for wet coil, .13 for vertical air flow, for a total selection static pressure of .606 (.6) inches of water, and determine:

RPM = 796 WATTS = 1,650 DRIVE = L (standard 2 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

BTUH = $1.650 \times 3.412 = 5.630$

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 116,522 - 5,630 = 110,892 BTUH [32.5 kW]

Net Sensible Capacity = 87,655 - 5,630 = 82,025 BTUH [24.04 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 88,610 (step 3) + 1,650 (step 4) = 10,511 Watts

EER = $\frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{110,892}{10.511} = 10.55$

8. SELECT UNIT HEATING CAPACITY.

Units with heater kits section find unit heater kw and convert watts to BTU: add blower BTUH heat effect (step 5).

CC50C Heater Kit

 $kW \times 3412 = 163,776 BTUH [48.00 kW]$

+ 5,630 BTUH [1.65 kW]

Heating Capacity= 169,406 BTUH [49.65 kW]

CHOOSE MODEL RLNL-G120CR050

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RLNL- Series	G090CR	G090CS	G090CT	G090DR
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]
IEER3	14.5	14.5	14.5	14.5
Net System Power [kW]	7.99	7.99	7.99	7.99
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB)4	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Re-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]
Weights				,
Net Weight Ibs. [kg]	1049 [476]	1049 [476]	1057 [479]	1049 [476]
Ship Weight lbs. [kg]	1086 [493]	1086 [493]	1094 [496]	1086 [493]
See Page 18 for Notes.	[]	[]		nates Metric Conversion

See Page 18 for Notes.

	•			
Model RLNL- Series	G090DS	G090DT	G120CR	G120CS
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	123,000 [36.04]	123,000 [36.04]
EER/SEER ²	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	4000/3750 [1888/1770]	4000/3750 [1888/1770]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	118,000 [34.57]	118,000 [34.57]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	88,800 [26.02]	88,800 [26.02]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	29,200 [8.56]	29,200 [8.56]
IEER3	14.5	14.5	14.4	14.4
Net System Power [kW]	7.99	7.99	10.49	10.49
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Re-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]
Face Area sq. ft. [sq. m]				
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	2	3	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	146/112 [4139/3175]	146/112 [4139/3175]	221/176 [6265/4990]	221/176 [6265/4990]
Weights	1010 ::===	4057	4444	4456
Net Weight lbs. [kg]	1049 [476]	1057 [479]	1144 [519]	1152 [523]
Ship Weight lbs. [kg]	1086 [493]	1094 [496]	1181 [536]	1189 [539]

See Page 18 for Notes.

Model RLNL- Series	G120DR	G120DS
Cooling Performance ¹		
Gross Cooling Capacity Btu [kW]	123,000 [36.04]	123,000 [36.04]
EER/SEER ²	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3750 [1888/1770]	4000/3750 [1888/1770]
AHRI Net Cooling Capacity Btu [kW]	118,000 [34.57]	118,000 [34.57]
Net Sensible Capacity Btu [kW]	88,800 [26.02]	88,800 [26.02]
Net Latent Capacity Btu [kW]	29,200 [8.56]	29,200 [8.56]
IEER3	14.7	14.7
Net System Power [kW]	10.49	10.49
ompressor	10.43	10.43
No./Type	2/Scroll	2/Scroll
utdoor Sound Rating (dB)4	88	88
utdoor Coil—Fin Type	Louvered	Louvered
Tube Type	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	0.575 [9.5] 27 [2.51]	0.373 [9.3] 27 [2.51]
Rows / FPI [FPcm]	2 / [2.51] 2 / 22 [9]	27 [2.51] 2 / 22 [9]
Idoor Coil—Fin Type	Louvered Rifled	Louvered Rifled
Tube Type Tube Size in [mm]		
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]
utdoor Fan—Type	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075
door Fan—Type	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple
No. Motors	1	1
Motor HP	2	3
Motor RPM	1725	1725
Motor Frame Size	56	56
lter—Type	Disposable	Disposable
Furnished	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	221/176 [6265/4990]	221/176 [6265/4990]
/eights		
Net Weight lbs. [kg]	1144 [519]	1152 [523]
Ship Weight lbs. [kg]	1181 [536]	1189 [539]

Model RLNL- Series	G151CR	G151CS	G151DR	G151DS
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	148,000 [43.36]	148,000 [43.36]	148,000 [43.36]	148,000 [43.36]
EER/SEER2	11/NA	11/NA	11/NA	11/NA
Nominal CFM/AHRI Rated CFM [L/s]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	5000/4250 [2360/2006]
AHRI Net Cooling Capacity Btu [kW]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]
Net Sensible Capacity Btu [kW]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]
Net Latent Capacity Btu [kW]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]
IEER3	14	14	14	14
Net System Power [kW]	13.29	13.29	13.29	13.29
ompressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB)4	88	88	88	88
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
utdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP
Motor RPM	1075	1075	1075	1075
idoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Single	Single	Single	Single
No. Motors	1	1	1	1
Motor HP	5	5	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	184	56	184
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
· /	203/155 [5755/4394]		203/155 [5755/4394]	
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	200/100 [0/00/4084]	203/155 [5755/4394]	200/100 [0/00/4084]	203/155 [5755/4394]
Veights	1966 [574]	1000 [560]	1000 [550]	1000 [560]
Net Weight Ibs. [kg]	1266 [574]	1238 [562]	1230 [558]	1238 [562]
Ship Weight lbs. [kg]	1303 [591]	1267 [575]	1267 [575]	1267 [575]

See Page 18 for Notes.

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 340/360.
- 4. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- [] Designates Metric Conversions

GROSS SYSTEMS PERFORMANCE DATA-G090

					ITERING INDOC	R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]
\vdash		DR ①	.17	.13	.11	.17	.13	.11	.17	.13	.11
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	119.6 [35] 70.3 [20.6] 5.2	119.6 [35] 70.3 [20.6] 5.2	110.7 [32.4] 57.9 [17] 5.0	112.7 [33] 83.3 [24.4] 5.1	107 [31.3] 73.2 [21.4] 5.0	104.3 [30.6] 68.5 [20.1] 4.9	107.8 [31.6] 96 [28.1] 5.1	102.3 [30] 84.3 [24.7] 4.9	99.8 [29.2] 79 [23.2] 4.9
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	116.1 [34] 68.4 [20.1] 5.6	116.1 [34] 68.4 [20.1] 5.6	107.4 [31.5] 56.3 [16.5] 5.4	109.2 [32] 81.4 [23.9] 5.5	103.6 [30.4] 71.5 [20.9] 5.4	101.1 [29.6] 67 [19.6] 5.3	104.3 [30.6] 94.1 [27.6] 5.5	99 [29] 82.7 [24.2] 5.3	96.5 [28.3] 77.4 [22.7] 5.3
UTDO	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	112.6 [33] 66.6 [19.5] 6.0	112.6 [33] 66.6 [19.5] 6.0	104.2 [30.5] 54.8 [16] 5.8	105.7 [31] 79.5 [23.3] 6.0	100.3 [29.4] 69.8 [20.5] 5.8	97.8 [28.7] 65.4 [19.2] 5.8	100.8 [29.5] 92.3 [27] 5.9	95.6 [28] 81 [23.7] 5.8	93.3 [27.3] 75.9 [22.2] 5.7
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	109 [31.9] 64.7 [19] 6.6	109 [31.9] 64.7 [19] 6.6	100.9 [29.6] 53.2 [15.6] 6.3	102.1 [29.9] 77.7 [22.8] 6.5	96.9 [28.4] 68.2 [20] 6.4	94.5 [27.7] 63.9 [18.7] 6.3	97.2 [28.5] 90.4 [26.5] 6.5	92.2 [27] 79.4 [23.3] 6.3	90 [26.4] 74.4 [21.8] 6.2
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	105.4 [30.9] 62.9 [18.4] 7.2	105.4 [30.9] 62.9 [18.4] 7.2	97.5 [28.6] 51.7 [15.2] 6.9	98.5 [28.9] 75.8 [22.2] 7.2	93.5 [27.4] 66.6 [19.5] 7.0	91.2 [26.7] 62.4 [18.3] 6.9	93.6 [27.4] 88.6 [26] 7.1	88.8 [26] 77.8 [22.8] 6.9	86.6 [25.4] 72.9 [21.4] 6.8
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	101.7 [29.8] 61 [17.9] 7.9	101.7 [29.8] 61 [17.9] 7.9	94.2 [27.6] 50.2 [14.7] 7.6	94.9 [27.8] 74 [21.7] 7.9	90 [26.4] 65 [19] 7.7	87.8 [25.7] 60.9 [17.8] 7.6	90 [26.4] 86.7 [25.4] 7.8	85.4 [25] 76.2 [22.3] 7.6	83.3 [24.4] 71.4 [20.9] 7.5
H M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	98.1 [28.7] 59.3 [17.4] 8.7	98.1 [28.7] 59.3 [17.4] 8.7	90.7 [26.6] 48.8 [14.3] 8.4	91.2 [26.7] 72.2 [21.2] 8.6	86.5 [25.4] 63.4 [18.6] 8.4	84.4 [24.7] 59.4 [17.4] 8.3	86.3 [25.3] 84.9 [24.9] 8.6	81.9 [24] 74.6 [21.9] 8.4	79.8 [23.4] 69.9 [20.5] 8.3
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	94.3 [27.6] 57.5 [16.8] 9.5	94.3 [27.6] 57.5 [16.8] 9.5	87.3 [25.6] 47.3 [13.9] 9.2	87.5 [25.6] 70.4 [20.6] 9.5	83 [24.3] 61.9 [18.1] 9.2	81 [23.7] 57.9 [17] 9.1	82.6 [24.2] 82.6 [24.2] 9.4	78.3 [23] 73 [21.4] 9.2	76.4 [22.4] 68.4 [20.1] 9.1
R E °F	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	90.6 [26.5] 55.7 [16.3] 10.5	90.6 [26.5] 55.7 [16.3] 10.5	83.8 [24.6] 45.8 [13.4] 10.1	83.7 [24.5] 68.7 [20.1] 10.4	79.4 [23.3] 60.3 [17.7] 10.2	77.5 [22.7] 56.5 [16.6] 10.0	78.8 [23.1] 78.8 [23.1] 10.4	74.8 [21.9] 71.5 [20.9] 10.1	72.9 [21.4] 67 [19.6] 10.0
[°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	86.8 [25.4] 54 [15.8] 11.5	86.8 [25.4] 54 [15.8] 11.5	80.3 [23.5] 44.4 [13] 11.1	79.9 [23.4] 66.9 [19.6] 11.4	75.8 [22.2] 58.8 [17.2] 11.1	74 [21.7] 55.1 [16.1] 11	75 [22] 75 [22] 11.4	71.1 [20.8] 70 [20.5] 11.1	69.4 [20.3] 65.5 [19.2] 11
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	82.9 [24.3] 52.3 [15.3] 12.6	82.9 [24.3] 52.3 [15.3] 12.6	76.8 [22.5] 43 [12.6] 12.1	76.1 [22.3] 65.2 [19.1] 12.5	72.2 [21.2] 57.3 [16.8] 12.2	70.4 [20.6] 53.7 [15.7] 12.1	71.2 [20.9] 71.2 [20.9] 12.5	67.5 [19.8] 67.5 [19.8] 12.1	65.8 [19.3] 64.1 [18.8] 12

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G120

					ITERING INDOC	R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CFM [L/s]		4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]
		DR ①	.09	.03	0	.09	.03	0	.09	.03	0
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	155.3 [45.5] 97.3 [28.5] 7.5	147.8 [43.3] 86.1 [25.2] 7.3	143.8 [42.2] 80.2 [23.5] 7.2	147.8 [43.3] 115.8 [33.9] 7.4	140.7 [41.2] 102.4 [30] 7.2	136.9 [40.1] 95.4 [28] 7.1	142.8 [41.8] 132.9 [38.9] 7.3	135.8 [39.8] 117.5 [34.4] 7.1	132.2 [38.7] 109.5 [32.1] 7.0
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	150.6 [44.1] 94.9 [27.8] 7.9	143.4 [42] 84 [24.6] 7.7	139.5 [40.9] 78.2 [22.9] 7.6	143.2 [42] 113.5 [33.2] 7.8	136.2 [39.9] 100.3 [29.4] 7.6	132.6 [38.9] 93.5 [27.4] 7.5	138.1 [40.5] 130.5 [38.2] 7.7	131.4 [38.5] 115.4 [33.8] 7.5	127.9 [37.5] 107.5 [31.5] 7.4
U T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	146 [42.8] 92.5 [27.1] 8.3	138.9 [40.7] 81.8 [24] 8.1	135.2 [39.6] 76.2 [22.3] 8.0	138.5 [40.6] 111 [32.5] 8.2	131.8 [38.6] 98.2 [28.8] 8.0	128.3 [37.6] 91.5 [26.8] 7.9	133.5 [39.1] 128.1 [37.5] 8.2	127 [37.2] 113.3 [33.2] 8.0	123.6 [36.2] 105.5 [30.9] 7.9
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	141.4 [41.4] 90.1 [26.4] 8.8	134.5 [39.4] 79.7 [23.3] 8.6	131 [38.4] 74.2 [21.7] 8.5	133.9 [39.2] 108.6 [31.8] 8.7	127.4 [37.3] 96 [28.1] 8.5	124 [36.3] 89.5 [26.2] 8.4	128.8 [37.8] 125.6 [36.8] 8.6	122.6 [35.9] 111.1 [32.6] 8.4	119.3 [35] 103.5 [30.3] 8.3
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	136.8 [40.1] 87.6 [25.7] 9.3	130.2 [38.1] 77.5 [22.7] 9.1	126.7 [37.1] 72.2 [21.1] 9.0	129.3 [37.9] 106.1 [31.1] 9.2	123 [36.1] 93.8 [27.5] 9.0	119.7 [35.1] 87.4 [25.6] 8.9	124.2 [36.4] 123.1 [36.1] 9.1	118.2 [34.6] 108.9 [31.9] 8.9	115.1 [33.7] 101.5 [29.7] 8.8
L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	132.2 [38.7] 85.1 [24.9] 9.9	125.8 [36.9] 75.2 [22] 9.6	122.4 [35.9] 70.1 [20.5] 9.5	124.7 [36.5] 103.6 [30.3] 9.8	118.7 [34.8] 91.6 [26.8] 9.5	115.5 [33.8] 85.3 [25] 9.4	119.6 [35.1] 119.6 [35.1] 9.7	113.8 [33.4] 106.7 [31.3] 9.5	110.8 [32.5] 99.4 [29.1] 9.3
M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	127.6 [37.4] 82.5 [24.2] 10.5	121.4 [35.6] 73 [21.4] 10.2	118.2 [34.6] 68 [19.9] 10.1	120.1 [35.2] 101 [29.6] 10.4	114.3 [33.5] 89.3 [26.2] 10.1	111.2 [32.6] 83.2 [24.4] 10.0	115.1 [33.7] 115.1 [33.7] 10.3	109.5 [32.1] 104.4 [30.6] 10.0	106.6 [31.2] 97.3 [28.5] 9.9
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	123 [36.1] 79.9 [23.4] 11.1	117.1 [34.3] 70.6 [20.7] 10.8	114 [33.4] 65.8 [19.3] 10.7	115.5 [33.9] 98.4 [28.8] 11.0	109.9 [32.2] 87 [25.5] 10.7	107 [31.4] 81.1 [23.8] 10.6	110.5 [32.4] 110.5 [32.4] 10.9	105.1 [30.8] 102.1 [29.9] 10.6	102.3 [30] 95.1 [27.9] 10.5
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	118.5 [34.7] 77.2 [22.6] 11.7	112.7 [33] 68.3 [20] 11.4	109.7 [32.2] 63.6 [18.6] 11.3	111 [32.5] 95.7 [28.1] 11.6	105.6 [31] 84.7 [24.8] 11.3	102.8 [30.1] 78.9 [23.1] 11.2	105.9 [31] 105.9 [31] 11.5	100.8 [29.5] 99.8 [29.2] 11.2	98.1 [28.8] 92.9 [27.2] 11.1
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	113.9 [33.4] 74.5 [21.8] 12.4	108.4 [31.8] 65.9 [19.3] 12.1	105.5 [30.9] 61.4 [18] 11.9	106.5 [31.2] 93 [27.3] 12.3	101.3 [29.7] 82.3 [24.1] 12	98.6 [28.9] 76.7 [22.5] 11.8	101.4 [29.7] 101.4 [29.7] 12.2	96.5 [28.3] 96.5 [28.3] 11.9	93.9 [27.5] 90.7 [26.6] 11.7
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	109.4 [32.1] 71.8 [21] 13.1	104.1 [30.5] 63.5 [18.6] 12.8	101.3 [29.7] 59.2 [17.3] 12.6	101.9 [29.9] 90.3 [26.5] 13.0	97 [28.4] 79.9 [23.4] 12.7	94.4 [27.7] 74.4 [21.8] 12.5	96.9 [28.4] 96.9 [28.4] 12.9	92.2 [27] 92.2 [27] 12.6	89.7 [26.3] 88.5 [25.9] 12.4

