
COMMERCIAL AIR HANDLER

FORM NO. H11-532

Featuring Earth-Friendly R-410A Refrigerant

RHGM- 090 & 120 SERIES NOMINAL SIZES 7.5 & 10, TONS [26 & 35 kW]

Unit Features	3
Model Identification	
Component Location	
Unit Dimensions	
Physical Data	6
Drive Package Data	
Airflow Performance Data	7-9
Performance Data	10-11
Electric Heater Kits	
Accessories	
Piping	20
Guide Specifications	21
Limited Warranty	24

UNIT FEATURES/MODEL IDENTIFICATION—RHGM- SERIES

CABINET—Powder coat painted. Matching discharge plenums and decorative supply and return air grilles are available for use when units are to be installed within conditioned space.

MOTOR—Inherently protected motors are mounted inside of insulated cabinet to reduce motor noise. A choice of motor horsepowers and drive combinations are available to allow you to meet specified CFM at various static pressures up to 2" [.498 kPa] external static pressure.

LOW PROFILE—Allows for horizontal installation in most standard drop ceiling applications, and the movement of units through most standard doorways for addition or replacement work.

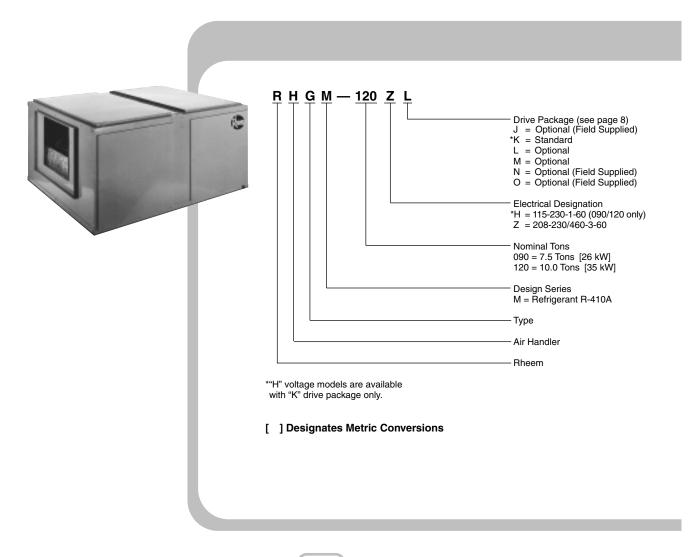
THERMAL EXPANSION VALVES—Standard all models.

FILTERS—One inch [25 mm] throwaway filters are standard, but filter racks are designed to accept either one inch [25 mm] or two inch [51 mm] filters.

EVAPORATOR COIL—Two circuit, interlaced row split coils are constructed with copper tubes and aluminum fins mechanically bonded to the tubes for maximum heat transfer capabilities. All coil assemblies are leak tested up to 450 PSIG [3100 kPa] internal pressure prior to installation into units.

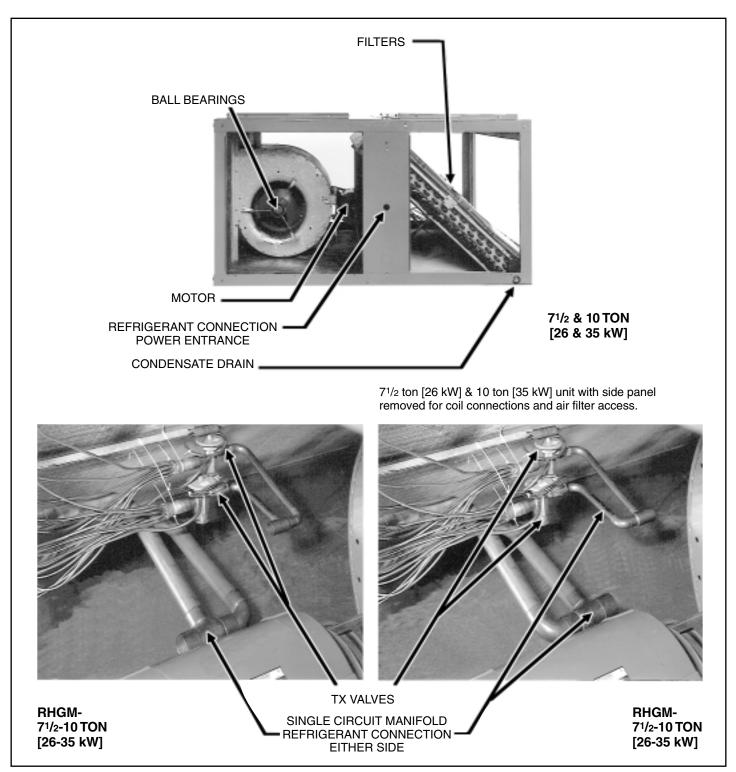
REFRIGERANT CONNECTIONS—Field piping connections are made through a fixed post between two side access panels on either side of the unit. Allows flexibility to meet most field conditions as well as full accessibility after the installation is complete.

Units may be used with two straight cool condensing units or single circuit manifolded in the field using the copper fittings shipped with each unit. The RHGM Air Handler has not been tested, rated or certified to operate with dual remote heat pumps.

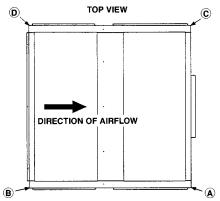

DRAIN PAN—The galvanized steel drain pan is designed to trap condensate in either vertical or horizontal installations. Condensate drain connections are located on both sides of the unit allowing complete flexibility to meet most field conditions.

SERVICE ACCESS—Two removable panels on top and each side of the unit are easily removed for access to motors, blowers, sheaves, and filters.

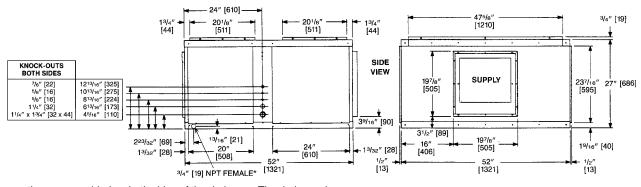
HORIZONTAL OR VERTICAL—All models are designed for either application and can be installed in either position as supplied from the factory.


TESTING—All units are run tested at the factory prior to shipment. Units are shipped with a holding charge of nitrogen.

HEAT PUMP—The RHGM-120 Air Handler is designed for heat pump and air conditioning applications. It has two TX valves with internal check valves that allow reverse flow to occur, providing superior control during heating and cooling cycles. RHGM-120 Air Handler has been rated and certified to operate with 7.5 ton [26 kW] and 10 ton [35 kW] condensing units and 7.5 ton [26 kW] and 10 ton [35 kW] remote heat pumps. A 7.5 ton [26 kW] heat pump air handler is **NOT** available.


COMPONENT LOCATION—RHGM- SERIES

UNIT DIMENSIONS—RHGM- SERIES



RETURN AIR OPENINGS = 473/8" [1203] WIDTH x 197/8" [505] HEIGHT

7.5 AND 10 NOMINAL TONS [26 AND 35 kW]

	REFR	IGERANT STUB S	IZES, IN. [mn	n]
MODEL	DUAL LIQ.	DUAL SUC.	SINGLE LIQ.	SINGLE SUC.
090	1/2, 1/2 [13, 13]	7/8, 7/8 [22, 22]	5/8 [16]	13/8 [35]
120	1/2, 1/2 [13, 13]	7/8, 7/8 [22, 22]	5/8 [16]	13/8 [35]

MODEL	СО	RNER WEIG	HTS, LBS.	[kg]	TOTAL
MODEL	Α	В	С	D	WEIGHT
090	98 [44]	86 [40]	97 [44]	84 [38]	365 [166]
120	100 [45]	88 [40]	97 [44]	87 [40]	372 [169]

*Drain connections are provided on both sides of the drain pan. The drain can be connected to either side of the drain pan, but not both. The drain must be trapped.