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G151

					ITERING INDOC	OR AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CF	FM [L/s]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]
		DR ①	0.14	0.08	0.07	0.14	0.08	0.07	0.14	0.08	0.07
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	190.2 [55.7] 115 [33.7] 9.5	177 [51.9] 96.5 [28.3] 9.1	175.1 [51.3] 93.8 [27.5] 9.1	179.1 [52.5] 136.8 [40.1] 9.3	166.6 [48.8] 114.7 [33.6] 9	164.8 [48.3] 111.6 [32.7] 9	170.2 [49.9] 157.1 [46] 9.2	158.3 [46.4] 131.8 [38.6] 8.9	156.6 [45.9] 128.1 [37.6] 8.8
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	184.9 [54.2] 112.8 [33.1] 10	172 [50.4] 94.7 [27.7] 9.6	170.2 [49.9] 92.1 [27] 9.6	173.7 [50.9] 134.6 [39.4] 9.8	161.6 [47.4] 112.9 [33.1] 9.5	159.9 [46.9] 109.8 [32.2] 9.4	164.8 [48.3] 154.9 [45.4] 9.7	153.3 [44.9] 129.9 [38.1] 9.4	151.7 [44.5] 126.4 [37] 9.3
U T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	179.6 [52.6] 110.5 [32.4] 10.5	167.1 [49] 92.7 [27.2] 10.1	165.3 [48.4] 90.2 [26.4] 10.1	168.5 [49.4] 132.3 [38.8] 10.4	156.8 [45.9] 111 [32.5] 10	155.1 [45.4] 107.9 [31.6] 10	159.6 [46.8] 152.6 [44.7] 10.2	148.5 [43.5] 128 [37.5] 9.9	146.9 [43] 124.5 [36.5] 9.8
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	174.5 [51.1] 108.1 [31.7] 11.1	162.3 [47.6] 90.7 [26.6] 10.7	160.6 [47.1] 88.2 [25.8] 10.6	163.4 [47.9] 129.9 [38.1] 10.9	152 [44.5] 108.9 [31.9] 10.6	150.4 [44.1] 106 [31.1] 10.5	154.4 [45.3] 150.2 [44] 10.8	143.7 [42.1] 126 [36.9] 10.4	142.2 [41.7] 122.5 [35.9] 10.4
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	169.5 [49.7] 105.6 [30.9] 11.7	157.7 [46.2] 88.5 [25.9] 11.3	156 [45.7] 86.1 [25.2] 11.2	158.3 [46.4] 127.3 [37.3] 11.6	147.3 [43.2] 106.8 [31.3] 11.2	145.7 [42.7] 103.9 [30.4] 11.1	149.4 [43.8] 147.6 [43.3] 11.4	139 [40.7] 123.8 [36.3] 11	137.5 [40.3] 120.4 [35.3] 11
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	164.5 [48.2] 102.9 [30.1] 12.3	153.1 [44.9] 86.3 [25.3] 11.9	151.4 [44.4] 83.9 [24.6] 11.8	153.4 [45] 124.6 [36.5] 12.2	142.7 [41.8] 104.5 [30.6] 11.8	141.2 [41.4] 101.7 [29.8] 11.7	144.5 [42.3] 144.5 [42.3] 12.1	134.4 [39.4] 121.6 [35.6] 11.6	133 [39] 118.2 [34.6] 11.6
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	159.7 [46.8] 100.1 [29.3] 13	148.6 [43.5] 83.9 [24.6] 12.6	147 [43.1] 81.6 [23.9] 12.5	148.6 [43.5] 121.8 [35.7] 12.9	138.2 [40.5] 102.2 [29.9] 12.4	136.8 [40.1] 99.4 [29.1] 12.4	139.7 [40.9] 139.7 [40.9] 12.7	130 [38.1] 119.2 [34.9] 12.3	128.6 [37.7] 115.9 [34] 12.2
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	155 [45.4] 97.1 [28.5] 13.7	144.2 [42.3] 81.5 [23.9] 13.2	142.7 [41.8] 79.2 [23.2] 13.2	143.9 [42.2] 118.9 [34.8] 13.6	133.9 [39.2] 99.7 [29.2] 13.1	132.4 [38.8] 97 [28.4] 13	135 [39.6] 135 [39.6] 13.5	125.6 [36.8] 116.7 [34.2] 13	124.2 [36.4] 113.5 [33.3] 12.9
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	150.4 [44.1] 94 [27.6] 14.5	139.9 [41] 78.9 [23.1] 14	138.4 [40.6] 76.7 [22.5] 13.9	139.3 [40.8] 115.8 [33.9] 14.3	129.6 [38] 97.2 [28.5] 13.8	128.2 [37.6] 94.5 [27.7] 13.8	130.4 [38.2] 130.4 [38.2] 14.2	121.3 [35.5] 114.2 [33.5] 13.7	120 [35.2] 111 [32.5] 13.6
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	145.9 [42.8] 90.8 [26.6] 15.2	135.8 [39.8] 76.2 [22.3] 14.7	134.3 [39.4] 74.1 [21.7] 14.6	134.8 [39.5] 112.6 [33] 15.1	125.4 [36.8] 94.5 [27.7] 14.6	124.1 [36.4] 91.9 [26.9] 14.5	125.9 [36.9] 125.9 [36.9] 15	117.1 [34.3] 111.5 [32.7] 14.5	115.9 [34] 108.4 [31.8] 14.4
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	141.5 [41.5] 87.5 [25.6] 16.1	131.7 [38.6] 73.4 [21.5] 15.5	130.3 [38.2] 71.4 [20.9] 15.4	130.4 [38.2] 109.3 [32] 15.9	121.3 [35.6] 91.7 [26.9] 15.4	120 [35.2] 89.2 [26.1] 15.3	121.5 [35.6] 121.5 [35.6] 15.8	113 [33.1] 108.7 [31.9] 15.2	111.8 [32.8] 105.7 [31] 15.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) — G090

_											
					ITERING INDOC	R AIR @ 75°F)			
		wbE	65.3°F [18.5°C]				64°F [17.8°C]		62.5°F [16.9°C]		
	CI	FM [L/s]	1800 [850]	1388 [655]	1200 [566]	1800 [850]	1388 [655]	1200 [566]	1800 [850]	1388 [655]	1200 [566]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	28.0 [8.2] 6.3 [1.8] 2.8	26.5 [7.8] 5.5 [1.6] 2.7	25.9 [7.6] 5.2 [1.5] 2.7	26.6 [7.8] 8.6 [2.5] 2.8	25.3 [7.4] 7.5 [2.2] 2.7	24.6 [7.2] 7.0 [2.1] 2.7	26.0 [7.6] 11.6 [3.4] 2.8	24.6 [7.2] 10.2 [3.0] 2.7	24.0 [7.0] 9.6 [2.8] 2.7
0 R D	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power		25.3 [7.4] 4.4 [1.3] 2.8	24.7 [7.2] 4.1 [1.2] 2.7	25.3 [7.4] 7.3 [2.1] 2.9	24.0 [7.0] 6.4 [1.9] 2.8	23.4 [6.9] 6.0 [1.8] 2.7	24.7 [7.2] 10.4 [3.0] 2.8	23.4 [6.9] 9.1 [2.7] 2.8	22.8 [6.7] 8.5 [2.5] 2.7
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power		24.0 [7.0] 3.3 [1.0] 2.8	23.4 [6.9] 3.1 [0.9] 2.8	24.0 [7.0] 6.0 [1.8] 2.9	22.7 [6.7] 5.3 [1.5] 2.9	22.2 [6.5] 5.0 [1.5] 2.8	23.3 [6.8] 9.1 [2.7] 2.9	22.1 [6.5] 8.0 [2.3] 2.8	21.6 [6.3] 7.5 [2.2] 2.8
L B	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power		22.7 [6.6] 2.1 [0.6] 2.9	22.1 [6.5] 2.0 [0.6] 2.9	22.5 [6.6] 4.7 [1.4] 3.0	21.4 [6.3] 4.1 [1.2] 2.9	20.9 [6.1] 3.8 [1.1] 2.9	21.9 [6.4] 7.7 [2.3] 3.0	20.8 [6.1] 6.8 [2.0] 2.9	20.3 [5.9] 6.4 [1.9] 2.9
E M P E	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	22.4 [6.6] 1.0 [0.3] 3.1	21.3 [6.2] 0.9 [0.3] 3.0	20.7 [6.1] 0.8 [0.2] 3.0	21.1 [6.2] 3.2 [1.0] 3.1	20.0 [5.9] 2.9 [0.8] 3.0	19.5 [5.7] 2.7 [0.8] 3.0	20.4 [6.0] 6.3 [1.8] 3.1	19.4 [5.7] 5.5 [1.6] 3.0	18.9 [5.5] 5.2 [1.5] 3.0
R A T U R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	20.9 [6.1] -0.5 [-0.1] 3.2	19.8 [5.8] -0.4 [-0.1] 3.2	19.3 [5.7] -0.4 [-0.1] 3.1	19.5 [5.7] 1.8 [0.5] 3.2	18.5 [5.4] 1.6 [0.5] 3.2	18.1 [5.3] 1.5 [0.4] 3.1	18.9 [5.5] 4.8 [1.4] 3.2	17.9 [5.3] 4.2 [1.2] 3.1	17.5 [5.1] 4.0 [1.2] 3.1
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	19.3 [5.7] -2.0 [-0.6] 3.4	18.3 [5.4] -1.8 [-0.5] 3.3	17.9 [5.2] -1.7 [-0.5] 3.2	18.0 [5.3] 0.2 [0.1] 3.4	17.0 [5.0] 0.2 [0.1] 3.3	16.6 [4.9] 0.2 [0.1] 3.2	17.3 [5.1] 3.3 [1.0] 3.4	16.4 [4.8] 2.9 [0.9] 3.3	16.0 [4.7] 2.7 [0.8] 3.2

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) — G090

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	91.0 [26.7] 49.7 [14.6] 4.8	86.3 [25.3] 43.7 [12.8] 4.7	84.2 [24.7] 40.9 [12.0] 4.6	89.8 [26.3] 55.7 [16.3] 4.8	85.2 [25.0] 49.0 [14.3] 4.7	83.1 [24.4] 45.9 [13.4] 4.6	88.0 [25.8] 61.5 [18.0] 4.8	83.5 [24.5] 54.0 [15.8] 4.6	81.4 [23.9] 50.6 [14.8] 4.6
O R D	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	84.2 [24.7] 43.4 [12.7] 5.3	79.9 [23.4] 38.1 [11.2] 5.2	77.9 [22.8] 35.7 [10.5] 5.1	83.0 [24.3] 49.5 [14.5] 5.3	78.8 [23.1] 43.4 [12.7] 5.2	76.8 [22.5] 40.7 [11.9] 5.1	81.2 [23.8] 55.2 [16.2] 5.3	77.0 [22.6] 48.5 [14.2] 5.2	75.1 [22.0] 45.4 [13.3] 5.1
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	76.6 [22.5] 37.2 [10.9] 5.9	72.7 [21.3] 32.7 [9.6] 5.8	70.9 [20.8] 30.6 [9.0] 5.7	75.5 [22.1] 43.3 [12.7] 5.9	71.6 [21.0] 38.0 [11.1] 5.8	69.8 [20.5] 35.6 [10.4] 5.7	73.6 [21.6] 49.0 [14.4] 5.9	69.9 [20.5] 43.0 [12.6] 5.8	68.1 [20.0] 40.3 [11.8] 5.7
B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	68.3 [20.0] 31.1 [9.1] 6.6	64.8 [19.0] 27.3 [8.0] 6.5	63.2 [18.5] 25.6 [7.5] 6.4	67.1 [19.7] 37.1 [10.9] 6.6	63.7 [18.7] 32.6 [9.6] 6.5	62.1 [18.2] 30.5 [9.0] 6.4	65.3 [19.1] 42.9 [12.6] 6.6	61.9 [18.1] 37.6 [11.0] 6.4	60.4 [17.7] 35.3 [10.3] 6.4
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	59.1 [17.3] 25.0 [7.3] 7.4	56.1 [16.4] 22.0 [6.4] 7.2	54.7 [16.0] 20.6 [6.0] 7.1	58.0 [17.0] 31.1 [9.1] 7.4	55.0 [16.1] 27.3 [8.0] 7.2	53.6 [15.7] 25.6 [7.5] 7.1	56.1 [16.4] 36.8 [10.8] 7.4	53.3 [15.6] 32.3 [9.5] 7.2	51.9 [15.2] 30.3 [8.9] 7.1
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	49.2 [14.4] 19.1 [5.6] 8.3	46.7 [13.7] 16.7 [4.9] 8.1	45.5 [13.3] 15.7 [4.6] 8.0	48.0 [14.1] 25.1 [7.4] 8.3	45.6 [13.4] 22.0 [6.5] 8.1	44.5 [13.0] 20.7 [6.1] 8.0	46.2 [13.5] 30.8 [9.0] 8.3	43.8 [12.8] 27.1 [7.9] 8.0	42.8 [12.5] 25.4 [7.4] 8.0
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	38.5 [11.3] 13.2 [3.9] 9.2	36.5 [10.7] 11.6 [3.4] 9.0	35.6 [10.4] 10.8 [3.2] 8.9	37.3 [10.9] 19.2 [5.6] 9.2	35.4 [10.4] 16.9 [4.9] 9.0	34.5 [10.1] 15.8 [4.6] 8.9	35.5 [10.4] 24.9 [7.3] 9.2	33.7 [9.9] 21.9 [6.4] 9.0	32.8 [9.6] 20.5 [6.0] 8.9

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)—G120

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE (1)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	2400 [1133]	1875 [885]	1600 [755]	2400 [1133]	1875 [885]	1600 [755]	2400 [1133]	1875 [885]	1600 [755]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	30.2 [8.9] 3.8 [1.1] 3.8	28.7 [8.4] 3.4 [1.0] 3.7	28.0 [8.2] 3.2 [0.9] 3.6	27.6 [8.1] 6.2 [1.8] 3.7	26.3 [7.7] 5.5 [1.6] 3.7	25.6 [7.5] 5.1 [1.5] 3.6	24.8 [7.3] 9.1 [2.7] 3.8	23.6 [6.9] 8.0 [2.3] 3.7	23.0 [6.7] 7.5 [2.2] 3.6
0 R D	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	28.7 [8.4] 2.6 [0.8] 3.8	27.3 [8.0] 2.3 [0.7] 3.7	26.6 [7.8] 2.1 [0.6] 3.7	26.1 [7.7] 5.0 [1.5] 3.8	24.9 [7.3] 4.4 [1.3] 3.7	24.2 [7.1] 4.1 [1.2] 3.7	23.3 [6.8] 7.8 [2.3] 3.8	22.2 [6.5] 6.9 [2.0] 3.7	21.6 [6.3] 6.4 [1.9] 3.7
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	27.2 [8.0] 1.4 [0.4] 3.9	25.9 [7.6] 1.2 [0.4] 3.8	25.2 [7.4] 1.1 [0.3] 3.8	24.6 [7.2] 3.7 [1.1] 3.9	23.4 [6.9] 3.3 [1.0] 3.8	22.8 [6.7] 3.1 [0.9] 3.7	21.8 [6.4] 6.6 [1.9] 3.9	20.8 [6.1] 5.8 [1.7] 3.8	20.2 [5.9] 5.4 [1.6] 3.8
U L B	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	25.7 [7.5] 0.1 [0.0] 4.0	24.5 [7.2] 0.1 [0.0] 3.9	23.8 [7.0] 0.1 [0.0] 3.8	23.2 [6.8] 2.5 [0.7] 4.0	22.0 [6.5] 2.2 [0.7] 3.9	21.5 [6.3] 2.1 [0.6] 3.8	20.4 [6.0] 5.4 [1.6] 4.0	19.4 [5.7] 4.7 [1.4] 3.9	18.9 [5.5] 4.4 [1.3] 3.8
M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	24.3 [7.1] -1.1 [-0.3] 4.1	23.1 [6.8] -0.9 [-0.3] 4.0	22.5 [6.6] -0.9 [-0.3] 3.9	21.7 [6.4] 1.3 [0.4] 4.0	20.7 [6.1] 1.2 [0.3] 3.9	20.1 [5.9] 1.1 [0.3] 3.9	18.9 [5.6] 4.2 [1.2] 4.1	18.0 [5.3] 3.7 [1.1] 4.0	17.5 [5.1] 3.4 [1.0] 3.9
A T U R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	22.9 [6.7] -2.2 [-0.7] 4.2	21.8 [6.4] -2.0 [-0.6] 4.1	21.2 [6.2] -1.8 [-0.5] 4.0	20.4 [6.0] 0.2 [0.0] 4.1	19.4 [5.7] 0.1 [0.0] 4.0	18.9 [5.5] 0.1 [0.0] 4.0	17.6 [5.1] 3.0 [0.9] 4.1	16.7 [4.9] 2.7 [0.8] 4.0	16.3 [4.8] 2.5 [0.7] 4.0
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	21.6 [6.3] -3.4 [-1.0] 4.3	20.5 [6.0] -3.0 [-0.9] 4.2	20.0 [5.9] -2.8 [-0.8] 4.1	19.0 [5.6] -1.0 [-0.3] 4.2	18.1 [5.3] -0.9 [-0.3] 4.1	17.6 [5.2] -0.8 [-0.2] 4.1	16.2 [4.7] 1.8 [0.5] 4.2	15.4 [4.5] 1.6 [0.5] 4.1	15.0 [4.4] 1.5 [0.4] 4.1

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE)—G120

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	114.4 [33.5] 56.8 [16.7] 6.0	108.8 [31.9] 50.3 [14.7] 5.9	105.9 [31.0] 46.8 [13.7] 5.8	111.5 [32.7] 62.8 [18.4] 6.0	106.1 [31.1] 55.5 [16.3] 5.9	103.3 [30.3] 51.7 [15.2] 5.8	108.5 [31.8] 70.8 [20.8] 5.9	103.2 [30.3] 62.7 [18.4] 5.8	100.5 [29.4] 58.4 [17.1] 5.7
O R D	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	106.3 [31.2] 49.4 [14.5] 6.7	101.2 [29.6] 43.7 [12.8] 6.5	98.5 [28.9] 40.7 [11.9] 6.4	103.5 [30.3] 55.3 [16.2] 6.6	98.5 [28.9] 48.9 [14.3] 6.5	95.8 [28.1] 45.6 [13.4] 6.4	100.4 [29.4] 63.4 [18.6] 6.6	95.6 [28.0] 56.1 [16.4] 6.4	93.0 [27.3] 52.2 [15.3] 6.3
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	42.2 [12.4] 7.4	92.8 [27.2] 37.3 [10.9] 7.2	90.3 [26.5] 34.7 [10.2] 7.1	94.7 [27.7] 48.1 [14.1] 7.4	90.1 [26.4] 42.5 [12.5] 7.2	87.7 [25.7] 39.6 [11.6] 7.1	91.6 [26.9] 56.2 [16.5] 7.3	87.2 [25.6] 49.7 [14.6] 7.2	84.9 [24.9] 46.3 [13.6] 7.1
B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	87.9 [25.8] 35.2 [10.3] 8.3	83.7 [24.5] 31.1 [9.1] 8.1	81.4 [23.9] 29.0 [8.5] 8.0	85.1 [24.9] 41.1 [12.0] 8.3	81.0 [23.7] 36.4 [10.7] 8.1	78.8 [23.1] 33.9 [9.9] 8.0	82.0 [24.0] 49.2 [14.4] 8.2	78.1 [22.9] 43.5 [12.7] 8.0	76.0 [22.3] 40.5 [11.9] 7.9
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	77.6 [22.7] 28.4 [8.3] 9.3	73.8 [21.6] 25.1 [7.4] 9.1	71.8 [21.1] 23.4 [6.9] 8.9	74.7 [21.9] 34.4 [10.1] 9.2	71.1 [20.8] 30.4 [8.9] 9.0	69.2 [20.3] 28.3 [8.3] 8.9	71.7 [21.0] 42.4 [12.4] 9.2	68.2 [20.0] 37.5 [11.0] 9.0	66.4 [19.5] 35.0 [10.2] 8.9
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	66.4 [19.5] 21.9 [6.4] 10.4	63.2 [18.5] 19.4 [5.7] 10.1	61.5 [18.0] 18.0 [5.3] 10.0	63.6 [18.6] 27.8 [8.2] 10.4	60.5 [17.7] 24.6 [7.2] 10.1	58.9 [17.3] 22.9 [6.7] 10.0	60.6 [17.8] 35.9 [10.5] 10.3	57.6 [16.9] 31.8 [9.3] 10.1	56.1 [16.4] 29.6 [8.7] 9.9
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	54.6 [16.0] 15.6 [4.6] 11.6	51.9 [15.2] 13.8 [4.0] 11.3	50.5 [14.8] 12.9 [3.8] 11.2	51.7 [15.2] 21.6 [6.3] 11.6	49.2 [14.4] 19.1 [5.6] 11.3	47.9 [14.0] 17.8 [5.2] 11.2	48.7 [14.3] 29.6 [8.7] 11.5	46.3 [13.6] 26.2 [7.7] 11.3	45.1 [13.2] 24.4 [7.2] 11.1

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) - G151

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE (1)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	3000 [1416]	2125 [1003]	2000 [944]	3000 [1416]	2125 [1003]	2000 [944]	3000 [1416]	2125 [1003]	1600 [755]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	40.1 [11.7] 9.4 [2.8] 4.5	37.3 [10.9] 7.9 [2.3] 4.3	36.9 [10.8] 7.7 [2.2] 4.3	38.5 [11.3] 12.5 [3.7] 4.5	35.8 [10.5] 10.5 [3.1] 4.4	35.4 [10.4] 10.2 [3.0] 4.3	36.9 [10.8] 16.6 [4.9] 4.5	34.3 [10.0] 13.9 [4.1] 4.3	33.9 [9.9] 13.6 [4.0] 4.3
0 0 R D	65 [18.3]	Power	38.3 [11.2] 7.5 [2.2] 4.6	35.6 [10.4] 6.3 [1.8] 4.4	35.2 [10.3] 6.1 [1.8] 4.4	36.7 [10.7] 10.6 [3.1] 4.6	34.1 [10.0] 8.9 [2.6] 4.4	33.7 [9.9] 8.7 [2.5] 4.4	35 [10.3] 14.7 [4.3] 4.6	32.6 [9.6] 12.3 [3.6] 4.4	32.3 [9.5] 12.0 [3.5] 4.4
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	36.5 [10.7] 5.7 [1.7] 4.6	33.9 [9.9] 4.8 [1.4] 4.5	33.6 [9.8] 4.7 [1.4] 4.5	34.9 [10.2] 8.8 [2.6] 4.6	32.5 [9.5] 7.4 [2.2] 4.5	32.1 [9.4] 7.2 [2.1] 4.5	33.3 [9.7] 12.9 [3.8] 4.6	30.9 [9.1] 10.8 [3.2] 4.5	30.6 [9.0] 10.5 [3.1] 4.5
U L B	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	34.7 [10.2] 4.0 [1.2] 4.7	32.3 [9.5] 3.4 [1.0] 4.6	32.0 [9.4] 3.3 [1.0] 4.5	33.1 [9.7] 7.2 [2.1] 4.7	30.8 [9.0] 6.0 [1.8] 4.6	30.5 [8.9] 5.8 [1.7] 4.5	31.5 [9.2] 11.3 [3.3] 4.7	29.3 [8.6] 9.5 [2.8] 4.6	29.0 [8.5] 9.2 [2.7] 4.5
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	33.0 [9.7] 2.5 [0.7] 4.8	30.7 [9.0] 2.1 [0.6] 4.7	30.4 [8.9] 2.0 [0.6] 4.7	31.4 [9.2] 5.6 [1.6] 4.8	29.2 [8.6] 4.7 [1.4] 4.7	28.9 [8.5] 4.6 [1.3] 4.7	29.8 [8.7] 9.7 [2.8] 4.8	27.7 [8.1] 8.2 [2.4] 4.7	27.4 [8.0] 7.9 [2.3] 4.7
A T U R E	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	31.4 [9.2] 1.1 [0.3] 5	29.2 [8.6] 0.9 [0.3] 4.8	28.9 [8.5] 0.9 [0.3] 4.8	29.8 [8.7] 4.2 [1.2] 5	27.7 [8.1] 3.5 [1.0] 4.8	27.4 [8.0] 3.4 [1.0] 4.8	28.2 [8.3] 8.3 [2.4] 5	26.2 [7.7] 7.0 [2.0] 4.8	25.9 [7.6] 6.8 [2.0] 4.8
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	29.7 [8.7] -0.2 [-0.1] 5.1	27.7 [8.1] -0.2 [-0.1] 4.9	27.4 [8.0] -0.2 [-0.1] 4.9	28.2 [8.2] 2.9 [0.9] 5.1	26.2 [7.7] 2.4 [0.7] 5	25.9 [7.6] 2.4 [0.7] 4.9	26.5 [7.8] 7.0 [2.1] 5.1	24.7 [7.2] 5.9 [1.7] 4.9	24.4 [7.2] 5.7 [1.7] 4.9

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) - G151

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]
0 U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	136.4 [40.0] 71.7 [21.0] 7.2	126.9 [37.2] 60.2 [17.6] 7.0	125.6 [36.8] 58.5 [17.1] 7.0	133.7 [39.2] 79.7 [23.3] 7.2	124.4 [36.5] 66.8 [19.6] 6.9	124.4 [36.5] 66.8 [19.6] 6.9	130.6 [38.3] 89.5 [26.2] 7.1	121.5 [35.6] 75.0 [22.0] 6.9	120.2 [35.2] 73.0 [21.4] 6.9
0 0 R	70 [21.1]	ruwei	126.3 [37.0] 62.1 [18.2] 8.0	117.5 [34.4] 52.1 [15.3] 7.7	116.2 [34.1] 50.7 [14.9] 7.7	123.6 [36.2] 70.1 [20.5] 7.9	115.0 [33.7] 58.8 [17.2] 7.7	113.7 [33.3] 57.2 [16.8] 7.6	120.4 [35.3] 79.9 [23.4] 7.9	112.0 [32.8] 67.0 [19.6] 7.6	110.8 [32.5] 65.2 [19.1] 7.6
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	115.9 [34.0] 53.0 [15.5] 8.9	107.8 [31.6] 44.5 [13.0] 8.6	106.6 [31.3] 43.3 [12.7] 8.5	113.2 [33.2] 61.0 [17.9] 8.8	105.3 [30.9] 51.1 [15.0] 8.5	104.2 [30.5] 49.7 [14.6] 8.5	110.0 [32.2] 70.8 [20.7] 8.8	102.3 [30.0] 59.4 [17.4] 8.5	101.2 [29.7] 57.7 [16.9] 8.4
L B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	105.3 [30.8] 44.4 [13.0] 9.9	97.9 [28.7] 37.2 [10.9] 9.6	96.9 [28.4] 36.2 [10.6] 9.5	102.6 [30.1] 52.3 [15.3] 9.8	95.4 [28.0] 43.9 [12.9] 9.5	94.4 [27.7] 42.7 [12.5] 9.5	99.4 [29.1] 62.1 [18.2] 9.8	92.4 [27.1] 52.1 [15.3] 9.5	91.5 [26.8] 50.7 [14.8] 9.4
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	94.4 [27.7] 36.1 [10.6] 11.1	87.9 [25.7] 30.3 [8.9] 10.7	86.9 [25.5] 29.5 [8.6] 10.6	91.7 [26.9] 44.1 [12.9] 11.0	85.3 [25.0] 37.0 [10.8] 10.6	84.4 [24.7] 36.0 [10.5] 10.6	88.5 [25.9] 53.9 [15.8] 11.0	82.4 [24.1] 45.2 [13.2] 10.6	81.5 [23.9] 44.0 [12.9] 10.5
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	83.4 [24.4] 28.4 [8.3] 12.4	77.6 [22.7] 23.8 [7.0] 11.9	76.8 [22.5] 23.2 [6.8] 11.9	80.7 [23.6] 36.3 [10.6] 12.3	75.1 [22.0] 30.5 [8.9] 11.9	74.3 [21.8] 29.6 [8.7] 11.8	77.5 [22.7] 46.1 [13.5] 12.3	72.1 [21.1] 38.7 [11.3] 11.8	71.3 [20.9] 37.6 [11.0] 11.8
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	72.1 [21.1] 21.1 [6.2] 13.8	67.1 [19.7] 17.7 [5.2] 13.3	66.4 [19.5] 17.2 [5.0] 13.2	69.4 [20.3] 29.0 [8.5] 13.7	64.6 [18.9] 24.4 [7.1] 13.3	63.9 [18.7] 23.7 [6.9] 13.2	66.3 [19.4] 38.8 [11.4] 13.7	61.6 [18.1] 32.6 [9.5] 13.2	61.0 [17.9] 31.7 [9.3] 13.2

AIRFLOW PERFORMANCE—7.5 TON [26.4 kW] — 60 Hz — SIDEFLOW

:	Cap	acity	Capacity 7.5 Tons [26.4 kW]	Tons	[26.4	KW																																Г
¥															Exte	rnal &	Static	Press	lre-	Inche	External Static Pressure—Inches of Water [kPa	ater [kPa]															
FIUW CEM II 6.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	0.1[.([7	0.2 [.0	5	3 [.0	7] 0.	4 [.1[9.6	1.12	0.6	[.15]	0.7	[17]	0.8	[.20] [0.9 [.22]	0.9 [.		1.0 [.25]		1-1	1.1 [.27] 1.2 [.30]	.2[.3		1.3 [.32]		1.4 [.35]		1.5 [.37]		1.6 [.40]	1.7	1.7 [.42]	-	1.8 [.45]	1.9 [.47] 2.0	47] 2	0[.5	[.50]
	RPM	×	NA!	W	PM	RPM W RPM W RPM W RPM W	Σ	V RPI	RPM W	RPM	>	RPIV	> "	RPM	٨	RPM	>	RPM	×	RPM	× R	RPM	N R	RPM	W RPM	N W	RPM	≥	RPM	> "	RPM	>	RPM	≥	RPM	× В	RPM	>
2400 [1133]	-	-	_	- 5	574 5	520 612	2 2 2 2	95 650	99 0		687 739	723	815	757	893	791	971	824	1021	857 1	1133 8	888 17	1216 9	918 13	1300 9	948 1386	926 9	1473	3 1004	1561	1031		1651 1057		1742 1082 1834	1834 1	1106 1928	328
2500 [1180]	Ī		545 4	490 5	584 56	560 622	22 632	32 659	9 705	2 692	2 280	730	856	29/	933	862	1012	831	1092	863 1	1174 8	894 12	1257 93	924 13	1341 953	3 1427	7 981	1514	4 1008	8 1603	3 1035		1693 1060		1784 1085	5 1877 1	1108 197	171
2600 [1227]	1		555 5	537 5	594 60	608 632	32 680	899 08	8 753	3 704	828	739	904	773	982	908	1061	838	1141	870 1	1223 8	900	1306 9:	930 13	1390 95	958 1476	986 9.	1563	3 1013	3 1652	1039		1742 1064		1833 1088	1926 1	1111 2020	020
2700 [1274]	1		267 5	593 6	99 209	663 642	135	35 678	8 809	9 714	884	748	096	782	1038	814	1117	846	1197	877 1	1279 6	907 13	1362 9:	936 14	1447 964	1533	3 992	1620	0 1018	8 1709	1043	1799	3 1068	1891	1092 1983	1983	1115 2078	820
2800 [1321]	ı		9 8/9	9 259	616 72	726 653	3 799	689 66	9 872	2 724	947	758	1024	791	1101	823	1181	854	1261	885 1	1343 6	914 1	1426 9	943 15	1511 971	1 1597	866 2	1685	5 1024	4 1773	3 1049	1864	1 1073	1955	1096	2048	1119 2143	43
2900 [1368]	552 E	929	591 7	726 6	628 79	797 664	34 869	39 700	0 943	3 734	1018	892 8	1095	800	1173	832	1252	863	1332	893 1	1415 9	922 14	1498 9	951 15	1583 97	978 1669	1004	4 1757	7 1030	1846	3 1055	5 1936 1	3 1078	2028	1101	2121	1123 2215	215
3000 [1416]	200	734 6	8 809	804 6	640 8	875 676	76 947	17 711		1021 745	1097	2 22	1173	811	1251	845	1331	872	1411	902 1	1494 6	931 18	1577 9:	929 16	1662 98	985 1748	8 1012	2 1836	6 1037	1925	5 1061	2016 1	3 1084	2108	1107	2201 1	1128 23	2295
3100 [1463]	579	820 6	617 8	9 068	623 6	961 688	38 1033	33 723	3 110	1107 757	1183	3 789	1259	821	1338	852	1417	882	1498	912 1	1580 8	940 16	1664 9	967 17	1749 99	994 1835	5 1019	9 1923	3 1044	4 2012	2012 1068		2103 1091	2195	1113 2288	2288 1	1134 2383	383
3200 [1510]	594	913 6	631 9	983 6	666 1054	354 70	701 1127	27 73	3 120	736 1201 769	1276	801	1353	833	1432	863	1511	893	1592	921 1	1675 9	949 17	1758 9.	976 18	1844 10	1002 193	0 102	7 201	8 105	1930 1027 2018 1052 2107 1075 2198 1098 2290 1119 2384 1140 2478	1075	5 2198	3 1098	2290	1119	2384 1	140 2	178
3300 [1557]	608 1014 645	014 (645 11	084 6	11 08:	1084 680 1155 715 1228 749	5 12	28 749	9 130	1302 781	1378	8 813	1455	844	1533	874	1613	904	1694	932 1	1776 §	926 18	1860 9	986 19	1946 10	1012 2032 1036	2 103	6 212	0 106	2120 1060 2210 1083 2301 1105 2393 1126 2486 1146 2581	1083	3 2301	11105	2393	1126	2486 1	146 25	189
3400 [1604] 624 1122 660 1192 695 1264 729 1337 762 1411 795 1487	624 1	122	660 1	192 6	95 12	264 72	9 13	37 762	2 141	1 795	148,	7 826	1564	857	1642	886	1722	915	1803	943 1	1886	970 19	1970 9	996 20	2055 1021	21 214	2142 1046	6 223	0 106	2230 1069 2320 1091 2411 1113 2503 1134 2597 1154 2692	1091	2411	11113	2503	1134	2597 1	154 26	392
3500 [1652] 640 1238 675	640	238 (675 1,	308 7	70 15	1308 710 1380 744 1453 776 1527	14.	53 776	3 152	7 808	808 1603	3 839	1680	870	1759	899	1839	927	1920	922 2	2003 8	981 20	2087 10	1007 21	2173 10	1032 225	2259 1055	5 2348	8 107	1078 2437	1100) 2528	1100 2528 1122	2621	1142 2715	2715 1	1161 28	2810
3600 [1699] 656 1361 691 1432 725 1503 759 1577 791 1651 823 1727 853	656 1	361 (691 1.	432 7	725 15	503 75	9 15	77 79.	165	1 823	172.	7 853	1804	883	1883	912	1963	940	2045	2 296	2128 6	993 2;	2212 10	1018 2297	97 10	1042 2384 1066 2473 1088 2563 1110 2654 1131	106	6 247	3 108	8 2563	3 1110	2654	1131	2746	1151	2840 1	2746 1151 2840 1169 2936	336
L				١			:				:																											ĺ

NOTE: R-Drive left of 1st bold line, S-Drive between bold lines, T-Drive right of 2nd bold line.