PHYSICAL DATA/DRIVE PACKAGE DATA—RHGM- SERIES

	ITEM	MODEL N	NO. RHGM-
	IIEW	090	120
Nom	inal Size tons [kW]	7.5 [26]	10 [35]
	inal CFM [L/s] @ Rated E.S.P., Pa] of water	3000 @ .25 [1416 @ .062]	3000 @ .25 [1416 @ .062] 4000 @ .30 [1888 @ .075]
MOTOR	Standard—3450 RPM [W] 1 Ø 1725 RPM [W] 3 Ø	1 HP [766] 1 HP [766]	2 HP [1491] 1½ HP [1119]
MOTOR	Optional— 1725 RPM [W] 3 Ø	11/2 HP [1119]	2 HP, 3 HP [1491, 2237]
Blow	er Size—diameter & width, in. [mm]	12 x 12 [305 x 305]	12 x 12 [305 x 305]
Blow	er Shaft Size (diameter) in. [mm]	3/4 [19]	3/4 [19]
	or Sheave Size 3450 RPM 1 Ø ustment (std.) in. [mm] 1725 RPM 3	1.9-2.9 [48-74] 3.4-4.4 [86-112]	2.4-3.2 [61-81] 4.0-5.0 [102-127]
Coil I	Face Area, sq. feet [m²]	10.2 [.95]	10.2 [.95]
Coil Tube Diameter in. [mm]		3/8 [10]	3/8 [10]
Coil,	Rows Deep—Fins Per Inch [mm]	4/15 [.59]	4/15 [.59]
	gerant Control—Thermal ansion Valves (Quantity)	BBIZE-5-GA (2)	CBBIZE-6-GA (2)
	Size, in. [mm] mber Required) Disposable*	16 x 25 x 1 (4) [406 x 635 x 25]	16 x 25 x 1 (4) [406 x 635 x 25]
CAB Fini	INET: sh	Powder Paint	Powder Paint
She	eet Metal	Galvanized	Galvanized
Gau To	uge (nominal) p	18	18
Sic	des	16	16
Во	ottom	18	18
Do	ors and Covers	20 min.	20 min.
	T WEIGHTS: erating (lbs.) [kg]	365 [166]	372 [170]
Ship	pping (lbs.) [kg]	411 [186]	418 [190]
_	KAGED DIMENSIONS: (W x L) [mm]	31 ¹ / ₂ " x 56" x 57 ¹ / ₄ " [800 x 1422 x 1454]	31½" x 56" x 57½" [800 x 1422 x 1454]

^{*}Unit will accept 2" [51 mm] filters.

NOTE: If a factory accessory heater kit is not used, a field supplied fan contactor is required and should have a 24 volt coil with contacts rated to handle the evaporator motor FLA at desired voltage. A factory supplied 30 Amp 3 Pole or 30 Amp 2 Pole contactor may be purchased from the Parts Department.

INDOOR BLOWER PERFORMANCE (DRY COIL) RHGM-090 HK & 120 HK

	_		_									
	0.50	8										
	2.0	RPM T.O.T						ives.				
	.47]	8						ıal dr				
	.9 [0	M o						optior	>-1			
	5]	- B						uire	ENC			
	10.4	> ⊠ _:					_	s req	FFICI			-
		윤] 10	bs/ft	y line	OR E	746 power	_	
	0.42	>				91 W	075	heav	. MO.	rsep	Speed	
	1.7	RPM T.O.T				P [14) jen jr	below	TIS	용 모	wer 5	
	.40]	>	096			, 2 HI	ıms (ard a	tion I	MA.	= Bra	= Blo	
	0] 9:	E o	1120 1960			K = IVP34, AZ90, 2 HP [1491 W] 1Ø	NOTES: T.O. = Tums Open 1. Standard air @ .075 lbs/ft ³	2. Operation below heavy lines require optional drives. 3. Mater efficiency = 70	4. BHP = WATTS × MOTOR EFFICIENCY	746 5. BHP = Brake Horsepower	RPM = Blower Speed	
	1] 1	×	370	30		P34,	S: T	2, 0	9.4	5.		Н
	6 [0.3	Z .	9	1115 2130		\ = \	IOTE(
	7.	윤	0 108	E .	2		_					
	0.35	>	178	203	232							
	1.4	RPM T.O.	1060	1080	1110							
_	.32]	>	0291	1915	2190							
ГРа	.3 [0	Mo	035	055	070							
* [¥	3 7 (0.17] 8 (0.20] 9 (0.22] 1.0 (0.25] 1.1 (0.27] 1.2 (0.30] 1.3 (0.32] 1.4 (0.35] 1.5 (0.37] 1.5 (0.40] 1.7 (0.42] 1.8 (0.45] 1.9 (0.47] 2.0 (0.50]	RPM W RPM W RPM W RPM W TO. W	$\frac{930}{3}$ 1440 $\frac{960}{2.6}$ 1500 $\frac{980}{2.3}$ 1545 $\frac{1005}{2}$ 1590 $\frac{1035}{1.5}$ 1670 $\frac{1060}{1}$ 1780 $\frac{1090}{.5}$ 1870	1360 880 1440 910 1520 28 1595 24 1660 2 1730 15 1580 1660 2 1730 15 15 1080 2 1080 1080 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1530 \frac{900}{33} 1620 \frac{945}{28} 1705 \frac{970}{2.5} 1780 \frac{970}{2} 1780 \frac{1000}{2} 1880 \frac{1025}{1.6} 1955 \frac{1050}{1.1} 2080 \frac{1070}{.6} 2190 \frac{1110}{.1} 2325$	08						
E	: [0.3	<u> </u>	15	9	0 20	0 23						\dashv
AT	1.	윤	5 100	0 10	5 105	0 107						
≥	0.27	>	154	173	195	223						
OF	1.	RPM T.O.T	980	1005	1025	1045						
S	.25]	M	1500	1660	1880	2110						
Ξ	0.0	M o	960	2.4	2	020						
E.S.P.—INCHES OF WATER [kPa]	2] 1	× -	94	369	780	$1725 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	585					
=	[0.2	<u>∑</u>	0	8 4	0 1/	1 20	1015 2285					-
۲.	-: -:	윤	8 °	2.0	5 97	0 99	5 10					
S	0.20	>	895 3.5 1350	152	1170	186	1215					
ш	8.	RPIV T.O.	3.5	910	945	960	985					
	.17]	>	1200 860 1280	1440	1620	1800	$1930 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 2315				
	.7 [0	PM O	860	3.6	3.3	930	960	2205 980 2.1				
	2]	≥ .	500	360	-089	725	930	205				
	.6[0.15]	RPM T.O.	820 4.4	4.1	3.7	3.3	3 15	955 27				\dashv
	7	Œ F			40 8.				35			
	[0.12	≯ ∑	1110	1270	4	1630	1840	2075	2365			
	.5	RPM T.O.	780	0 820	0 840	5 3.8	5 3.4	5 33	0 960			Ш
	1 [0.02] .2 [0.05] .3 [0.07] .4 [0.10] .5 [0.12]	*	L	1200	1330	1545	1725	1975	5 930 2240			
	.4 [[RPM T.O.		780	790	835	3.8	3.3	930			
	07]	*			1130	1465	1655	1860	2095			
	3 [0.	RPM T.O.	H		5 1	4.6	4.2	3.8	3.3			Н
		- L			-	1400	1580			75		-
	10.05	Ν Ν	\vdash			LΤ		1770	2000	2275		
	.2	RPM T.O.				775	9.4.6	5 825	3.7	3.2		
	0.02]	>					1510	1695	1890	2145		
	1.	RPM T.O.					5	4.6	830	3.6		
		•	[s/]	L/s]	[s/J	[s/J	[s/J	[s/J		[s/J	[s/J	L/s]
1		E	1416	1510	1605	1699	1793	1888	[1982 L/s]	2077	2171	2265
•	ے در	•	3000 [1416 L/s]	3200 [1510 L/s]	3400 [1605]	3600 [1699 L/s]	3800 [1793 L/s]	.000 [1888 L/s]	4200 [-	1400 [2077 L/s]	4600 [2171	4800 [2265 L/s]
	<u>ا</u> ل	<u> </u>	3	ઝ	ကိ	36		4	4,	4	4(4
DRIVE PKG												