				9	933
				2	286
	37.1.4]	BK65	1VP-44	4	1040
L	3.0 [2237.1.4]	BK	1VP	3	1092
				2	1143
				1	1179
				9	673
				2	711
	1.4]	0	44	4	750
S	2.0 [1491.4]	BK90	1VP-44	3	789
				2	830
				-	865
				9	544
				5	276
~	491.4]	BK110	VP-44	4	809
_	2.0 [1491.4]	. BK	1VF	3	640
				2	674
				-	202
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Do not operate above blower RPM shown as motor overloading will occur.
 Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 7.5 TON [26.4 kW] (C090)

ACTUAL—CFM [L/s]	2600 [1227]	2800 [1321]	3000 [1416]	3200 [1510]	3400 [1605]	3600 [1699]	3800 [1793
TOTAL MBH	0.97	96.0	0.99	1.00	1.01	1.02	1.03
SENSIBLE MBH	0.91	0.94	0.97	1.00	1.02	1.05	1.08
POWER KW	0.99	66'0	0.99	1.00	1.00	1.01	1.02

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity, cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 7.5 TON [26.4 kW] (C090)

			Standard In	door Airflow	Standard Indoor Airflow—CFM [L/s]		
Component	2400	2600	2800	3000	3200	3400	3600
	[1133]	[1227]	[1321]	[1416]	[1510]	[1604]	[1699]
			Resistance	Resistance—Inches Water [kPa]	/ater [kPa]		
11/2+ 02:1	0.047	0.051	0.055	090'0	0.065	0.071	920.0
Wel coll	[0.012]	[0.013]	[0.014]	[0.015]	[0.016]	[0.018]	[0.019]
Concentric Diffuser RXRN-FA65 or	VIVO	.017	.020	.025	.031	.037	VIVO
FA75 & Transition RXMC-CD04	DINA	[0.042]	[0.050]	[0.062]	[0.077]	[0.092]	DINA
Concentric Diffuser RXRN-AA61 or	ANG	ANG	VIVO	VIVO	VIVO	VINC	.017
AA71 & Transition RXMC-CE05	Z.	ליי	לאם	ב ב	200	כוס	[0.042]
Economizer	0.05	90.0	0.07	80'0	60.0	0.10	0.11
100% R.A. Damper Open	[0.012]	[0.015]	[0.017]	[0.020]	[0.022]	[0.025]	[0.027]
Horizontal Economizer	0.03	0.04	0.04	90'0	0.05	90:0	90.0
100% R.A. Damper Open	[0.007]	[0.009]	[0.010]	[0.011]	[0.012]	[0.014]	[0.015]
Horizontal Economizer	0.08	0.08	0.08	0.10	0.11	0.12	0.13
100% O.A. Damper Open	[0.020]	[0.020]	[0.020]	[0.024]	[0.027]	[0.030]	[0.032]

NOTE: Add component resistance to duct resistance to determine total external static pressure. DNA = Data not Available.

AIRFLOW PERFORMANCE—10 TON [35.2 kW] — 60 Hz — SIDEFLOW]

	_						_			_						_		_			1
		[.47]		2590	2705	1	1	1	1	1	1	1	1	1	1	I	1	1	1	1	
		1.9		1168	1175	1	1	1	-	1	1	_	1	1	_	I	-	1	Ι	1	
		.45]		2476	2588	2706	2829	2957	3091	I	Ι	1	ı	Ι	1	I	Ι	I	ı	ı	
		1.8		143	150	157	165	172	1180	ı	ı	Ι	ı	ı	Ι	ı	Ι	ı	ı	ī	
		.2	M	365 1	2474 1150	2588 1157	2707 1165 2829	2832 1172 2957	2962	3098	3240	3386	1	П	_		<u> </u>	1	П		
		1.7 [.42] 1.8 [.45]	RPM	1117 2365 1143 2476	1125 2	1132 2	1140 2	1148 2	1156 2	1164 3	1172 3	1181 3	1	<u> </u>	_	1	<u> </u>	1		1	
						73 11							Ĺ							_	
		1.40	W	1 2258	9 2363	7 247	5 258	3 2710	1 2837	3 2969	31(3 3250	2 3398	3 3552	-			1		-	
		1.6	RPM	2154 1091	2255 1099	110	111	112	2715 1131	114	1148	3117 1158	1167	3412 1176	1	I	1	1	1	1	
		.37]	Μ	2154	2255	2362	5474	2592	2715	2843	2977	3117	3261	3412	3568	3729	_	1	1	1	
		1.5	RPM	1064	1072	1081	1089	1098	1107	1115	1125	1134	1143	1153	1162	1172	1	ı	1	1	
		1.4 [.35] 1.5 [.37] 1.6 [.40]	M	2053	1046 2151 1072	2254	2362	2476	5296	2720	2851	2887	3128	3275 1153	3427 1162	3584	3747	3916	ı	ı	
		14.	RPM	280	046	054	690	072	081	060	100	110	119	129	139	1150		1170	П	1	
			W	1955 1037 2053 1064	2049 1	2149 1054 2254 1081 2362 1107 2473	2253 1063 2362 1089 2474 1115 2589	2364 1072 2476 1098 2592 1123	1055 2480 1081 2596 1107	301	1075 2728 1100 2851 1125 2977 1149 3107	2860 1110 2987 1134	1095 2997 1119 3128	3140 1129	3289 1139	3443 1	3602 1160	3767 1	3938	4113	
		1.3 [.32]	-	1009 1	1018 20	27 2	1037 2	1046 23	55 24	65 26	75 2	1085 28	95 29	1105 3	1116 3	1126 3	1137 36	1148 3	1159 38	1170 4	
			W RPM		_	10		10		5				11							
	<u></u>	1.2 [.30]		1861	1951	0 204	0 214	9 225	9 2367	9 248	1049 2608	0 2736	1070 2870	1 300	2 315	3 3305	4 346	2 362	7 3789	8 396	
	r FP	1.2	RPM	981	991	100	101	101	1029	103		106	107	108	109	1103	111	112	113	114	
	Wate	[.27]	Μ	1769	1856	972 1948 1000 2047 1027	982 2046 1010 2148	992 2149 1019 2255	2257	2371	2491	2616	2746	2882	3023	3170	3322	3476	3643	3811	
	External Static Pressure—Inches of Water [kPa]	1.0 [.25] 1.1 [.27]	RPM	953	962	972			2151 1003 2257	2261 1013 2371 1039 2484 1065 2601 1090 2720 1115 2843 1140	2377 1023 2491	1008 2498 1034 2616 1060	2507 1019 2625 1045 2746	1005 2636 1031 2757 1056 2882 1081 3009	2770 1042 2895 1067 3023 1092 3154	3038 1079 3170	1041 3054 1066 3186 1090 3322 1114 3461	1054 3204 1078 3340 1102 3479 1125 3622	1066 3360 1090 3500 1114 3643 1137	1079 3522 1103 3665 1126 3811 1148 3961	
	무망	.25]	W	1681	1764	1853	1947	2046	2151	2261	2377	2498	2625	2757	2895	3038	3186	3340	3500	3665	
	- ann	1.0	RPM	924	934	944	954	965	975	986	266	1008	1019	1031	1042	1054	1066	1078	1090	1103	
	Press	[2]	M	1596	1675	1760	1821	1946	2048	2154	2267	2384	202	989	022	5309	054	504	360	225	
	tatic	0.9 [.22]	RPM	895 1	905	915 1	926	937	948 2	959 2	970 2	982 2	993 2	305 2	1017 2	1029 2	341 3	354 3	990	379 3	
	rnal S	<u></u>	WR	1514 8	1590	1671 8	1758 6	1850 9	1948 5	2051 8	2159 8	2273 6	2393 6	2518 1	2648 1	2784 1	2925 1	3072 1	3224 1	3382 1	
	Exte	0.8 [.20]		865 15	875 15	886 16	897 17	908 18			943 21	955 22		979 25		04 27	16 25		42 32	55 33	
			RPM					_	11 920	931			1967		991	1004	1016	1029	1042	1031 3245 1055	
		[11]	N .	1436	1508	1585	1668	1757	1851	1950	2022	2166	1 2281	2403	5253	1 2662	2799	1004 2942	1017 3091	1 324	
		0.7	RPM	834	845	857	898	880	891	903	915	927	940	952	962	826	166	_	10	_	
		[15]	٨	1360	1429	1503	1582	1667	1757	875 1853	1954	2061	912 2173	925 2291	938 2414	2542	965 2676	978 2816	2961	3111	
		9.0	RPM	804	815	827	838	820	862	875	288	006				951	965	978	992	1006	
		.12]	M	1288	1353	1423	1499	1580	1667	1759	1857	1960	2068	2182	2302	2427	2557	2693	2834	2981 1006 3111	
		0.5	RPM	772	784	962	808 1499	821 1580 850	833	846	858	871 1960	884	898 2182	911	925	938	952	966 2834 992 296	981	
		<u>=</u>	M	219	1280	347			1580	899		1862	1966	770	2193	2314	1441	2573	2710	2853	
		.4[PM	741 1	753	,65	78 1	790 1496	803 1	316	829 1762	843 1	856 1	370	884 2	2 268	912 2441 938	326	940	955	
[M		<u>-</u>	N B	1153 741 1219 772 1288	1210	74	342 7	1416	1495	80089	1671	1767	1868	1975 870 2077	3 2802	2204	2327	2456 926	2590	2729	
10 Tons [35.1 kW]		3[.0	M.	11 61		12	13	14		15				15					4 25		
ns [3		0	RF	676 1090 709	689 1144 721	73	72 8	92 6	5 77	9/ 9/	38	.2 81	2 82	78 9.	4 85	8 870	7 88	.2 89	3	902 2609 929	
10 To			M .	109	114	120	126	133	141	149	158	167	177	187	198	2098	. 221	234	247	260	
		0.2	RPI	929	689	702	715	729	742	756	770	784	798	813	827	842	857	872	887	905	
Capacity		[.02]	Μ	_	1	1137	1198	1265	1337	1415	1498	1586	1680	1780	1884	1995	2111	2232	2359	2491	
င္မ		FIUW CEM II & 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	RPM W RPM W RPM W RPM W RPM	_	I	3400 [1604] 670 1137 702 1204 734 1274 765 1347 796 1423 827 1503	3500 [1652] 683 1198 715 1268 747 1342 778 1419	3600 [1699] 697 1265 729 1339 760	3700 [1746] 711 1337 742 1415 773	3800 [1793] 725 1415 756 1496 786 1580 816 1668 846 1759	3900 [1840] 740 1498 770 1583 800	4000 [1888] 754 1586 784 1675 814	1100 [1935] 768 1680 798 1772 827	4200 [1982] 783 1780 813 1875 841	4300 [2029] 798 1884 827 1984 856	4400 [2076] 813 1995 842	4500 [2123] 828 2111 857 2217 884	4600 [2171] 844 2232 872 2342 899	4700 [2218] 859 2359 887 2473 914	4800 [2265] 875 2491	
		ا ا ا	[6/3]	1510]	1557]	1604]	1652]	1699]	1746]	1793]	1840]	1888]	1935]	1982]	2029]	2076]	2123]	2171]	2218]	2265]	
	¥		5	3200 [1510]	3300 [1557]	1400	.] 009] 009] 00/1] 008] 006] 000	1001	200 [300 [;	400 [1200 [1 009	1002	1800 [
		_	_	က	က်	က	က်	က	က	က်	က	4	4	4	4	4	4	4	4	4	1

NOTE: R-Drive left of bold line, S-Drive right of bold line.

				9	606			
				2	926			
	3.0 [2237.1.4]	BK65	1VP-44	4	1015			
0,	3.0 [22	BK	1VP	3	1063			
	5 6 1 709 670 1169							
	5 670							
	5 6 1 709 670 1169							
	5 6 1 709 670 1169							
R	191.4]	BK90	1VP-44	4	747			
4	2.0 [1491.4]	BK	1VP	3	785			
				2	825			
				-	098			
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM			

NOTES: 1. Factory sheave settings are shown in bold print.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Do not operate above blower RPM shown as motor overloading will occur.
 Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 10 TON [35.2 kW]

		•							
ACTUAL—CFM	3200	3400	3600	3800	4000	4200	4400	4600	4800
[L/s]	[1510]	[1605]	[1699]	[1793]	[1888]	[1982]	[2077]	[2171]	[2265]
TOTAL MBH	96.0	0.97	0.98	0.99	1.00	1.01	1.02	1.03	1.04
SENSIBLE MBH	0.91	0.93	0.95	0.97	1.00	1.02	1.05	1.07	1.09
POWER KW	0.98	0.98	0.99	0.99	1.00	1.00	1.01	1.01	1.01

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity, cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 10 TON [35.2 kW]

							•		
			Sta	ndard Indo	Standard Indoor Airflow—CFM [L/s]	V—CFIM [I	[S/-		
Component	3200	3400	3600		4000	4200	4400	4600	4800
	[1510]	[1604]	[1699]	[1793]	[1888]	[1982]	[2076]	[2171]	[5565]
			Resist	ance—Inc	Resistance—Inches Water [kPa]	r [kPa]			
Wet Coil	0.065	0.071	9/0.0	0.082	0.087	0.093	0.099	0.105	0.110
Welcoll	[0.016]	[0.018]	[0.019]	[0.020]	[0.022]	[0.023]	[0.025]	[0.026]	[0.027]
Concentric Diffuser RXRN-FA65 or FA75 & Transition RXMC-CD04	0.31 [0.077]	0.37 [0.092]	DNA	DNA	DNA	DNA	DNA	DNA	DNA
Concentric Diffuser RXRN-AA61 or AA71 & Transition RXMC-CE05	DNA	DNA	0.17 [0.042]	0.18 [0.045]	0.21 [0.052]	0.24 [0.060]	0.27 [0.067]	DNA	DNA
Concentric Diffuser RXRN-AA66 or AA76 & Transition RXMC-CF06	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.31 [0.077]	0.32 [0.080]
Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17
100% R.A. Damper Open	[0.022]	[0.025]	[0.027]	[0.030]	[0.032]	[0.035]	[0.037]	[0.040]	[0.042]
Horizontal Economizer	0.02	90.0	90.0	0.07	80.0	0.09	0.09	0.10	0.10
100% R.A. Damper Open	[0.012]	[0.014]	[0.015]	[0.017]	[0.020]	[0.021]	[0.022]	[0.024]	[0.025]
Horizontal Economizer	0.11	0.12	0.13	0.15	0.16	0.18	0.19	0.20	0.21
100% O.A. Damper Open	[0.027]	[0.030]	[0.032]	[0.0.36]	[0.040]	[0.044]	[0.047]	[0.50]	[0.052]

NOTE: Add component resistance to duct resistance to determine total external static pressure. DNA = Data not Available.

AIRFLOW PERFORMANCE—12.5 TON [44.0 kW]

Δir	Cal	Capacity 12.5 Ions [43.9 kW] - Voltage 208/230, 460 - 3 Phase 60 Hz	12.	io c	S [43.	S	0 N	rage,	208/2:	30, 40	15-0	rnase	DO HZ																								
															Exte	External Static Pressure—Inches of Water [kPa]	tatic I	Pressi	Te_	nches	of Wa	iter [k	Pa														
٧	0.1	02] C	$ \sum_{i=0}^{F(N)} i_{i} (-1) = [0.1] [0.2] $	5] 0.	3[.0	7] 0.	.4 [.1	<u>.</u>	5[.12	.] [:	6[.15]	1 0.7	[.17]	0.8	.20]	0.9 [22]	1.0	25] 1	1[.2	7] 1.	2 [.30	_	3[.32	1.4	[.35]	1.5	[.37]	1.6[.40]	1.7 [.	42] 1	8.14	5] 1.6	[.47]	2.0	.50]
-/9]	RPM	W	RPM W	V RF	۱ Ma	N RI	۱ Ma	۷ RF	M Mc	V RP	M.	RPI	W	RPM	Μ	RPM	W	3PM	W	PM \	W RF	M N	/ RP	M	RPI	M	RPIV	M	RPM	M	RPM	W	PM	V RPI	N	RPM	8
3800 [1793]	-	<u>.</u> 	_		<u>'</u> 	- 8	860 1675	.75 8	:86 173	52 91	886 1752 912 1832		937 1914	1 962	1998		2084 1	1011	172 1	987 2084 1011 2172 1035 2262 1059 2354 1082 2448 1105 2544 1128 2643 1150 2743 1172 2846 1193 2950 1214 3057	262 10.	59 23	54 108	32 244	8 110	5 2544	1 1128	2643	1150	2743	1172	2846 1	193 29	50 121	4 3057	1235 3166	3166
1000 [1888]	Ι	1	 	- 8	863 1768		389 18	50 9	889 1850 914 1934		939 2020		964 2108		2199	988 2199 1012 2291 1036 2385 1059 2482 1082 2580 1105 2681 1127 2784 1149 2889 1170 2995 1191 3104 1212 3215 1233 3328 1253 3444	2291 1	1036 2	385 1	059 24	182 10.	182 25	80 110)5 268	1 112	7 278	1149	2889	1170	2995	1191	3104 1	212 32	15 123	3 3328	1253	3444
4200 [1982]	-	- 	868 1878 893 1965 918 2053 943 2144 967 2236	8 8/:	393 15	965	118 20	53 9	143 21	44 96	37 223	.66 9	1 2331	1015	2428	991 2331 1015 2428 1038 2526 1061 2627 1063 2730 1106 2836 1117 2942 1149 3051 1170 3162 1191 3276 1191 3391 1232 3508 1252 3628 1271 3749	2526 1	1061	1627	083 27	730 11.	06 28;	35 112	27 294	2 114	6 302	1 1170	3162	1191	3528	1212	3391	232 35	08 125	2 3628	1271	3749
4400 [2076] 874 [2006 899 [2097 928 2097 928 2097 9284 972 [2381 995 2284 972 2381 995 2480 1019 [2581 1041 2685 1064 2790 1064 2790 1068 2006 1106 3006 1151 321 1172 3347 1192 3464 1212 3584 1232 3706 1252 3830 1271 3955 1290 4083	874 2	5006	899 20	97 9	323 21	906	148 22	84 9	172 23	81 95	35 248 ₁	0 101	9 2581	1041	2685	1064	2790 1	1086 2	1897	108 30	11,	30 31	18 115	51 323	1 117	2 3347	7 1192	3464	1212	3584	1232	3706	252 38	30 127	1 3955	1290	4083
4600 [2171]	906 2246	2246	930 2343 954 2443 978 2544 1001 2647 1024 2453 1047 2860 1069 2570 1069 2570 1069 2570 1069 2570 1061 267 201 201 201 201 201 201 201 201 201 201	43 9	354 24	143 5	178 25	44 10	101 26	47 102	24 275.	3 104,	7 2860	1069	2970	1091	3081	1112 3	1195	134 33	311 11,	54 34,	28 117	75 354	8 119	2 3670	1215	3794	1234	3920	1254 4	4048	272 41	79 129	1 4311	I	1
4800 [2265] 939 [2514 962 [2618 986 [2724 1009 [2831 1031 2941 1037 2941 1053 3053 1075 3167 1097 3283 1118 3401 1139 3521 1160 3643 1180 3767 1200 3893 1219 4022 1238 4152 1257 4285 1275 4419 1293 4556	939 2	2514	962 26	18	386 27	724 10)09 28	31 10	131 29	41 106	53 305.	3 107	5 3167	1097	3283	1118	3401 1	1139 3	1521	160 36	343 11.	80 37	67 120	00 389	3 121	9 4022	2 1238	4152	1257	4285	1275	4419	293 45	99		١	I
5000 (2359) 972 (2811) 995 (2921 (1018) 3033 (1040) 3147 (1062 (3263) 1083 (3381) 1105 (3501) 1105 (3501) 1105 (3501) 1105 (3501) 1105 (378) 1106 (378) 1106 (378) 1205 (4134) 1225 (4267) 1243 (4401) 1262 (4538) 1280 (4618)	972 2	2811	995 29.	121 10	718 3C	133 1C	140 31	47 10	162 321	63 108	33 338	1 110	5 3501	1125	3624	1146	3748 1	1166 3	1875 1	186 4C	12	05 41;	34 122	25 426	7 124	3 440-	1 1262	4538	1280	4677	1298		_	_	1	I	1
5200 [2454] 1006 3135 1028 3251 1050 3370 1072 3490 1093 3613 1114 3737 1134 3864 1155 3993 1174 4124 1194 4257 1213 4392 1232 4529 1250 4668 1268	1006	3135 1	028 32.	51 10	33	370 1G	172 34	90 10	98 86	13 111	14 373	7 113	1 3864	1155	3993	1174	4124 1	1194 4	1257 1.	213 43	392 12,	32 45	29 125	30 466	8 126	8 4809	3 1286	1286 4952	1	_	1	1	<u> </u>		1	١	1
5426 [12648] 1040 3487 1062 3610 1083 3735 1104 3862 1125 3991 1145 4122 1165 4255 1184 4390 1203 4527 1222 4667 1240 4808 1259 4952 1276 5097 1294	1040	3487 1	062 36	10 10	37	735 11	104 38	62 11	25 39	91 114	15 412.	2 116	5 4255	1184	4390	1203	4527 1	1222 4	1,092	240 48	308 12.	59 49.	52 127	209 209	7 129	4 5245	-	I	1	-	1	-	 		1	I	1
5600 [2643] 1075 [3868] 1096 [3997 1117 4128 1137 4261 1157 4397 1176 4534 1195 4674 1214 4815 1233 4959 1251 5105 1268 5253 1286 5403 1303	1075	3868 1	036 33	11 11	117 41	118 11	37 42	11	57 43	97 117	76 453	4 119	5 4674	1214	4815	1233	4959 1	1251	105 1.	268 52	253 12.	86 54	03 130	3 5555	5 —	1	I	I	_	ı	ı	1	_	_	1	I	1
5800 [2737] 1111 4276 1131 4412 1151 4549 1170 4689 1189 4831 1208 4975 1227 5121 1245 5269 1263 5419 1280 5571 1297 5725	1111 4	1276 1	131 44	12 11	151 45	11	170 46	11	89 48;	31 120	78 497;	5 122,	7 5121	1245	5269	1263	5419 1	1280 5	571 1.	297 57		1		1	1	1	1	I	1	Ι	Ι	1	 	<u> </u>	1	I	Ι
: R-Dri	ve left	of bolc	NOTE: R-Drive left of bold line, S-Drive right of bold line.	S-Driv	righ/	ıt of bα	old lin	a.																													

				9	1095					
				2	1136					
	28.5]	E	35	4	1178					
S	5.0 [3728.5]	BK85H	1VP-65	8	1216					
				2	1253					
				1	1292					
				9	849					
	5.0 [3728.5] BK72H 1VP-44 3 4 5 995 947 899									
~	5.0 [3728.5] BK72H 1VP-44 3 4 4									
<u>~</u>	5.0 [3728.5] BK72H 1VP-44 3 4 6									
				2	1032					
				-	1075					
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM					

NOTES: 1. Factory sheave settings are shown in bold print.

Do not set motor sheave below minimum or maximum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS 12.5 TON [44.0 kW]

1793 1888 1982 12077 12171 12265 12360 12454 12549 12643 0.98 0.99 1.00 1.01 1.02 1.02 1.03 1.04 1.05 1.06 0.93 0.96 1.00 1.04 1.07 1.11 1.14 1.18 1.21 1.25 0.99 1.00 1.00 1.01 1.01 1.01 1.03 1.03 1.03 1.03	ACTUAL—CFM 3800		4000 4200		4400 4600	4600	4800	2000	5200	5400	2600	2800
0.99 1.00 1.01 1.02 1.02 1.03 1.04 1.05 1.06 0.96 1.00 1.04 1.07 1.11 1.14 1.18 1.21 1.25 1.00 1.00 1.01 1.01 1.01 1.02 1.03 1.03	[F/s]	[1793]	[1888]	[1982]	[2077]	[2171]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]
0.96 1.00 1.04 1.07 1.11 1.14 1.18 1.21 1.25 1.00 1.00 1.00 1.01 1.01 1.02 1.03 1.03	TOTAL MBH	0.98	0.99	1.00	1.01	1.02	1.02		1.04	1.05		1.07
0.99 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.03 1.03	SENSIBLE MBH	0.93	96.0	1.00		1.07	1.11	1.14		1.21	1.25	1.28
	POWER KW	0.99	1.00	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 12.5 TON [44.0 kW]

0 [Standa	ırd Indo	Standard Indoor Airflow—CFM [L/s]	w—CFI	[F/S] N			
<u></u>	Component	3800 [1793]	4000 [1888]	4200 [1982]	4400 [2076]	4600 [2171]	4800 [2265]	5000 [2359]	5200 [2454]	4400 4600 4800 5000 5200 5400 5600 [2076] [2171] [2265] [2359] [2454] [2548] [2643]	5600 [2643]	5800 [2737]
∞					Resi	stance-	Resistance—Inches Water [kPa]	Water [kPa]			
က	Wet Coil	0.08	0.09	60'0	0.10	0.10	0.11	0.11	0.12	0.13	0.13	0.14
	Wet our	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]
	Downflow Economizer	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22
	RA Damper Open	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]
	Horizontal Economizer	0.07	0.07	0.08	0.08	0.09	0.10	0.10	0.11	0.11	0.12	0.13
	RA Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[.03]	[:03]
	Concentric Grill RXRN-AA61 or	0.19	0.21	0.24	0.27	0.30	0.33	0.36	0.40	0.44	0.48	0.52
	RXRN-AA71 & Transition RXMC-CE05	[.05]	[.05]	[.05]	[.07]	[.07]	[.08]	[.09]	[.10]	[.11]	[.12]	[.13]
	Concentric Grill RXRN-AA66 or	0.23	0.25	0.27	0.29	0.30	0.32	0.34	98.0	0.38	0.40	0.43
	RXRN-AA76 & Transition RXMC-CF06	[9.0]	[9.0]	[0.7]	[0.7]	[0.7]	[0.8]	[0.8]	[0.8]	[0.9]	[.10]	Ξ
	NOTE: Add component resistance to duct resistance to determine total external static pressure.	ct resista	nce to c	determir	e total e	xternal	static pr	essure.				

			ELE	CTRICAL	DATA –	RLNL- S	ERIES				
		G090CR	G090CS	G090CT	G090DR	G090DS	G090DT	G120CR	G120CS	G120DR	G120DS
_	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506	187-253	187-253	414-506	414-506
aţio	Volts	208/230	208/230	208/230	460	460	460	208/230	208/230	460	460
Ē	Minimum Circuit Ampacity	43/43	43/43	48/48	21	21	24	49/49	54/54	25	28
Unit Information	Minimum Overcurrent Protection Device Size	45/45	45/45	50/50	25	25	25	50/50	55/55	25	30
7	Maximum Overcurrent Protection Device Size	50/50	50/50	60/60	25	25	30	60/60	60/60	30	35
	No.	2	2	2	2	2	2	2	2	2	2
	Volts	200/240	200/240	200/240	480	480	480	200/240	200/240	480	480
=	Phase	3	3	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450	3450
Compressor Motor	HP, Compressor 1	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	4 1/4	4 1/4	4 1/4	4 1/4
res	Amps (RLA), Comp. 1	13.1/13.1	13.1/13.1	13.1/13.1	6.1	6.1	6.1	16/16	16/16	7.8	7.8
Ē	Amps (LRA), Comp. 1	83.1/83.1	83.1/83.1	83.1/83.1	41	41	41	110/110	110/110	52	52
ರ	HP, Compressor 2	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	4 1/4	4 1/4	4 1/4	4 1/4
	Amps (RLA), Comp. 2	13.1/13.1	13.1/13.1	13.1/13.1	6.1	6.1	6.1	16/16	16/16	7.8	7.8
	Amps (LRA), Comp. 2	83.1/83.1	83.1/83.1	83.1/83.1	41	41	41	110/110	110/110	52	52
_	No.	2	2	2	2	2	2	2	2	2	2
] b	Volts	208/230	208/230	208/230	460	460	460	208/230	208/230	460	460
er l	Phase	1	1	1	1	1	1	1	1	1	1
Condenser Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4	2.4/2.4	2.4/2.4	1.4	1.4
	Amps (LRA, each)	4.7/4.7	4.7/4.7	4.7/4.7	2.4	2.4	2.4	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1	1	1	1	1	1	1
Evaporator Fan	Volts	208/230	208/230	208/230	460	460	460	208/230	208/230	460	460
ţ	Phase	3	3	3	3	3	3	3	3	3	3
por a	HP	2	2	3	2	2	3	2	3	2	3
Eva	Amps (FLA, each)	8/8	8/8	13/13	4	4	7	8/8	13/13	4	7
	Amps (LRA, each)	56/56	56/56	74.5/74.5	28	28	38.1	56/56	74.5/74.5	28	38.1

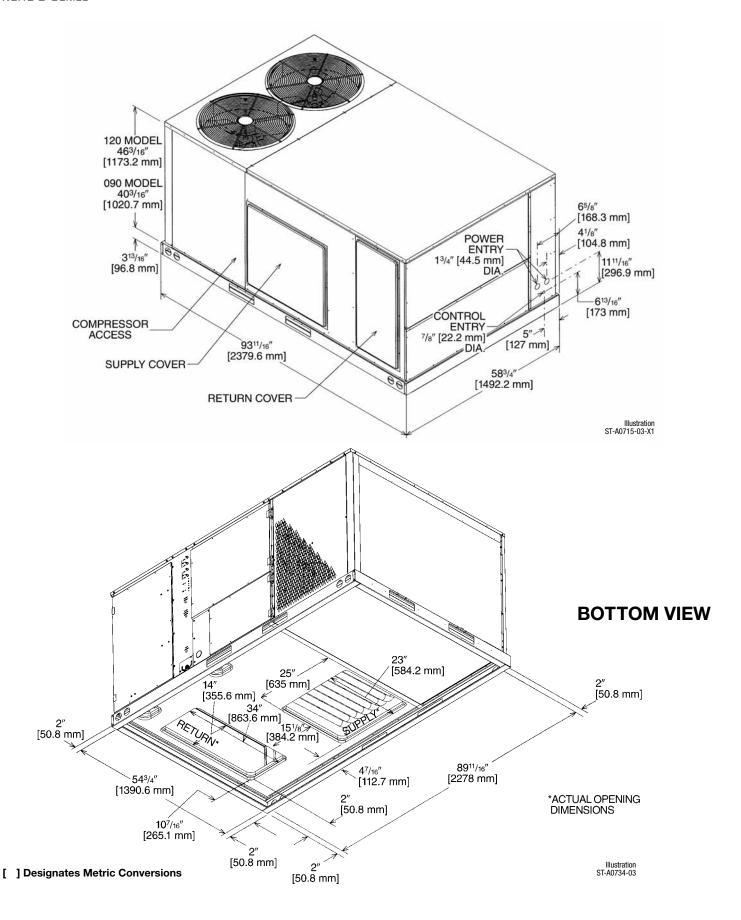
	ELE	CTRICAL DATA – R	LNL- SERIES		
		G151CR	G151CS	G151DR	G151DS
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
atio	Volts	208/230	208/230	460	460
Ë	Minimum Circuit Ampacity	68/68	68/68	32	32
Unit Information	Minimum Overcurrent Protection Device Size	80/80	80/80	35	35
¬	Maximum Overcurrent Protection Device Size	80/80	80/80	40	40
	No.	2	2	2	2
	Volts	208/230	208/230	460	460
a	Phase	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450
or I	HP, Compressor 1	5 3/4	5	5	5
ress	Amps (RLA), Comp. 1	19.6/19.6	19.6/19.6	8.2	8.2
du [Amps (LRA), Comp. 1	136/136	136/136	66.1	66.1
ప	HP, Compressor 2	5	5	5	5
	Amps (RLA), Comp. 2	19.6/19.6	19.6/19.6	8.2	8.2
	Amps (LRA), Comp. 2	136/136	136/136	66.1	66.1
_	No.	2	2	2	2
Condenser Motor	Volts	208/230	208/230	460	460
er	Phase	1	1	1	1
ens	HP	1/2	1/2	1/2	1/2
puo	Amps (FLA, each)	2.3/2.3	2.3/2.3	1.5	1.5
ာ	Amps (LRA, each)	5.6/5.6	5.6/5.6	3.1	3.1
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
<u>t</u>	Phase	3	3	3	3
30 ra	HP	5	5	5	5
Evaporator Fan	Amps (FLA, each)	18.8/18.8	18.8/18.8	10	10
_	Amps (LRA, each)	82.6/82.6	82.6/82.6	41.3	41.3

	ter Kit		urrent Jevice Size	Min./Max. @ 240 V	45/50	45/50	45/50	45/50	45/50	45/50	20/09	20/00	20/09	20/00	20/00	20/00	20/60	80/80	80/80	80/80	80/80	80/80	80/80	80/80
NOI	nit and Hea	Air Conditioner	Over Current Protective Device Size	Min./Max. @ 208 V	45/50	45/20	45/20	45/50	45/50	45/20	20/00	20/00	20/00	20/00	20/00	20/60	20/60	08/08	80/80	80/80	80/80	80/80	80/80	80/80
APPLICAT	ly For Both U	A	Min. Circuit	Ampacity 208/240 V	43/43	43/43	43/43	43/43	43/43	43/43	49/49	49/49	49/49	49/49	49/49	49/49	49/49	89/89	89/89	89/89	89/89	89/89	89/89	89/89
STICS AND	Separate Power Supply For Both Unit and Heater Kit	r Kit	Max. Fuse	208/240 V	1	25/30	40/45	20/00	80/90	110/125	ı	25/30	40/45	20/00	80/90	110/125	150/150	I	25/30	40/45	20/60	80/90	110/125	150/150
KITS CHARACTERISTICS AND APPLICATION	Separate	Heater	Min. Ckt.	Ampacity 208/240 V	ı	25/29	38/44	20/28	78/67	101/116	I	25/29	38/44	20/28	78/67	101/116	126/145	I	25/29	38/44	20/28	75/87	101/116	126/145
R KITS CH			urrent Jevice Size	Min./Max. @ 240 V	45/50	20/20	09/09	70/20	100/100	150/150	20/90	09/09	09/09	70/20	100/100	150/150	175/175	80/80	80/80	80/80	06/06	125/125	150/150	175/175
ELECTRIC HEATER		Air Conditioner	Over Current Protective Device Size	Min./Max @ 208 V	45/50	20/20	20/20	09/09	06/06	125/125	09/09	09/09	09/09	09/09	06/06	125/125	150/150	08/08	08/08	08/08	08/08	100/100	125/125	150/150
RY ELECTF	er Kit	A	Unit Min. Ckt.	Ampacity @ 208/240 V	43/43	43/43	48/54	89/09	26/58	111/126	49/49	49/49	49/54	89/09	85/97	111/126	136/155	89/89	89/89	89/89	74/82	99/111	124/140	149/168
Z, AUXILIARY	Unit and Heater Kit		Heater	Amp. @ 208/240 V	I	20/23.1	30/34.6	40/46.2	60/69.3	80.1/92.4	I	20/23.1	30/34.6	40/46.2	60/69.3	80.1/92.4	100.1/115.5	I	20/23.1	30/34.6	40/46.2	60/69.3	80.1/92.4	100.1/115.5
208/240 VOLT, THREE PHASE, 60 HZ	ply For Both I		Heater	© 208/240 V	1	24.56/32.75	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	1	24.56/32.75	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	123.16/163.75	I	24.56/32.75	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	123.16/163.75
, THREE PI	Single Power Supply For Both	Heater Kit	Rated	meater kw @ 208/240 V	I	7.2/9.6	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	I	7.2/9.6	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	36.1/48	I	7.2/9.6	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	36.1/48
3/240 VOLT	Sing		No. of	Steps Steps		-	-	-	-	-	I	-	-	-	-	-	1	I	-	-	-	-	-	-
208			RXJJ-	Nominal kW	No Heat	00100	CC15C	CC20C	00800	CC40C	No Heat	00100	CC15C	CC20C	00:00	CC40C	CC20C	No Heat	00100	CC15C	CC20C	00:00	CC40C	00200
			Unit Model				90000	นากลักธา						G120CR							G151CR			

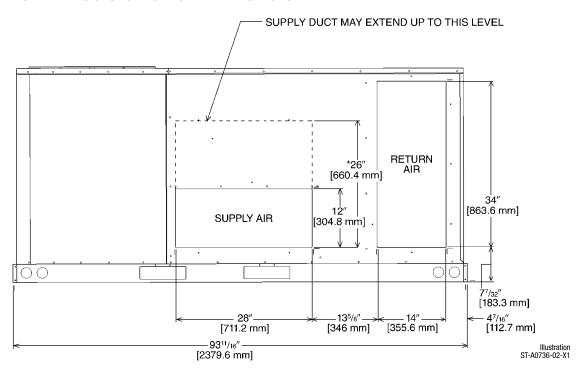
*= For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.