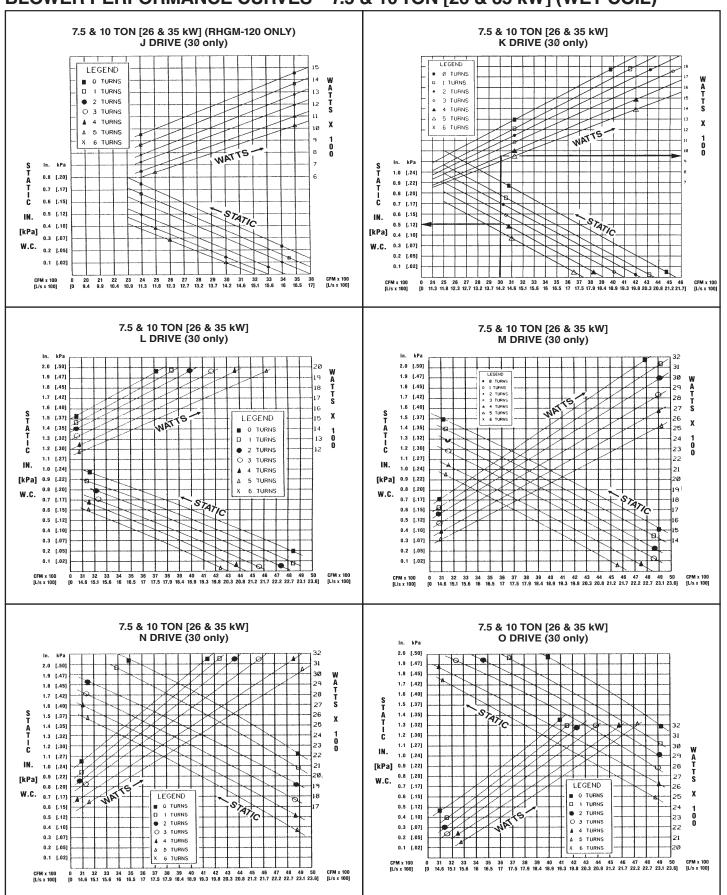
RHGM-090 Z, -120 Z

	0.50]	Μ	1700	1790	1880	1980	2160	2315	2575	2895	3165	1	1	1		
	2.0 [0.50]	RPM	1150	1160	1175 1880	1185 1980	1190 2160	1200 2315	1220 2575	1265 2895	1275	I	1	1	I	I
	1.9 [0.47]	Μ	1670	1730	1800	1920	2090	2270	2510		3090	1	1	1	I	1
	1.9[(RPM	1130	1680 1140	1720 1150	1160	1175	1180	1195	1220	1260 3090	1	1	1	I	
	.45]	Μ	1630	1680	1720	1880 1160 1920	2045 1175 2090	2245 1180 2270	2460	2710 1220 2770	. 2882	I	1	1	I	1
	1.8 [[RPM	1100	1120	1130	1140	1155	1165	1175	1190	1215	Ι	1	1	-	1
	1.42]	W	1490	1510 1120	1650	1800 1140	1985 1155	2185 1165	2400	2650	2920 1215	1	1	1	I	
	1.7 [0.42] 1.8 [0.45]	RPM		1100	1120	1110	1125	1140	1155	1170	1185	Ι	1	1	Ι	Ι
	1.6 [0.40]	W	1350 1080	1060 1460 1100	1590 1120	1750 1110	1095 1890 1125	1110 2095 1140	1135 2325 1155 2400 1175 2460 1195 2510	1150 2590 1170 2650 1190	1170 2855 1185	3145	1	ı	Ι	Ι
	1.6 [(RPM	1040	1060	1080	1100	1095	1110	1135	1150	1170	1190	I	Ι	1	1
	1.37]	W	1320	1020 1400	1530	1690	1880	1975	2225	1130 2495	2785	3080	I	1	I	1
	1.5 [0.37]	RPM	1000		1040 1530	1065 1690	1820 1095 1880	1900 1080 1975	2165 1105 2225	1130	1145 2785	1165 3080	1	ı	I	I
	.35]	Μ	1200	1310	1450	1620	1820	1900	2165	2390	2690	3000	1	I	1	I
	1.4[0.35]	RPM	066	995	000	1035	1065	1055	1080	1100	1130	1150	1	ı	Ι	1
<u></u>	_	Μ	1110	1230	1370 1	1010 1500 1035	1740 1065	1055 1940 1055	1080 2160 1080	2270	1100 2570 1130	2890	I	1	Ι	I
KP.	1.3 [0	RPM	922	096	980	1010	1030	1055	1080	1075	1100	1130	1	1	I	1
H.	.30]	W	1125	1150	1285	1425	1620	1860	2080	2315	2445	2795	3115	Ι	Ι	1
	1.2 [0	RPM	920	930	950	086	1010	1025 1860	1050	1075	1075	1100 2795	1130	Ι	Ι	1
OF WATER [kPa]	1.1 [0.27] 1.2 [0.30] 1.3 [0.32]	W	940	1070	1210	1380	1540	995 1725	1995	1045 2225 1075 2315 1075 2270 1100	2490	2685	2982	Ι	Ι	1
9F	1.1 [0	RPM	875	068	915	922	975	962	1020	1045	1075	1080	1100	Ι	Ι	1
E.S.P.—INCHES	.25]	M	860	066	1165	1290	1470	1650	990 1855 1020 1995 1050 2080	2145	990 2180 1020 2300 1050 2400 1075 2490 1075 2445	1025 2470 1050 2560 1080 2680 1080 2685	. 822	1	Ι	1
폿	1.0[0.25]	RPM	845	860	882	920	. 026	970 1650	. 066	990 2050 1025 2145	1050	1080	1055 2760 1085 2855	1	Ι	1
Ž	[0.22]	M	805	910	1075	1190	910 1390	945 1590	960 1780	5050	5300	. 2260	. 09/7	3070	Π	1
<u> </u>	.9 [0	RPM	815	830	855	885 1190	910	942	096	066	1020	1050	1055	1080	Ι	1
S.	.20]	W	755	860	975	1130	1285	910 1500	945 1715	955 1905	2180	2470	2755	2960	I	I
ш	.8 [0.20]	RPM	790	810	825	855	880	910	945	955	066	1025	1050 2755	1055 2960		-
	.17]	Μ	670	795	915	1065	1225	1390	1620	1840	2110	995 2365	2650	2950	3180	1
	.7 [0.17]	RPM	092	780	262	825	028	875	902	940	970		50 1030	40 1035	45 1055	1
	.15]	W	610	720	850	1005	1150	845 1320	1510	1740	2010	2260	2550	2840	30	Ι
	.6 [0.15]	RPM	720	150	775	790	815		875	902	940 20	72 296	366	1030	1035	_
	.5 [0.12]	Ν	220	999	775	940	785 1080	810 1240	845 1435	875 1630	910 1880	940 2160	2430	2750	3040	1
		RPM	069	715	740	755			845		910		970	1010	1035	١
	.4 [0.10]	×	510	620	720	880	1005	780 1160	810 1340	840 1550	880 1780	920 2060	950 2320 970 2430 995 25	980 2620 1010 2750 1030 28	2940	1
	_	RPM	650	675	705	730	750		_		880				1015	1
	.3 [0.07]	Μ		545	665	775	950	745 1090	780 1250	810 1455	850 1690	885 1925	925 2195	955 2495	985 2810 1015 2940 1035 3040 1035	3010 1020 3135
	.3 [RPM	1	635	999	695	730						_			1020
	.2 [0.05]	Ν	1	1	595	730	860	1000	1175	1350	1575	1840	2100	2375	2680	3010
	.2 [RPM	1	1	630	099	695	940 725	745	780	810	855	902	930	096	066
	.1 [0.02]	Μ	1	I	1	099	810		1100	1265	1465	1750	1925	2225	2555	2870
	Ε.	RPM			1	630	099	069	730	745	780	825	845	915	930	096
	_		3 L/s]	[S/T L/S]	2800 [1321 L/s]	3000 [1416 L/s]	3200 [1510 L/s]	3400 [1605 L/s]	3600 [1699 L/s] 730 1100 745 1175	3800 [1793 L/s] 745 1265 780	4000 [1888 L/s] 780 1465 810	4200 [1982 L/s] 825 1750 855	4400 [2077 L/s] 845 1925 905 2100	4600 [2171 L/s] 915 2225 930	4800 [2265 L/s] 930 2555 960	5000 [2360 L/s] 960 2870 990
	CFM		2400 [1133 L/s]	2600 [1227 L/s]	0 [132	0 [141	0 [151	0 [160	0 [165	0 [175	0 [188	0 [198	0 [207	0 [217	0 [226	0 [236
<u></u>	I ,		240	260	280	300	320	340	360	380	400	420(440(460	480	500
DRIVE	PKG						_	×	-	Σ	zI	0				