	20	8/240 VOL	208/240 VOLT, THREE PHASE, 60 HZ	HASE, 60 H	Z, AUXILIARY	RY ELECTR	ELECTRIC HEATER		IARACTERI	KITS CHARACTERISTICS AND APPLICATION	APPLICAT	NO	
		Sing	Single Power Supply For Both L	ply For Both t	Unit and Heater	ter Kit			Separate	Separate Power Supply For Both Unit and Heater Kit	ly For Both U	nit and Hea	er Kit
			Heater Kit			A	Air Conditioner		Heater Kit	ır Kit	Ai	Air Conditioner	
Unit Model	RXJJ-	No. of	Rated	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device	Over Current Protective Device Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device Size	rrent evice Size
No. RLNL-	Nominal KW	Steps	© 208/240 V	© 208/240 V	@ 208/240 V	© 208/240 V	Min./Max @ 208 V	Min./Max. @ 240 V	208/240 V	208/240 V	208/240 V	Min./Max. @ 208 V	Min./Max. @ 240 V
	No Heat		ı	ı		43/43	45/50	45/50	I	I	43/43	45/50	45/50
	CC10C	-	7.2/9.6	24.56/32.75	20/23.1	43/43	20/20	20/20	25/29	25/30	43/43	45/50	45/50
30000	00150	-	10.8/14.4	36.84/49.13	30/34.6	48/54	20/20	09/09	38/44	40/45	43/43	45/50	45/50
വരവാ	CC20C	-	14.4/19.2	49.13/65.5	40/46.2	89/09	09/09	02/02	20/28	20/09	43/43	45/50	45/50
	00300	-	21.6/28.8	73.69/98.25	60/69.3	85/97	06/06	100/100	75/87	80/90	43/43	45/50	45/20
	CC40C	-	28.8/38.4	98.25/131	80.1/92.4	111/126	125/125	150/150	101/116	110/125	43/43	45/50	45/50
	No Heat	1	I		I	54/54	09/55	22/60	I	I	54/54	22/60	22/60
	00100	-	7.2/9.6	24.56/32.75	20/23.1	54/54	09/09	09/09	25/29	25/30	54/54	22/60	22/60
	00150	-	10.8/14.4	36.84/49.13	30/34.6	54/60	09/09	09/09	38/44	40/45	54/54	22/60	22/60
G120CS	CC20C	-	14.4/19.2	49.13/65.5	40/46.2	67/75	20/20	08/08	20/28	20/09	54/54	22/60	22/60
	00800	-	21.6/28.8	73.69/98.25	60/69.3	92/103	100/100	110/110	78/57	06/08	54/54	22/60	22/60
	CC40C	-	28.8/38.4	98.25/131	80.1/92.4	117/132	125/125	150/150	101/116	110/125	54/54	22/60	22/60
	CC20C	1	36.1/48	123.16/163.75	100.1/115.5	142/161	150/150	175/175	126/145	150/150	54/54	25/60	25/60
	No Heat	I	I	I	I	89/89	08/08	08/08	I	ı	89/89	08/08	80/80
	00100	_	7.2/9.6	24.56/32.75	20/23.1	89/89	80/80	08/08	25/29	25/30	89/89	80/80	80/80
	CC15C	_	10.8/14.4	36.84/49.13	30/34.6	89/89	80/80	08/08	38/44	40/45	89/89	80/80	80/80
G151CS	00200	_	14.4/19.2	49.13/65.5	40/46.2	74/82	80/80	06/06	50/58	20/60	89/89	80/80	80/80
	00300	-	21.6/28.8	73.69/98.25	60/69.3	99/111	100/100	125/125	75/87	80/90	89/89	80/80	80/80
	CC40C	_	28.8/38.4	98.25/131	80.1/92.4	124/140	125/125	150/150	101/116	110/125	89/89	80/80	80/80
	CC50C	1	36.1/48	123.16/163.75	100.1/115.5	149/168	150/150	175/175	126/145	150/150	89/89	80/80	80/80
	No Heat	ı	I	1	1	48/48	09/09	09/09	1	-	48/48	20/09	20/09
	00100	_	7.2/9.6	24.56/32.75	20/23.1	48/48	09/09	09/09	25/29	25/30	48/48	20/60	20/60
TJUBUS	CC15C	-	10.8/14.4	36.84/49.13	30/34.6	54/60	09/09	09/09	38/44	40/45	48/48	20/60	20/60
00000	00200	_	14.4/19.2	49.13/65.5	40/46.2	67/75	20/20	08/08	50/58	20/09	48/48	20/60	20/60
	00800	_	21.6/28.8	73.69/98.25	60/69.3	92/103	100/100	110/110	78/57	06/08	48/48	20/60	20/60
	CC40C	_	28.8/38.4	98.25/131	80.1/92.4	117/132	125/125	150/150	101/116	110/125	48/48	20/60	20/00

*= For Canadian use only. Uses "P" fuses for inductive circuit.

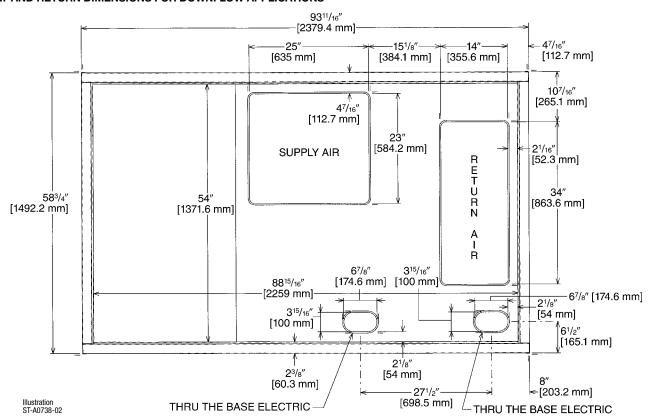

31

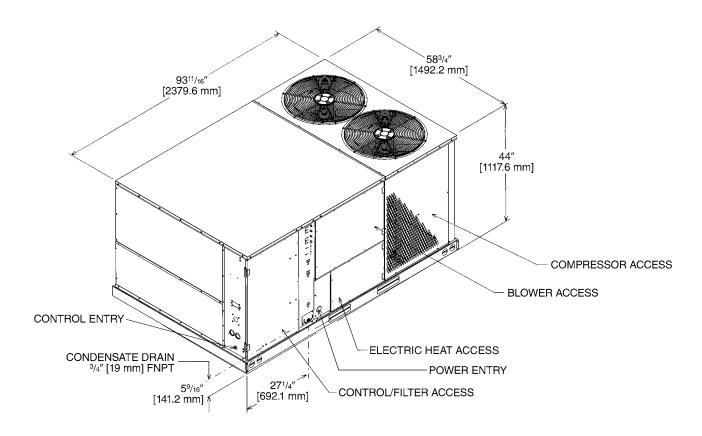
	7	180 VOLT,	THREE PHA	480 VOLT, THREE PHASE, 60 HZ,	_	AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	HEATER	KITS CHAI	RACTERIST	ICS AND A	PPLICATI01	_	
		Sinç	le Power Sup	Single Power Supply for Both U	Unit and Heater Kit	ter Kit			Separat	Separate Power Supply for Both Unit and Heater Kit	ly for Both Ur	nit and Hea	ter Kit
			Heater Kit			A	Air Conditioner		Heater	r Kit	Ai	Air Conditioner	
Unit	RXJJ-	No. of	Rated	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device Size	urrent Jevice Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device Size	urrent Jevice Size
No. RLNL-	Nominal KW	Steps	@ 480 V	@ 480 V	### 480 V	@ 480 V	Min./Max @ 480 V	Min./Max. @ 480 V	480 V	9126 480 V	480 V	Min./Max. @ 480 V	Min./Max. @ 480 V
	No Heat		1	1	I	21	25/25	ı	1	I	21	25/25	1
	CC10D	_	9.6	32.75	11.5	21	25/25	I	15	15	21/0	25/25	0/0
מטסטט	CC15D	-	14.4	49.13	17.3	27	30/30	1	22	25	21/0	25/25	0/0
חחטפטט	CC20D	-	19.2	65.5	23.1	34	35/35		29	30	21/0	25/25	0/0
	CC30D	-	28.8	98.25	34.6	49	20/20		44	45	21/0	25/25	0/0
_	CC40D	_	38.4	131	46.2	63	70/70		58	90	21/0	25/25	0/0
	No Heat				I	25	25/30	I	I	I	25	25/30	I
	CC10D	-	9.6	32.75	11.5	25	30/30	I	15	15	25/0	25/30	0/0
	CC15D	-	14.4	49.13	17.3	27	30/30	1	22	25	25/0	25/30	0/0
G120DR	CC20D		19.2	65.5	23.1	34	35/35		29	30	25/0	25/30	0/0
	CC30D	-	28.8	98.25	34.6	49	20/20		44	45	25/0	25/30	0/0
	CC40D		38.4	131	46.2	63	70/70	1	28	09	25/0	25/30	0/0
	CC50D	1	48	163.75	57.7	78	80/80		73	80	25/0	25/30	0/0
	No Heat	I	_		I	32	35/40	1	1	1	32	35/40	1
	CC10D	-	9.6	32.75	11.5	32	35/40	1	15	15	32/0	35/40	0/0
	CC15D	-	14.4	49.13	17.3	35	35/40		22	25	32/0	35/40	0/0
G151DR	CC20D	-	19.2	65.5	23.1	42	45/45	1	29	30	32/0	35/40	0/0
	CC30D	-	28.8	98.25	34.6	26	09/09	1	44	45	32/0	35/40	0/0
	CC40D	-	38.4	131	46.2	71	80/80	1	28	09	32/0	35/40	0/0
	CC50D	1	48	163.75	57.7	85	90/90		73	80	32/0	35/40	0/0


*= For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.

480 VOLT, THREE PHASE, 60 HZ, AUXILIARY Single Power Supply for Both Unit and Heate	~ > ∟	ı ~∣⊃∣ ∟	~ > _			ELECTRIC r Kit	C HEATER Air Conditioner	FER KITS CHA	RACTERISTICS Separate Po Heater Kit	Separate Power Supply for Both Unit and Heater Kit Heater Kit Air Conditioner Over Current	PPLICATIO	JN Juit and Hez	I Heater Kit tioner Over Current
RXJJ- No. of Rated Heater Kit Sequence Heater kW K Nominal kW Steps @ 480 V @	Rated Heater kW @ 480 V		∡ ⊌	Heater KBTU/Hr @ 480 V	Heater Amp. @ 480 V	Unit Min. Ckt. Ampacity @ 480 V	Protective Min./Max @ 480 V	Protective Device Size Min./Max Min./Max. @ 480 V	Min. Ckt. Ampacity 480 V	Max. Fuse Size 480 V	Min. Circuit Ampacity 480 V	Protective Min./Max. @ 480 V	Protective Device Size Alin./Max. Min./Max. @ 480 V
		1				21	25/25	1	1	1	21	25/25	1
1 9.6			33	2.75	11.5	21	25/25	I	15	15	21/0	25/25	0/0
1 14.4			49	.13	17.3	27	30/30		22	25	21/0	25/25	0/0
1 19.2			65	.5	23.1	34	35/35	I	59	30	21/0	25/25	0/0
CC30D 1 28.8 98.25			98.5	55.	34.6	49	50/50	I	44	45	21/0	25/25	0/0
38.4	1	1	2	1	46.2	63	07/07	I	28	00	21/0	52/52	0/0
1						58	30/35				28	30/35	1
1 9.6			32.75		11.5	78	30/32		15	15	28/0	30/35	0/0
14.4			49.13		17.3	3	32/32		22	25	28/0	30/32	0/0
1 19.2			65.5		23.1	88	40/40		59	30	28/0	30/35	0/0
1 28.8			98.25		34.6	25	09/09		44	45	28/0	30/35	0/0
CC40D 1 38.4 131			131		46.2	29	70/70		28	09	28/0	30/35	0/0
1 48			163.75	1	57.7	81	06/06	1	73	80	28/0	30/35	0/0
1						32	35/40	I		I	32	35/40	l
1 9.6			32.75		11.5	32	35/40	1	15	15	32/0	35/40	0/0
CC15D 1 14.4 49.13			49.13		17.3	35	35/40	ļ	22	25	32/0	35/40	0/0
2.6.			65.5		23.1	42	45/45		53	08.	32/0	35/40	0/0
28.8			98.25	_	34.6	96	09/09	I	44	45	32/0	35/40	0/0
1 38.4			131		46.2	74	80/80		28	09	32/0	35/40	0/0
1 48			163.75		57.7	85	06/06	1	73	80	32/0	35/40	0/0
1						24	25/30	1			24	25/30	l
1 9.6			32.75		11.5	24	30/30	l	15	15	24/0	25/30	0/0
1 14.4			49.13		17.3	31	35/32	I	22	22	24/0	25/30	0/0
1 19.2			65.5		23.1	38	40/40	1	29	30	24/0	25/30	0/0
CC30D 1 28.8 98.25			98.25		34.6	52	09/09	I	44	45	24/0	25/30	0/0
38.4			131	1	40.2	0/	07/07	I	28	00	74/0	75/30	0/0

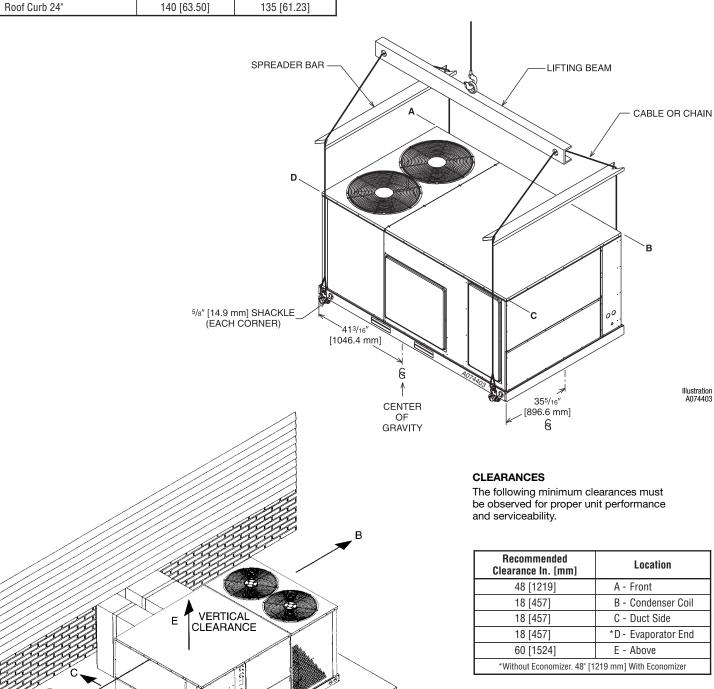
*= For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.




SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

*RECOMMENDED DUCT DIMENSIONS ARE 26"

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS



WEIGHTS

Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Economizer	90 [40.82]	81 [36.70]
Power Exhaust	44 [19.96]	42 [19.05]
Fresh Air Damper (Manual)	26 [11.79]	21 [9.53]
Fresh Air Damper (Motorized)	43 [19.50]	38 [17.24]
Roof Curb 14"	90 [40.82]	85 [38.60]
Roof Curb 24"	140 [63.50]	135 [61.23]

Capacity Tons [kW]	Corner Weights by Percentage				
	А	В	С	D	
6-12.5 [21.1-44.0]	33%	27%	17%	23%	

Recommended Clearance In. [mm]	Location				
48 [1219]	A - Front				
18 [457]	B - Condenser Coil				
18 [457]	C - Duct Side				
18 [457]	*D - Evaporator End				
60 [1524]	E - Above				
*Without Economizer. 48" [1219 mm] With Economizer					

Illustration A074403

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?	
Thermostats	See Thermostat Spe	ecification Sheet for Detail	ation Sheet for Details (T22-001)		
	RXJJ-CC10 (C,D,Y)	46 [20.9]	36 [16.3]	Yes	
	RXJJ-CC15 (C,D,Y)	46 [20.9]	36 [16.3]	Yes	
Floatric Hostons	RXJJ-CC20 (C,D,Y)	46 [20.9]	36 [16.3]	Yes	
Electric Heaters	RXJJ-CC30 (C,D,Y)	47 [21.3]	37 [16.8]	Yes	
	RXJJ-CC40 (C,D,Y)	49 [22.2]	39 [17.7]	Yes	
	RXJJ-CC50 (C,D,Y)	51 [23.1]	41 [18.6]	Yes	
Economizer w/Single Enthalpy	AXRD-PJCM3	90 [40.8]	81 [36.7]	Yes	
Economizer w/Single Enthalpy and Smoke Dectector	AXRD-SJCM3	91 [41.3]	82 [37.2]	Yes	
Dual Enthalpy Kit	RXRX-AV03	1 [0.5]	1 [0.5]	No	
Horizontal Economizer w/Single Enthalpy	AXRD-RJCM3	94 [42.6]	89 [40.4]	No	
Carbon Dioxide Sensor	RXRX-AR02	3 [1.4]	2 [1.0]	No	
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No	
Manual Fresh Air (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.0]	No	
Manual Fresh Air (Return Panel)	AXRF-JDA1	26 [11.8]	21 [9.5]	No	
Motorized Fresh Air (Return Panel)	AXRF-JDB1	43 [19.5]	21 [9.5]	No	
Motor Kit for RXRF-KDA1 (Left Panel Mounted)	RXRX-AW02	35 [15.19]	27 [17.7]	No	
Modulating Motor Kit w/position feedback for RXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No	
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No	
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No	
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No	
Desfaurb Adambara	RXRX-CFCE54	325 [147.4]	315 [142.9]	No	
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No	
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No	
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No	
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No	
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No	
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No	
Downflow Adapters (Rect. to Round)	RXMC-CD04	15 [6.8]	13 [5.9]	No	
Downflow Adapters (Rect. to Rect., 18 x 28)	RXMC-CE05 ①	18 [8.2]	16 [7.3]	No	
Downflow Adapters (Rect. to Rect., 18 x 32)	RXMC-CF06 @	20 [9.1]	18 [8.2]	No	
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [1.0]	Yes	
Outdoor Coil Louver Kit	AXRX-AAD01C ④	29 [11.3]	26 [11.8]	Yes	
Outdoor Louver Kit	AXRX-AAD02A ®	29 [11.3]	26 [11.8]	Yes	
Unwired Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [0.7]	Yes	
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes	
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No	
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No	
Room Humidity Sensor	RHC-ZNS4	1 [0.5]	1 [0.5]	No	
Room Temperature & Relative Humidty Sensor	RHC-ZNS5	1 [0.5]	1 [0.5]	No	

NOTES: ① Used with RXRN-AA61 and RXRN-AA71 concentric diffusers. ② Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

⁴ 6-10 Ton Models

⑤ 12.5 Ton Model

THERMOSTAT

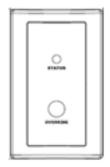
200-Series *
Programmable

300-Series *
Deluxe
Programmable
400-Series *
Special Applications/
Programmable

500-Series * Communicating/ Programmable

Brand		Descripter (3 Characters)	Series (3 Characters)	System (2 Characters)	Type (2 Characters)
UHC	-	TST	213	UN	MS
UHC=Ruud		TST=Thermostat	200=Programmable 300=Deluxe Programmable 400=Special Applications/ Programmable 500=Communicating/ Programmable	GE=Gas/Electric UN=Universal (AC/HP/GE) MD=Modulating Furnace DF=Dual Fuel CM=Communicating	SS=Single-Stage MS=Multi-Stage

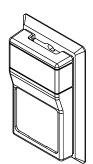
^{*} Photos are representative. Actual models may vary.


For detailed thermostat match-up information, see specification sheet form number T22-001.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR ZNS-101 with TIMED OVERRIDE BUTTON

10k Ω room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.


ROOM TEMPERATURE SENSOR ZNS-102 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR ZNS-103 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM HUMIDITY SENSOR

RHC-ZNS4

Transmits room relative humidity to DDC System.

ROOM TEMPERATURE AND RELATIVE HUMIDITY SENSOR RHC-ZNS5

Transmits room temperature and relative humidity to DDC System.

COMMUNICATION CARDS Field Installed

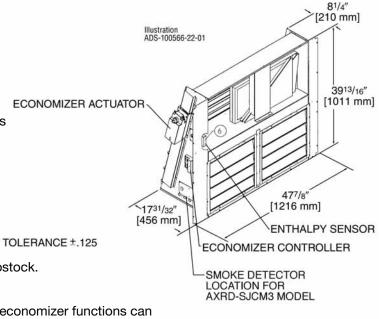
BACnet® COMMUNICATION CARD RXRX-AY01

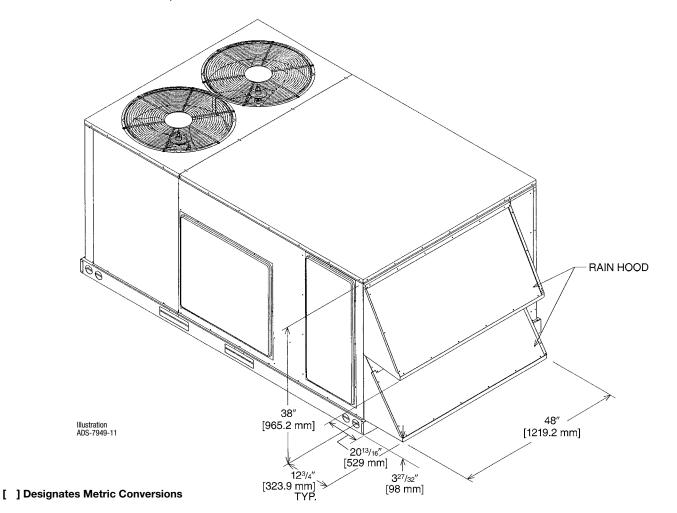
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

ECONOMIZER FOR DOWNFLOW DUCT INSTALLATION

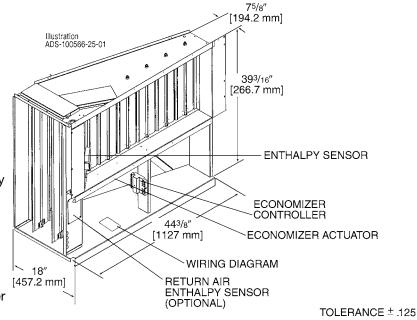

Use to Select Factory Installed Options Only

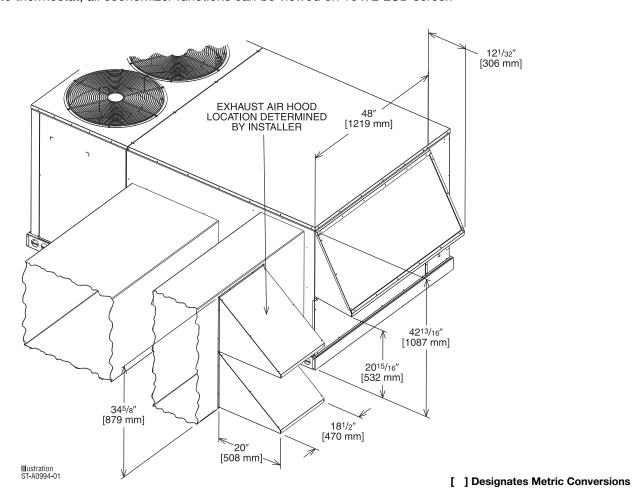

AXRD-PJCM3-Single Enthalpy (Outdoor) and AXRD-SJCM3 Single Enthalpy with Smoke Detector

RXRX-AV03—Dual Enthalpy Upgrade Kit

RXRX-AR02-Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer
 (270 ohm) (Honeywell #S963B1136) is Available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen

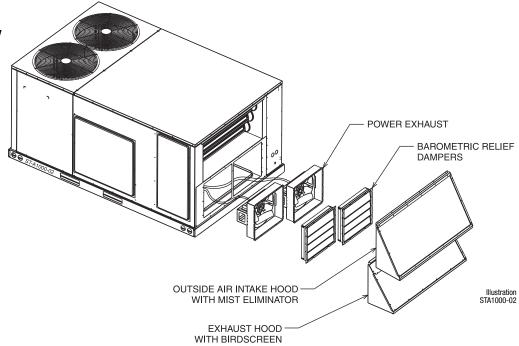



ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION

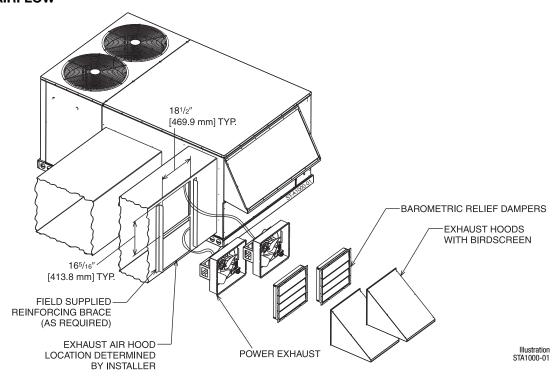
Field Installed Only

AXRD-RJCM3—Single Enthalpy (Outdoor) RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



POWER EXHAUST KIT FOR AXRD-PJCM3(-), AXRD-RJCM3(-), AXRD-SJCM3 ECONOMIZERS


RXRX-BFF02 (C, D)

*Voltage Code

VERTICAL AIRFLOW

HORIZONTAL AIRFLOW

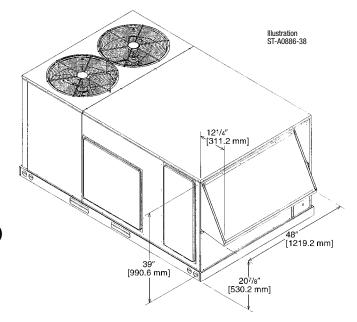
Model No.	No.	Volts	Phase	HP	Low Spe	ed	High Spee	d ①	FLA	LRA
Model No.	of Fans	VUIIS	FIIdSE	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8

 $\mbox{NOTES:} \ \mbox{\textcircled{\mathbb{D}}}$ Power exhaust is factory set on high speed motor tap.

② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for AXRF-KDA1)


RXRX-AW04

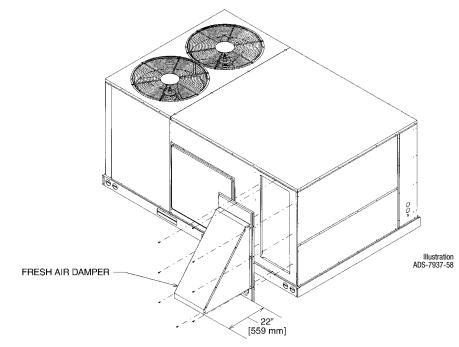
(Modulating Motor Kit with position feedback for AXRF-KDA1)

AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for AXRF-KDA1)

RXRX-AW04

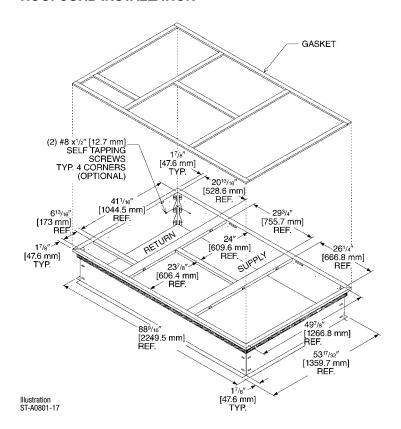

(Modulating Motor Kit w/position feedback for AXRF-KDA1)

- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS)

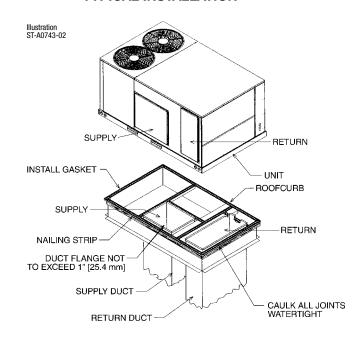
FRESH AIR DAMPER (Cont.)

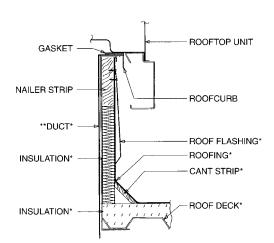
AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)

DOWNFLOW APPLICATION



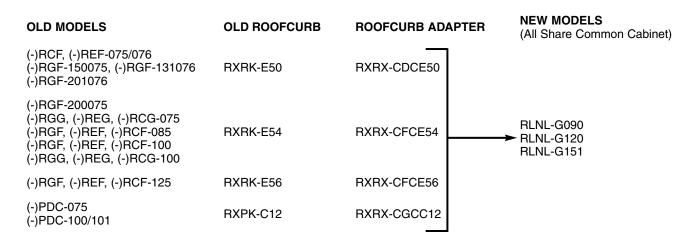
ROOFCURBS (Full Perimeter)


- Ruud's roofcurb design can be utilized on all 6-12.5 ton [21.1-44.0 kW] RLNL-G models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 1" [25 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (40' [12.2 m]) provided with Roofcurb.
- Packaged for easy field assembly.


Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]

ROOFCURB INSTALLATION

TYPICAL INSTALLATION

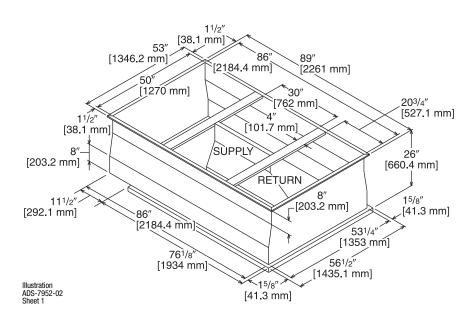


*BY CONTRACTOR

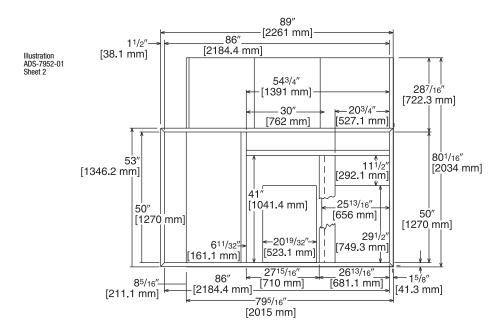
**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

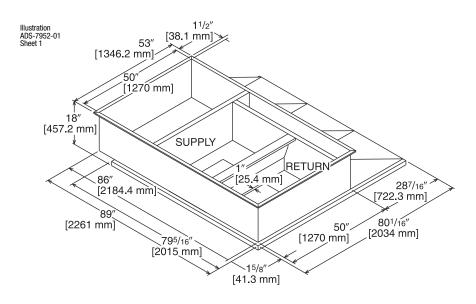
Illustration ST-A0743-02

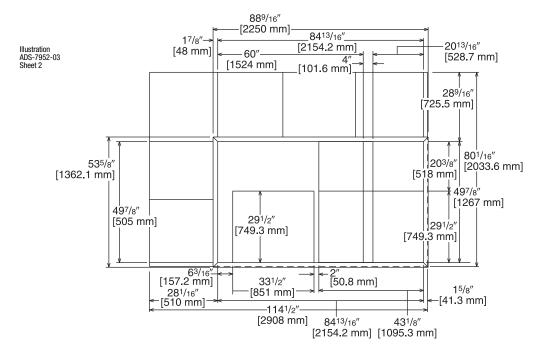
ROOFCURB ADAPTERS

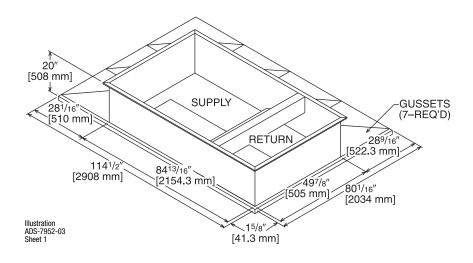


NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced. RLNL-G090 & 120 fit on same roofcurb as the RLKB-A090, A120, RLMB- A090, A120, RLMB- A090, A120

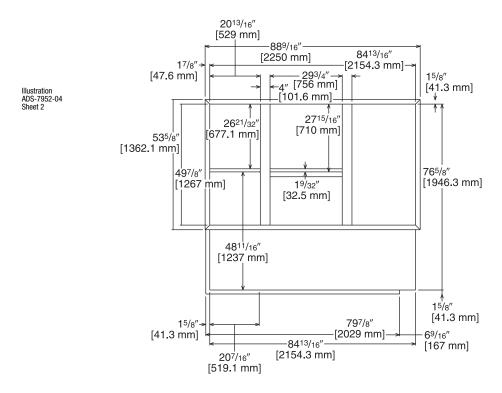

RXRX-CDCE50

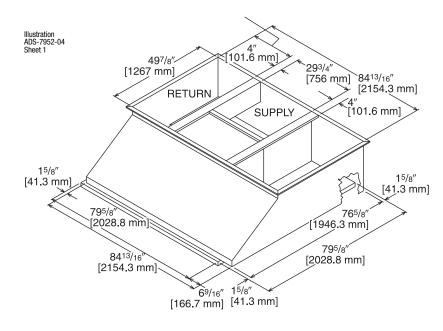

TOP VIEW


RXRX-CFCE54

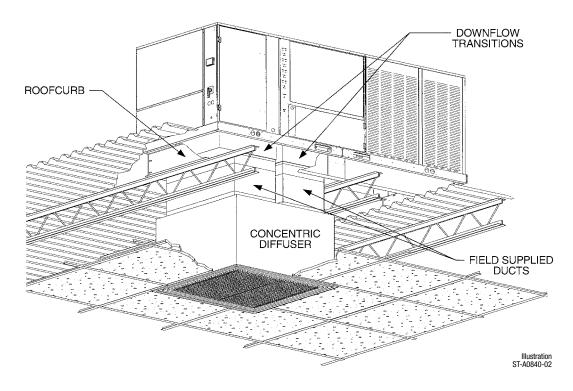

TOP VIEW

RXRX-CFCE56

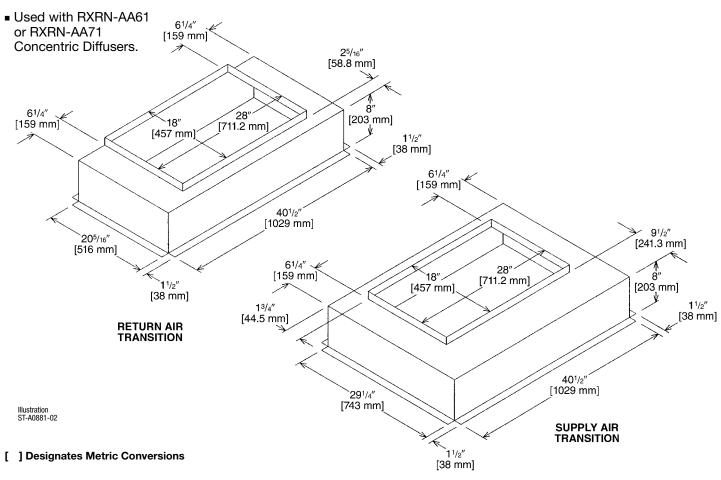

TOP VIEW


[] Designates Metric Conversions

51

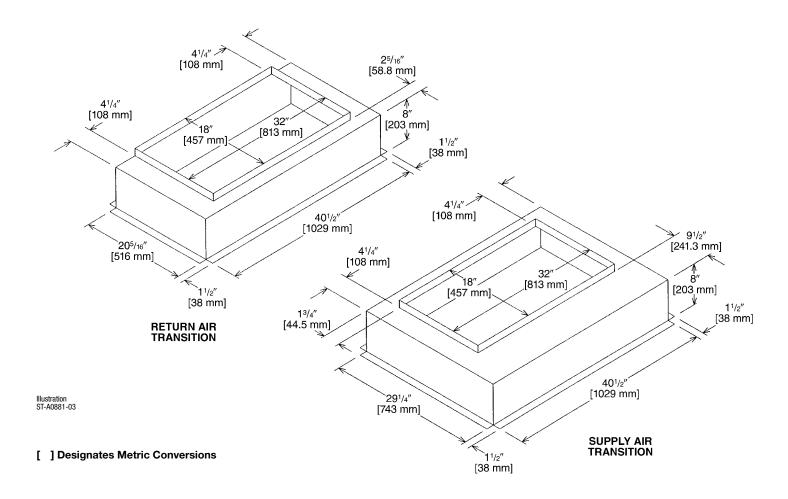

RXRX-CGCC12

TOP VIEW



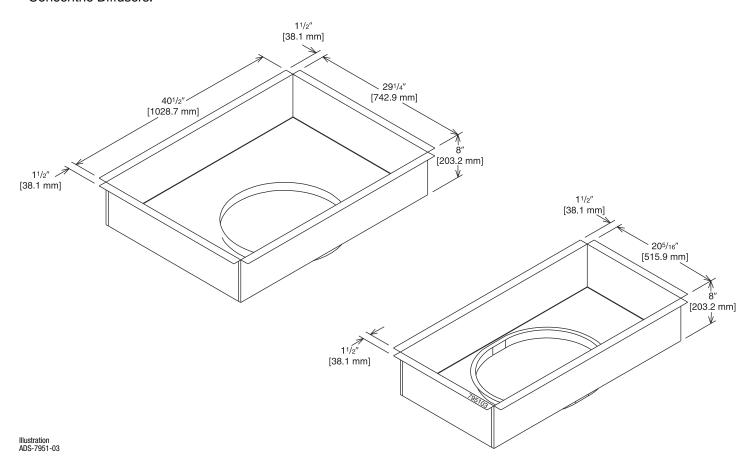
CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS


RXMC-CE05

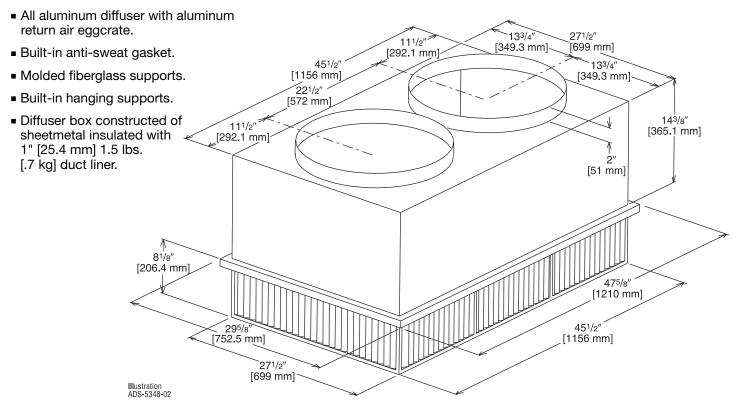
DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CF06


 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CD04


 Used with RXRN-FA65 or RXRN-FA75 Concentric Diffusers.