J = IVP50, AZ100, 11/2 HP [1119 W] [Field Supplied]
K = IVP56, AZ100, 11/2 HP [1119 W]
L = IVP68, AZ100, 2 HP [1491 W]
M = IVP68, AZ100, 3 HP [2237 W]
N = IVP66, AZ80, 3 HP [2237 W] [Field Supplied]
O = IVP75, AZ80, 3 HP [2237 W] [Field Supplied]
NOTE: Bold lines separate J, K, L, M, N and O drives respectively.

^[] Designates Metric Conversions

AIRFLOW PERFORMANCE—RHGM- SERIES


COMPONENT AIR RESISTANCE RHGM 7.5 TON [26 kW] & 10 TON [35 kW]

CFM [L/s]	1800 [850]	2200 [1038]	2600 [1227]	3000 [1416]	3400 [1605]	3800 [1793]	4200 [1982]	4600 [2171]	5000 [2360]
Electric Heater 20KW, 30KW	.060 [.015]	.100 [.025]	.140 [.034]	.160 [.040]	.230 [.057]	.320 [.080]	.410 [.102]	.500 [.124]	.600 [.150]
Mixing Box (R/A Damper Open)	.006 [.001]	.008 [.002]	.012 [.003]	.024 [.006]	.038 [.009]	.053 [.013]	.068 [.017]	.080 [.020]	.095 [.024]
Discharge Grille (Set Max. Open)	.008 [.002]	.011 [.003]	.015 [.004]	.020 [.005]	.025 [.006]	.031 [.008]	.039 [.010]	.046 [.012]	.055 [.014]
Inlet Grille	.008 [.002]	.010 [.002]	.014 [.003]	.020 [.005]	.026 [.006]	.032 [.008]	.039 [.010]	.049 [.012]	.058 [.014]
Discharge Plenum	.02 [.005]	.04 [.010]	.05 [.012]	.065 [.016]	.085 [.021]	.100 [.025]	.120 [.030]	.150 [.037]	.180 [.045]

NOTE: Add component resistance to duct resistance to determine total E.S.P.

AIRFLOW PERFORMANCE—RHGM- SERIES

BLOWER PERFORMANCE CURVES—7.5 & 10 TON [26 & 35 kW] (WET COIL)

PERFORMANCE DATA—RHGM- SERIES

EVAPORATOR PERFORMANCE DATA (GROSS CAPACITY)

EVAPORATOR/AIR HANDLER RHGM-090 @ 3000 CFM [1416 L/s] 105°F (40.8°C) LIQUID TEMPERATURE AT TXV 75/63°F 80/67°F 55/71°F EVAP. **AIRFLOW LDB LWB** LDB **LWB LWB LDB TEMP** SC TC TC SC TC SC °F °F ٥F °F °F °F 40 101,593 73,674 52.9 51.0 127,358 84,666 63.8 51.9 153,992 94,880 54.9 53.1 3000 45 80,928 62,952 57.3 54.8 103,594 73,170 58.8 83,959 59.4 57.3 56.3 130,995 50 59,031 52,456 61.6 66.7 80,997 82,400 63.0 50.2 105,321 72,678 64.1 61.6

	EVAPORATOR/AIR HANDLER RHGM-120 @ 3800 CFM [1793 L/s] 105°F (40.6°C) LIQUID TEMPERATURE AT TXV												
	EVAP.		75/6	3°F			80/6	7°F			85/7	1°F	
AIRFLOW	TEMP	тс	sc	LDB °F	LWB °F	тс	sc	LDB °F	LWB °F	тс	sc	LDB °F	LWB °F
	40	154,071	108,420	49.6	48.2	190,237	123,295	50.5	48.1	189,959	10,8803	60.4	58.6
3800	45	121,745	92,384	54.1	52.3	157,209	107,660	66.0	53.4	196,257	122,470	55.9	54.3
	50	88,849	77,108	58.5	56.3	122,773	91,908	59.5	57.5	159,969	108,803	60.4	56.6

NOTES: 1. Total and sensible capacity is gross with no deduction for indoor blower motor heat. 2. Interpolation is permissible. Do not extrapolate.

3. Capacities are based on 105°F (40.6°C) liquid temperature at the TXV or about 95°F (35°C) dry bulb outdoor ambient.

TC = Total Capacity, BTUH

SC = Sensible Capacity, BTUH

LDB = Leaving Air Dry Bulb

LWB = Leaving Air Wet Bulb

AIRFLOW CORRECTION FACTORS

	RHGM-090 @ 3000 CFM [1416 L/s]												
ACTUAL—CFM 2400 2600 2800 3000 3200 3400 3600 [L/s] [1133] [1227] [1321] [1416] [1510] [1605] [1699]													
TOTAL MBH	0.85	0.90	0.95	1.00	1.04	1.09	1.13						
SENSIBLE MBH	SENSIBLE MBH 0.83 0.88 0.94 1.00 1.06 1.11 1.16												

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

RHGM-120 @ 3800 CFM [1793 L/s]													
ACTUAL—CFM [L/s]	2400 [1133]	2600 [1227]	2800 [1321]	3000 [1416]	3200 [1510]	3400 [1605]	3600 [1699]	3800 [1793]	4000 [1888]	4200 [1982]	4400 [2077]	4600 [2171]	4800 [2265]
TOTAL MBH	0.76	0.79	0.82	0.85	0.89	0.93	0.97	1.00	1.03	1.06	1.10	1.12	1.15
SENSIBLE MBH	0.68	0.73	0.78	0.82	0.87	0.91	0.96	1.00	1.04	1.08	1.13	1.17	1.21

NOTES: 1. Multiply correction factor times gross performance data.

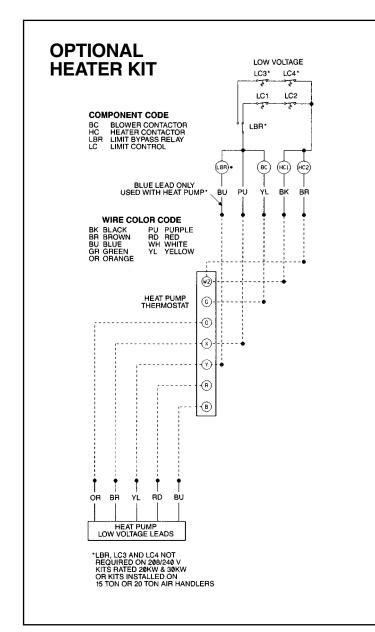
Resulting sensible capacity cannot exceed total capacity.

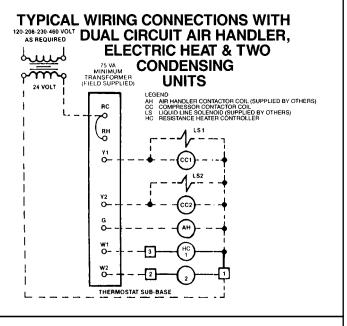
PERFORMANCE DATA/ELECTRIC HEATER KITS—RHGM- SERIES

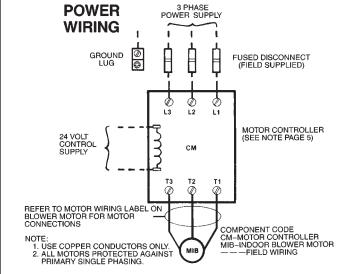
ELECTRIC HEATER KIT CHARACTERISTICS

AIR HANDLER MODEL	HEATER KIT MODEL	HEATER KIT VOLTAGE	HEATER KIT [kW]	HEATER KIT AMPS	HEATING CAPACITY [kW]	HEATING CAPACITY MBH	MINIMUM CIRCUIT AMPACITY	MAX. FUSE OR HACR BREAKER SIZE
RHGM-090 / RHGM-120	RXHE-DE020CA	208/240	20	43.1/48.9	15.6/20.2	53.2/68.9	67/73	70/80
RHGM-090 / RHGM-120	RXHE-DE030CA	208/240	30	60.8/70.2	22.0/29.6	75.1/101	89/100	90/100
RHGM-090 / RHGM-120	RXHE-DE020DA	480	20	24.7	20.2	68.9	37	40
RHGM-090 / RHGM-120	RXHE-DE030DA	480	30	35	29.7	101.3	50	50

NOTE: All kits have two stages of capacity, first stage heating is 50% of total capacity.


ELECTRICAL DATA TABLE


А	IR HANDLER MOTOR		RATING PLATE	MOTOR LRA	MINIMUM CIRCUIT	RECOMMENDED MINIMUM Cu WIRE SIZE (3% VOLTAGE 75°C DROP)	MAX. FUSES
HP [W]	VOLTS	PHASE	AMPS	LNA	AMPACITY	MAX. RUN IN FEET	BREAKERS
1 [746]	208-230	30	4.0/3.6	23.9/21.6	15	#14/240	15
1 [746]	460	30	1.8	10.8	15	#14/400	15
1 [746]	115-230	10	16/8	96/48	20/15	#12/120 #14/180	20/15
1 ¹ / ₂ [1119]	208-230	3Ø	5.7/5.2	34.5/31.2	15	#14/230	15
1 ¹ / ₂ [1119]	460	3Ø	2.6	15.6	15	#14/300	15
2 [1491]	208-230	30	7.5/6.8	45.1/40.8	15	#14/165	15
2 [1491]	460	30	3.4	20.4	15	#14/275	15
2 [1491]	115-230	10	24/12	144/72	30/15	#10/140 #14/120	30/15
3 [2237]	208-230	3Ø	10.6/9.6	64.1/58	15	#14/135	15
3 [2237]	460	3Ø	4.8	26.8	15	#14/230	15


NOTE: N.E.C., C.E.C. and local codes take precedence over suggested wire and fuse sizes.

ELECTRIC HEATER KITS—RHGM-SERIES

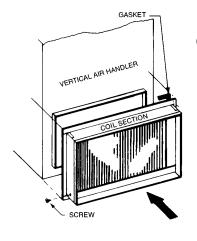
ACCESSORIES—RHGM-SERIES

AIR HANDLER ACCESSORIES

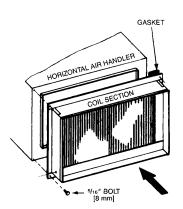
ACCESSORY DESCRIPTION	MODEL NUMBER	SIZES USED ON	NET WEIGHT (LBS) [kg]
Hot Water Coil	RXHC-C74W	090, 120	200 [91]
Steam Coil	RXHC-C74S	090, 120	200 [91]
Filter Frame Kit	RXHF-B74A	090, 120	90 [41]
Inlet Grille Kit	RXHG-C74A	090, 120	9 [4]
Discharge Grille Kit	RXHG-C74B	090, 120	15 [7]
Discharge Plenum Kit	RXHL-C74B	090, 120	38 [17]
Mixing Box	RXHM-BC74H	090, 120	120 [54]
Auxiliary	RXHE-DE020*A	090, 120	75 [34]
Heater Kit	RXHE-DE030*A	090, 120	75 [34]

NOTE: *Designates "C", "D" or "Y" Voltage

[] Designates Metric Conversions


RXHM MIXING BOX

RXHE ELECTRIC HEATER KIT

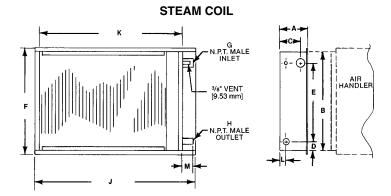


HOT WATER OR STEAM COILS

(090, 120) RXHC-C74W RXHC-C74S

(090, 120) RXHC-C74W RXHC-C74

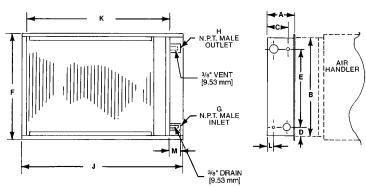
AIR HANDLER ACCESSORIES (con't)


PHYSICAL SPECIFICATIONS

NOMINAL TONS [kW]	FINNED HEIGHT- IN. [mm]	FINNED LENGTH- IN. [mm]	FACE AREA FT ² [m ²]	CIRCUITS & TUBES HIGH
71/2 [26.38]-10 [35.17]	18 [457]	40 [1016]	5.0 [.46]	12

GROSS COIL PERFORMANCE

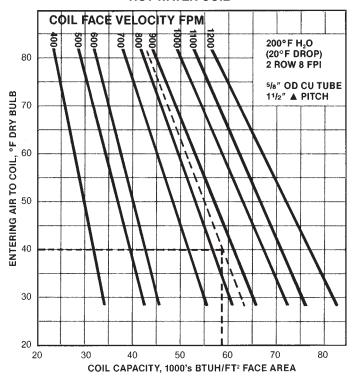
1	NOMINAL	NOMINAL BTUH		NOMINAL	VELOCITY
	TONS [kW]	STEAM	WATER	CFM [L/s]	FPM
	71/2 [26.38]	242,500	185,000	3,000 [1416]	600
	10 [35.17]	285,000	240,000	4,000 [1888]	800


- 1. Entering air temperature @ 60°F
- 2. Entering steam @ 5 PSIG
- 3. Entering water @ 200°F
- 4. Face velocity = $\frac{CFM}{Face Area}$

STEAM COIL COIL DIMENSIONS—INCHES [mm]