CONCENTRIC DIFFUSER—STEP DOWN

RXRN-FA65 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

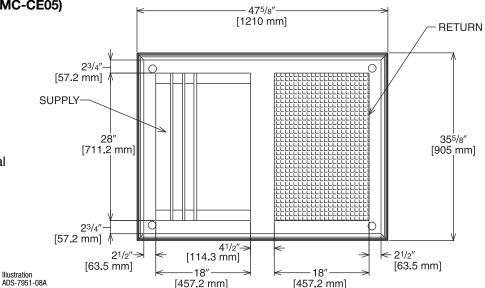
For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

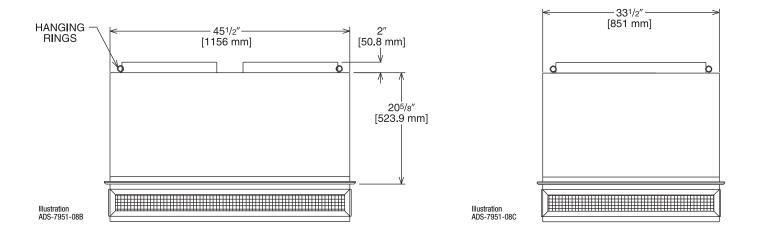
ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: ① All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.


Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (8.5 & 10 Ton [29.9 kW & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [$457.2 \times 711.2 \text{ mm}$] Supply and Return Ducts

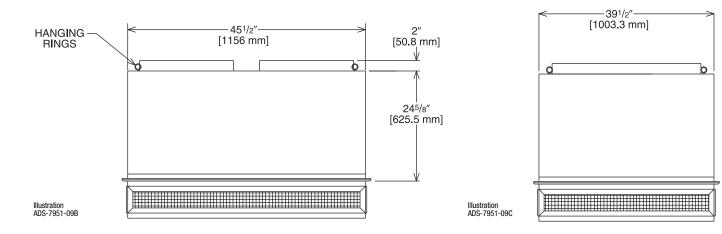
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: 1 All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—STEP DOWN 18" x 32" [457.2 x 813 mm]

RXRN-AA66 (12.5 Ton [44.0 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ⊕ (dbA)
	4600 [2171]	0.31 [0.077]	26-31 [7.9-9.4]	841 [4.3]	30
	4800 [2265]	0.32 [0.080]	27-32 [8.2-9.8]	878 [4.5]	30
RXRN-AA66	5000 [2359]	0.34 [0.085]	28-33 [8.5-10.1]	915 [4.6]	30
	5200 [2454]	0.36 [0.090]	28-34 [8.5-10.4]	951 [4.8]	30
	5400 [2548]	0.39 [0.097]	29-35 [8.8-10.7]	988 [6.0]	30

NOTES: $\tiny\textcircled{1}$ All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

FLUSH MOUNT CONCENTRIC DIFFUSER-FLUSH

RXRN-FA75 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

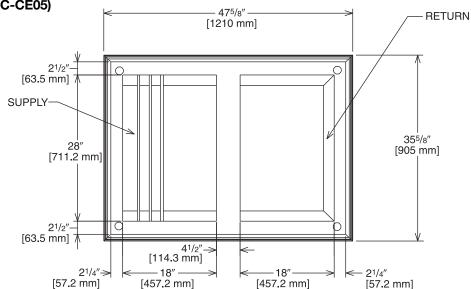
ENGINEERING DATA®

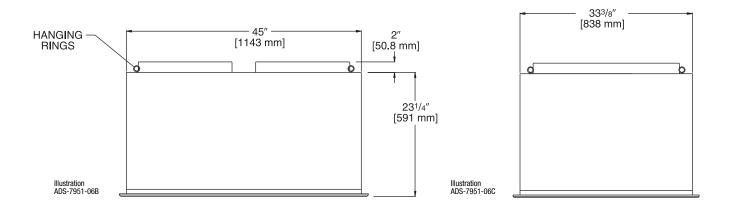
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
RXRN-FA75	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council guidelines.

② Throw data is based on 75 FPM Terminal Velocities using isothermal air.

 $[\]ensuremath{\mathfrak{G}}$ Throw is based on diffuser blades being directed in a straight pattern.


Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (8.5 & 10 Ton [29.9 & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

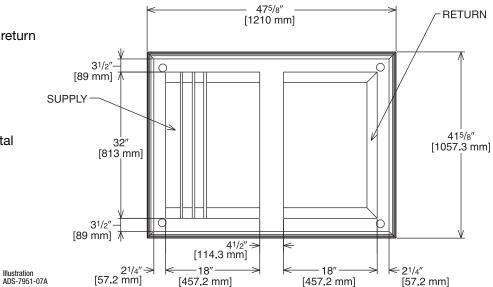
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

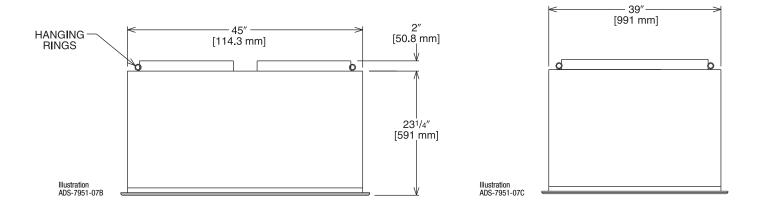
ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
RXRN-AA71	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


Illustration ADS-7951-06A


CONCENTRIC DIFFUSER—FLUSH 18" x 32" [457.2 x 813 mm]

RXRN-AA76 (12.5 Ton [44.0 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	25-34 [7.6-10.4]	922 [4.7]	40
RXRN-AA76	4800 [2265]	0.32 [0.080]	26-35 [7.9-10.7]	962 [4.9]	40
	5000 [2359]	0.34 [0.085]	27-36 [8.2-11.0]	1002 [5.1]	40
	5200 [2454]	0.36 [0.090]	30-39 [9.1-11.9]	1043 [5.3]	45
	5400 [2548]	0.39 [0.097]	32-41 [9.8-12.5]	1083 [5.5]	45

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

GUIDE SPECIFICATIONS - RLNL-G090, G120 & G151

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

ELECTRIC HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 6 to 12.5 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

- 1. Thermostat must
 - a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
 - b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust, occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.
- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 4. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.

23 09 93 Sequence of Operations for HVAC Controls

- 23 09 93.13 Decentralized, Rooftop Units:
- 23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

- 23 40 13.13 Decentralized, Rooftop Units:
- 23 40 13.13.A. Standard filter section shall
 - 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
 - 2. Filters shall be accessible through an access panel as described in the unit cabinet section of this specification (23 81 19.13.H).
- 23 81 19 Self-Contained Air Conditioners
- 23 81 19.13 Small-Capacity Self-Contained Air Conditioners
- 23 81 19.13.A. General
 - 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
 - 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
 - 3. Unit shall use environmentally sound R-410a refrigerant.
 - 4. Unit shall be installed in accordance with the manufacturer's instructions.
 - 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210/240 and 340/360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 340/360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation from 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210/240 or 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb density, flexible fiberglass insulation, aluminum foil-faced on the air side.
- 4. Base of unit shall have locations for thru-the-base electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" -11 1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Top panel:

a. Indoor section shall be a single piece top panel.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - (1.) Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - (2.) No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor, and electric or gas heater components (where applicable), shall have 1/4 turn latches.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils: on all models.
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and Condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psig.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valve (TXV) with venturi type distributor .
 - b. Refrigerant filter drier.
 - c. External service gauge connections to unit suction and discharge lines.
- 2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- d. Compressors shall be internally protected from high discharge temperature conditions.
- e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- f. Compressor shall be factory mounted on rubber grommets.
- g. Compressor motors shall have internal line break thermal, current overload and high pressure differential protection.
- h. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by a sliding filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filters shall be standard, commercially available sizes.
- 5. Filter face velocity shall not exceed 365 fpm at nominal airflows.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection or circuit breaker.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.

2. Belt-driven Evaporator Fan:

- a. Belt drive shall include an adjustable-pitch motor pulley.
- b. Shall use sealed, permanently lubricated ball-bearing type.
- c. Blower fan shall be double-inlet type with forward-curved blades.
- d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.

2. Condenser Fans:

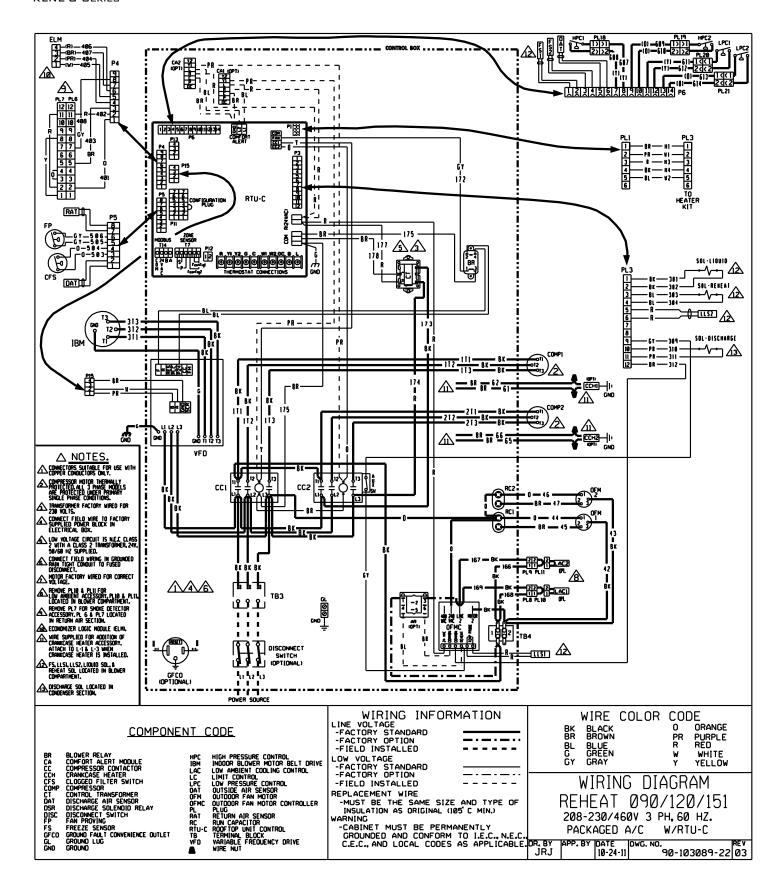
- a. Shall be a direct-driven propeller type fan.
- b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

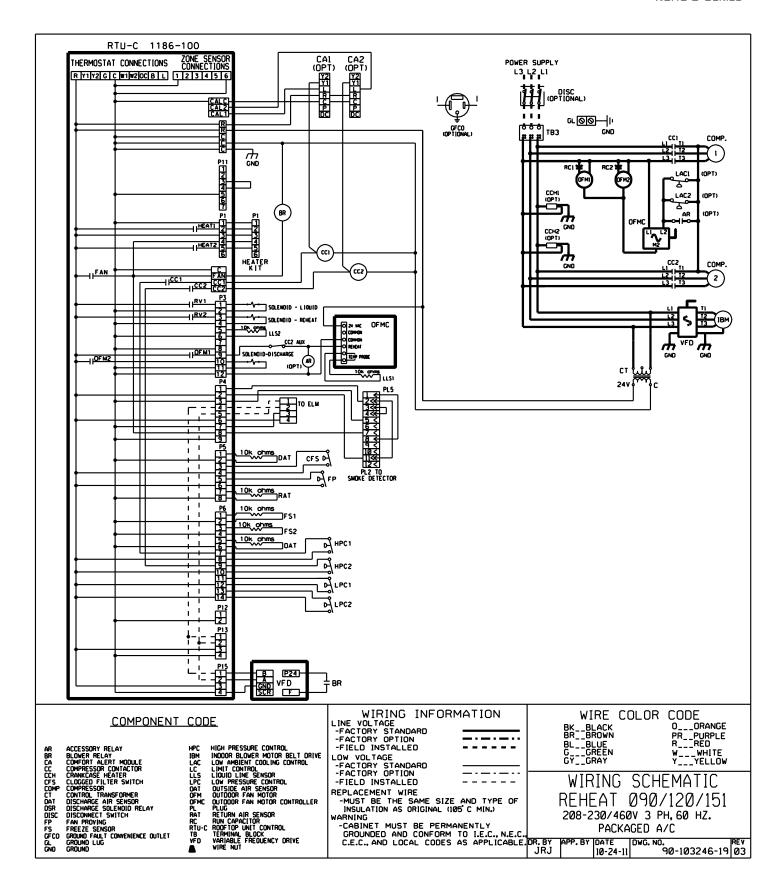
23 81 19.13.O. Special Features, Options and Accessories

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single enthalpy sensor shall be provided as standard. Outdoor air sensor setpoint shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper setpoint.
 - I. Dampers shall be completely closed when the unit is in the unoccupied mode.
 - m. Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.

- o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
- q. Economizer wire harness will have provision for smoke detector.
- 2. Two-Position Motorized Damper
 - a. Damper shall be a Two-Position Motorized Damper. Damper travel shall be from the full closed position to the field adjustable %-open setpoint.
 - b. Damper shall include adjustable damper travel from 25% to 100% (full open).
 - c. Damper shall include single or dual blade, gear driven dampers and actuator motor.
 - d. Actuator shall be direct coupled to damper gear. No linkage arms or control rods shall be acceptable.
 - e. Damper will admit up to 100% outdoor air for applicable rooftop units.
 - f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
 - g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
 - h. Outside air hood shall include aluminum water entrainment filter
- 3. Manual damper
 - Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered design.
- 6. Convenience Outlet:
 - a. Non-Powered convenience outlet.
 - (1.) Outlet shall be powered from a separate 115-120v power source.
 - (2.) A transformer shall not be included.
 - (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - (4.) Outlet shall include 15 amp GFI receptacles.
 - (5.) Outlet shall be accessible from outside the unit.
- 7. Fan/Filter Status Switch:
 - a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
 - b. Status shall be displayed either over communication bus (when used with direct digital controls) or through the controller LCD display inside the unit control box.
- 8. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust is shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- 9. Roof Curbs (Vertical):
 - a. Full perimeter roof curb with exhaust capability providing separate air streams for energy recovery from the exhaust air without supply air contamination.
 - b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- 10. High-Static Indoor Fan Motor(s) and Drive(s):
 - a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.
- 11. Outdoor Air Enthalpy Sensor:
 - a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.
- 13. Return Air Enthalpy Sensor:
 - a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
- 14. Indoor Air Quality (CO₂) Sensor:
 - a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - b. The IAQ sensor shall be available in wall mount with LED display. The setpoint shall have adjustment capability.

15. Smoke detectors:


- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have a recessed momentary switch for testing and resetting the detector.
- e. Controller shall include:
 - (1.) One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
 - (2.) Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - (3.) One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - (4.) Capable of direct connection to two individual detector modules.
 - (5.) Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.


16. Electric Heat:

- a. Heating Section
 - (1.) Heater element open coil resistance wire, nickel-chrome alloy, strung through ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.
 - (2.) Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24 v coil) and terminal block all mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.

26 29 23.12. Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

LIMITED	WARRANTY
RLNL-G	SERIES

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Ruud will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Compressor	
3 Phase, Commercial Applications	Five (5) Years
Parts	. ,
3 Phase, Commercial Applications	One (1) Year

In keeping with its policy of continuous progress and product improvement, Ruud reserves the right to make changes without notice.

Ruud Heating, Cooling & Water Heating • P.O. Box 17010 Fort Smith, Arkansas 72917 • www.ruud.com Ruud Canada • 125 Edgeware Road, Unit 1 Brampton, Ontario • L6Y 0P5