MODEL	NOMINAL TONS [kW]	Α	В	С	D	E	F	G	Н	J	K	L	М
RXHC-C74	71/2 [26.38]-	9 ¹ / ₁₆	21 ³ / ₈	5 ^{3/8}	3 ³ / ₁₆	15	24	1 ¹ / ₂	1 ¹ / ₄	51 ¹ / ₂	47 ⁵ / ₈	2 ^{13/} 16	3 ¹ / ₄
	10 [35.17]	[230]	[543]	[137]	[81]	[381]	[610]	[38]	[32]	[1308]	[1210]	[71]	[83]

HOT WATER COIL


HOT WATER COIL DIMENSIONS—INCHES [mm]

									<u> </u>				
MODEL	NOMINAL TONS [kW]	Α	В	С	D	E	F	G	Н	J	K	L	M
RXHC-C74W	7¹/2 [26.38]- 10 [35.17]	9 ¹ / ₁₆ [230]	21 ³ / ₈ [543]	5 ³ / ₈ [137]	3 ^{3/} 16 [81]	15 [381]	24 [610]	1 ¹ / ₄ [32]	1 ¹ / ₄ [32]	51 ¹ / ₂ [1308]	47 ⁵ /8 [1210]	2 ¹³ / ₁₆ [71]	3 [76]

AIR HANDLER ACCESSORIES (con't) HOT WATER COILS

CURVE 2 HOT WATER COIL

TABLE IV

Curve 2 ratings are based on 200°F entering water and 20°F temperature drop. For other conditions use the following correction factors:

ENTERING WATER °F	FACTOR	WATER TEMPERATURE DROP °F	FACTOR
220	1.14	10	1.030
210	1.07	15	1.015
200	1.00	20	1.000
190	.98	25	.985
180	.93	30	.970

HOT WATER COIL SELECTION:

Specified:

Entering Air Temp. @ 40°F 5000 CFM @ 6000 Ft. Elevation 220°F Entering Water Temp. @ 36 GPM

Select 10 Ton Nominal Coil:

Face Area = 5 Ft² Circuits = 12

Determine Coil Performance:

From Table I, Altitude and Temperature Correction Factor = 1.19 Std. CFM = 5000/1.19 = 4202

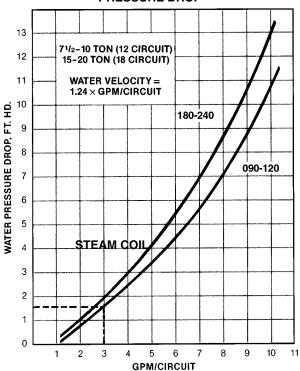
Face Velocity = 4202/5 = 840 FPM

From Curve 2, BTUH/ $Ft^2 = 57,500$

Coil Capacity = 5 x 58,000 = 287,500 BTUH

Water Temp. Drop = $290,000/(500 \times 36) = 16.1$ °F

From Table IV, Water Temp. Factor = 1.14


From Table IV, Water Temp. Drop Factor = 1.012

Total Capacity = 287,500 x 1.14 x 1.015 = 334,570 BTUH

From Curve 3, Water Pressure Drop 36 GPM/12 Circuits = 3 GPM/Circuit = 1.6 FT. HD.

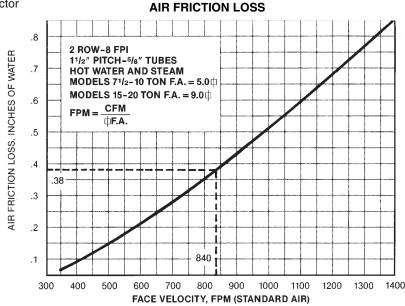
From Table II, Air Side Pressure Drop = .38" H₂O

BASIC FORMULA:

Air Temperature Rise, °F = $\frac{\text{BTUH}}{1.08 \text{ x CFM}}$

Water Temperature Drop, ${}^{\circ}F = \frac{BTUH}{500 \text{ x GPM}}$

AIR HANDLER ACCESSORIES (con't) STEAM COILS AIRFLOW


TABLE I ALTITUDE AND TEMPERATURE CORRECTION FACTOR TABLE

AIR	ALTITUDE IN FEET ABOVE SEA LEVEL															
TEMP. (F)	0	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	6000	7000	8000	9000	10,000
0	.87	.89	.91	.92	.94	.96	.98	.99	1.01	1.03	1.05	1.09	1.13	1.17	1.22	1.26
40	.94	.96	.98	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14	1.19	1.23	1.28	1.32	1.36
70	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14	1.19	1.18	1.20	1.25	1.30	1.35	1.40	1.45
100	1.06	1.08	1.10	1.12	1.14	1.16	1.19	1.21	1.23	1.25	1.28	1.33	1.38	1.43	1.48	1.54
120	1.09	1.12	1.14	1.16	1.18	1.20	1.23	1.25	1.28	1.30	1.32	1.38	1.43	1.48	1.53	1.58

TABLE II

EXAMPLE: Determine Equivalent "Standard Air" for use in System Performance Calculations:

Standard Air = $\frac{Specified CFM}{Correction Factor}$

AIR HANDLER ACCESSORIES (con't)

STEAM COILS **CURVE 1** STEAM COIL CAPACITY 120 110 2 ROW 8 FPI **5 PSIG PRESSURE ¤** 100 BUL COIL FACE VELOCITY FPM 90 °F DRY 700 80 ENTERING AIR TO COIL, 70 60 50 40 30

TEMPERATURE OF STEAM AT VARIOUS PRESSURES

COIL CAPACITY, 1000's BTUH/FT2 FACE AREA

66.5

Approximate Gauge Pressure (lbs.)	2	5	10	15	20	30	
Temperature °F	218	227	240	250	259	275	

50 55 60 65 70

TABLE III

Steam Coil Capacity, factors are based on 5 PSIG Steam Pressure. For other conditions use the adjacent correction factors.

STEAM PR., PSIG	FACTOR
2	.96
5	1.00
10	1.06
15	1.11
20	1.16
30	1.24

BASIC FORMULA:

Air Temperature Rise, ${}^{\circ}F = \frac{BTUH}{1.08 \times CFM}$

STEAM COIL SELECTION:

Specified:

Steam @ 30 PSIG

Entering Air Temp. @ 40°F Dry Bulb 5000 CFM @ 6000 Ft. Elevation

Select 10 Ton Nominal Coil:

Face Area = 5 Ft² Circuits = 12

Determine Coil Performance:

From Table I (page 21), Altitude and Temperature Correction Factor = 1.19

Std. CFM = 5000/1.19 = 4202 Face Velocity = 4202/5 = 840 FPM From Curve 1, BTUH/Ft = 66,500

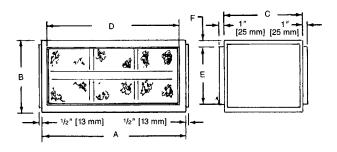
Coil Capacity = 5 x 65,000 = 325,000 BTUH

From Table III, Steam Correction Factor = 1.24

Total Coil Capacity = 1.24 x 332,500 = 412,300 BTUH

Air Temp. Rise = $403,000/(1.08 \times 4202) = 90.85$ °F

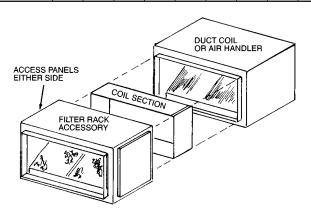
From Table II, Air Side Pressure Drop = .38" H₂O


FILTER RACK

20

10

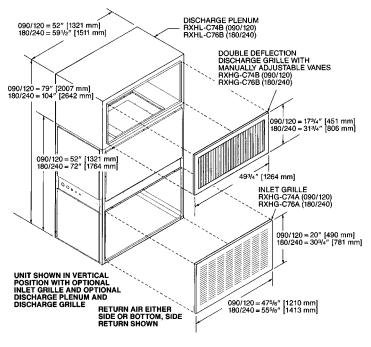
The filter rack accessory can be connected directly to the hot water/steam coil accessory. The filter rack accessory is ONLY needed when hot water steam coils are used.


MODEL	AIR HANDLER			IN.	[mm]		
NO.	SIZES USE ON	Α	В	С	D	Е	F
RXHF-B74A	090, 120	51½ [1308]			47 ³ / ₈ [1203]		

MODEL NO.	FILTER SIZE (QTY.) TYPE
RXHF-B74A	16x20x1 (4) Disposable 20x20x1 (2) Disposable

FILTER PRESSURE DROP:

MODEL NO.	CFM [L/s] x 1000 [472]									
WODEL NO.	2	3	4	5	6	7	8	9	10	
RXHF-B74A	.01 [2]	.02 [4]	.03 [7]	.07 [16]	.10 [22]	.15 [33]	_	_	_	



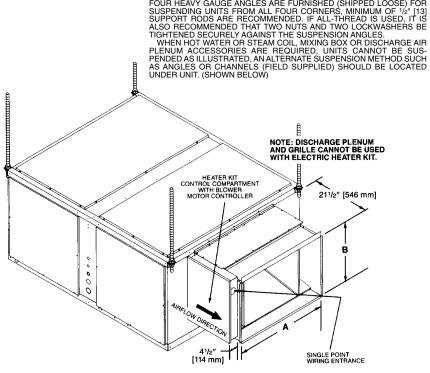
ACCESSORIES—RHGM-SERIES

AIR HANDLER ACCESSORIES (con't)

UNIT WITH ACCESSORIES 7.5 THROUGH 10 NOMINAL TONS [26 THROUGH 35 kW]

DOUBLE DEFLECTION DISCHARGE GRILLE

MODEL NO.	AIR HANDLER SIZES USED ON	NOMINAL CFM [L/s]	FT. [m] OF THROW
RXHG-C74B	090	3000 [1416]	0° DEFLECTION - 43' [13.1] 22° DEFLECTION - 37' [11.3] 45° DEFLECTION - 22' [6.7]
	120	4000 [1888]	0° DEFLECTION - 53' [16.2] 22° DEFLECTION - 46' [14] 45° DEFLECTION - 27' [8.2]


FOUR HEAVY GAUGE ANGLES ARE FURNISHED (SHIPPED LOOSE) FOR

TYPICAL APPLICATION **7.5 & 10 NOMINAL TONS** [26 & 35 kW]

OPTIONAL ELECTRICAL HEATER KIT SHOWN INSTALLED IN HORIZONTAL POSITION AND CONNECTED DIRECTLY TO THE AIR HANDLER. THE HEATER KIT MAY ALSO BE INSTALLED WITH THE AIR HANDLER SET IN THE VERTICAL POSITION. IN EITHER POSITION THE HEATER KIT CONTROL COMPARTMENT MUST BE ON THE LEFT SIDE FACING THE AIR DISCHARGE

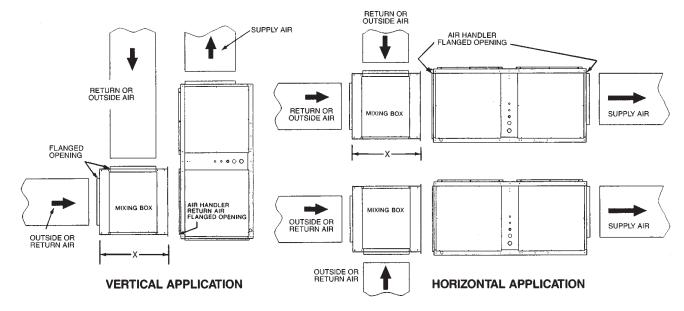
MODEL NO.	AIR HANDLERS	IN. [mm]		
MODEL NO.	SIZES USED ON	Α	В	
RXHE-DE***A	090, 120	20 [508]	20 [508]	

THE BOTTOM OF THE AIR HANDLER SHOULD BE SLOPED IN TWO PLANES THAT PITCH THE CONDENSATE TO THE DRAIN CONNECTION. THE DRAIN PAN SHOULD NOT LEAVE PUDDLES LARGER THAN 2 INCHES IN DIAMETER AND 1/8 INCH DEEP FOR MORE THAN 3 MINUTES.

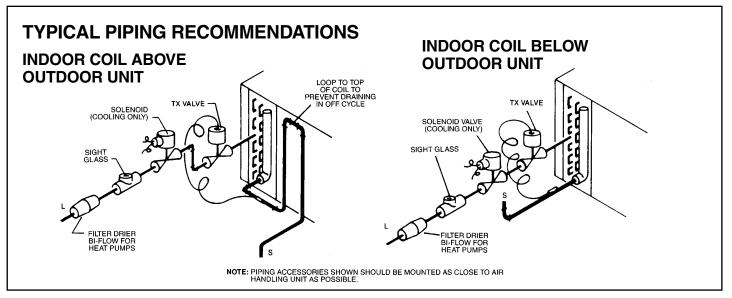
MIXING BOX ACCESSORY—OPERATING SEQUENCE

COOLING SEASON—Thermostat set at "Cool" and "Fan Auto," outside air damper goes to "minimum fresh air" position when cooking thermostat closes, energizing mechanical cooling. When cooling thermostat is satisfied, mechanical cooling is de-energized, and outside air damper closes.

INTERMEDIATE SEASON—Same as for cooling season, except that cooling thermostat closes, starting indoor blower motor, the enthalpy control, mounted on outside air, determines if "free" cooling or mechanical cooling should be utilized. If outside air conditions are suitable for cooling, the mechanical cooling remains off and the mixed air controller modulates the damper motor to assume the proper damper position to maintain mixed air setting. If outside conditions


are not suitable for cooling, then the dampers go to "minimum fresh air" position and mechanical cooling is energized.

HEATING SEASON—Damper always stays at "minimum fresh air" position while fan motor is operating. Outside air damper closes when blower motor is off. "Minimum fresh air" position must not allow mixed air temperatures to air handler below 50°F. [10°C] during heating seasons.


CAUTION: IT IS NOT RECOMMENDED THAT HOT WATER OR STEAM COILS BE USED WITH THE MIXING BOX ACCESSORY WITHOUT A SUITABLE FREEZE-STAT TO PREVENT THE POSSIBILITY OF FREEZING THE COIL.

MIXING BOX

MODEL NO.	AIR HANDLER	FLANGED DUC	IN. [mm]	
WODEL NO.	SIZES USED ON	LENGTH IN. [mm]	WIDTH IN. [mm]	"X"
RXHM-BC74H	090, 120	42 [1067]	16 ⁷ /8 [454]	27 [686]

The 7.5 [26 kW] and 10 [35 kW] Air Handlers are designed as two (2) circuit, full face equal distribution coils. As shipped from the factory, the suction and liquid lines are dual circuits. Copper fittings are supplied in the unit to field manifold the suction and liquid lines for single circuit.

NOTE: The expansion valve bulbs must be secured to the corresponding suction lines. The circuits are marked accordingly. See illustration under Typical Piping recommendations for additional information.

REFRIGERANT PIPING (See Tables at Right)

The following will be of help in accomplishing a successful installation.

- Size liquid line for no more than 50 PSIG [345 kPa] pressure drop.
- 2. Size suction lines for no more than 2°F [1.1°C] loss which corresponds to approximately 5 PSIG [34 kPa] pressure drop.
- When indoor unit is installed below outdoor unit, do not exceed the recommended vapor line O.D. This will insure adequate velocities for proper oil return.
- 4. Install strainer-drier and sight glass in liquid line.
- 5. Pitch all horizontal suction lines downward in the direction of flow for cooling only applications.
- 6. Locate the outdoor unit and indoor unit as close together as possible to minimize piping runs.
- A liquid line solenoid installed just ahead of the expansion value is recommended for cooling only applications. Be sure condensing unit is suitable for pump down.
- 8. Piping runs between condenser and evaporator not to exceed 150' [46 m] linear length (90' [27 m] linear length for heat pumps).

NOTE: Refer to suction and liquid line pressure drop charts found in condensing unit and remote heat pump literature.

[] Designates Metric Conversions

CONDENSATE DRAIN PIPING

- Consult local codes or ordinances for specific requirements regarding condensate drain.
- Condensate drain is open to atmosphere and must be trapped.
 Trap must be at least 3 inches [76 mm] deep and made of flexible material or fabricated to prevent freeze-up.
- Pitch the drain line at least 1/4 inch [6 mm] per foot away from the drain pan.
- Do not reduce the drain line size from the connection size provided on the unit.
- Do not connect the drain line to a closed sewer line.

PIPING SIZES 090 & 120					
LINEAR LENGTH, FT. [m]	LIQ LINE O.D.	_	SUCTION LINE O.D., IN. [mm]		
LENGTH, FT. [III]	090	120	090	120	
0-50 [0-15]	1/2 [13]	5/8 [16]	11/8 [29]	13/8 [35]	
51-100* [16-30]	1/2 [13]	5/8 [16]	13/8 [35]	15/8 [41]	
101-150 [31-46]	1/2 [13]	5/8 [16]	1 ³ /8 [35]	1 ⁵ /8 [41]	

^{*}For cooling only, refer to remote heat pump literature for piping recommendations.

EQUIVALENT LENGTH, FT. [m] OF STRAIGHT TYPE "L" TUBING FOR NON-FERROUS VALVES AND FITTINGS (BRAZED)							
TUBE SIZE INCHES [mm] O.D.	SOLE- NOID VALVE		GLE LVE	SHORT RADIUS ELL	LONG RADIUS ELL	TEE LINE FLOW	TEE BRANCH FLOW
1/2 [13]	70 [21.3]	8.3	[2.5]	1.6 [0.5]	1.0 [0.3]	1.0 [0.3]	3.1 [0.9]
5/8 [16]	72 [21.9]	10.4	[3.2]	1.9 [0.8]	1.2 [0.4]	1.2 [0.4]	3.6 [1.1]
3/4 [19]	75 [22.9]	12.5	[3.8]	2.1 [0.7]	1.4 [0.4]	1.4 [0.4]	4.2 [1.3]
7/8 [22]	78 [23.8]	14.8	[4.4]	2.4 [0.7]	1.6 [0.5]	1.6 [0.5]	4.8 [1.5]
11/8 [29]		18.8	[5.7]	3.0 [0.9]	2.0 [0.6]	2.0 [0.6]	6.0 [1.8]
13/8 [35]		22.9	[7.0]	3.6 [1.1]	2.4 [0.7]	2.4 [0.7]	7.2 [2.2]
15/8 [41]		27.1	[8.3]	4.2 [1.3]	2.8 [0.8]	2.8 [0.8]	8.4 [2.6]
21/8 [54]		35.4	[10.8]	5.3 [1.6]	3.5 [1.1]	3.5 [1.1]	10.7 [3.3]

GUIDE SPECIFICATIONS—RHGM- SERIES

OPERATING SEQUENCE

NOTE: Please refer to specification sheets covering RAWL- condensing units for operating sequence.

GUIDE SPECIFICATIONS

Furnish and install as shown on the drawing Rheem Model _____ draw through air handler suitable for both horizontal and vertical applications. The entire assembly shall be UL and cUL listed with the cooling (and heat pump heating) capacity A.R.I. Certified.

DRIVE PACKAGE—A complete drive package shall be factory or field installed. Package shall consist of a 3450 RPM dual voltage, single phase open drip proof motor or a 3 phase 1750 RPM open drip proof internally protected motor, not requiring an external starter. Variable pitch motor sheave, fixed pitch fan sheave, and belt.

COILS—Coils shall be fabricated of 3/8" [10 mm] O.D. seamless copper tubing expanded into aluminum fins. All coils shall be submitted to an air pressure test of up to 550 PSIG [2068 kPa] under water after fabrication and dehydrated prior to assembly in unit. Units shall be shipped with a nitrogen holding charge. Airflow shall be draw through design providing uniform air distribution across the coil surface.

BLOWER, BEARINGS AND SHAFT—Fans shall be a double width, double inlet, forward curve, centrifugal type, statically and dynamically balanced, and constructed of galvanized steel. They shall be mounted on ³/₄" [19 mm] = 7.5 ton [26 kW] & 10 ton [35 kW], diameter solid shafts made of high carbon steel, centerless ground and polished, supported by resilient mounted sealed bearings.

DRAIN PAN—The drain pan shall be manufactured of zinc coated steel. The pan shall have internally threaded pipe size drain connections and shall be designed to accept condensate in either horizontal or vertical type applications on either side of unit.

FILTERS—Filter mounting hardware shall be designed to accept up to 2" [51 mm] filters for field replacement. One inch [25 mm] throw away filters shall be furnished with the unit.

CABINET—Cabinets shall be manufactured of galvanized steel subjected to multi-stage cleaning and finished with powder coat paint. Units shall have removable service access panels on each side and top.

INSULATION—Cabinets shall be insulated with 1/2" [13 mm] by 11/2 pound [.68 kg] density fiberglass insulation coated with neoprene and bonded to the cabinet surface with a U.L. approved adhesive. Insulation shall have fire retarding characteristics in accordance with smoke developed rating not to exceed 50 and flame spread rating of 25 per Underwriters Laboratories testing procedures.

FACTORY TESTING—In addition to the pre-assembly testing mentioned above, each coil shall be leak tested after assembly into the unit. While under pressure, the coil shall be leak tested using an Electronic Leak Detector.

ELECTRIC HEATERS—UL and cUL listed electric heater kits shall be available in a wide range of capacities. All kits shall offer two stages of capacity, blower motor controller and single point connection. Heater kits shall be available for installation directly on the supply fan discharge for either horizontal or vertical application.

MIXING BOX—Mixing box accessory shall be available for mixing return air with outside air before entering the air handler. The accessory shall include both return and outside air dampers and economizer controls factory mounted. Economizer controls shall include enthalpy and mixed air sensors and damper motors. Mixing box accessory shall be available for installation to the return air section of the air handler for either horizontal or vertical applications.

DISCHARGE PLENUM AND GRILLE—Shall be available for vertical application. Discharge grille shall provide manually adjustable double deflection discharge vanes.

RETURN AIR GRILLES—Shall be provided for vertical return applications.

HOT WATER OR STEAM COILS—Shall be available for field installation. All coils shall be tested to 300 psi. Coils shall be available for either horizontal or vertical air handler applications.

NOTES

GENERAL TERMS OF LIMITED WARRANTY*

Rheem will furnish a replacement for any part of this product which fails in normal use and services within the applicable periods stated below, in accordance with the terms of the limited warranty.

*For Complete Details of the Limited Warranty, Including Applicable Terms and Conditions, See Your Local Installer or Contact the Manufacturer for a Copy.

Any PartOne (1) Year

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

Rheem Heating, Cooling and Water Heating

P.O. Box 17010, Fort Smith, AR 72917

PRINTED IN U.S.A. 6-09 DC FORM NO. H11-532