

MODEL: RKRL-C/H Package Gas Electric Unit

FORM NO. RSC-860

Sure Comfort® RKRL-C/H Package Gas Electric Unit

RKRL-C

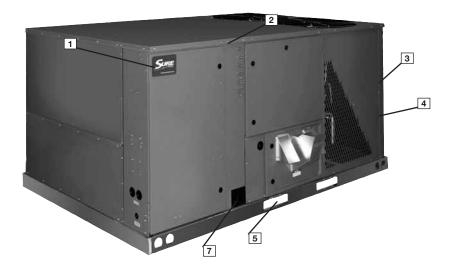
- With ClearControl[™]
- Nominal Sizes 7.5 & 10 Tons [26.4-35.2 kW]
- ASHRAE 90.1-2007 Compliant

RKRL-H

- With ClearControl[™] and VFD Technology
- Nominal Sizes 7.5 & 10 Tons [26.4-35.2 kW]
- ASHRAE 90.1-2010 Compliant

Table of Contents

Unit Features & Benefits	3-8
Model Number Identification	9
Options	10
Selection Procedure	11
General Data	
RKRL-C/H	12-18
General Data Notes	19
Gross Systems Performance Data	
RKRL-C/H	20
Indoor Airflow Performance	
RKRL-C/H	21-24
Electrical Data	
RKRL-C/H	25-26
Dimensional Data	27-30
Accessories	31-52
Mechanical Specifications	53-59
Wiring Diagrams	60-65
Limited Warranty	66



RKRL-C/H STANDARD FEATURES INCLUDE:

- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- · Dual stage compressor.
- Convertible airflow vertical downflow or horizontal sideflow.
- · TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- · Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintained high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.
- Forkable base rails for easy handling and lifting.
- Single point electrical and gas connections.

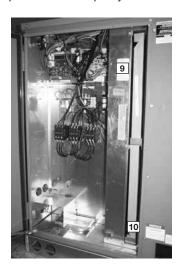
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve, direct spark ignition, and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- · Colored and labeled wiring.
- Copper tube/Aluminum Fin Evaporator coil.
- MicroChannel condenser coil.
- Molded compressor plug.
- Factory Installed ClearControl[™], a Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.
- -H models with supply fan Variable Frequency Drive (VFD) meets ASHRAE 90.1-2010 and California Title 24.

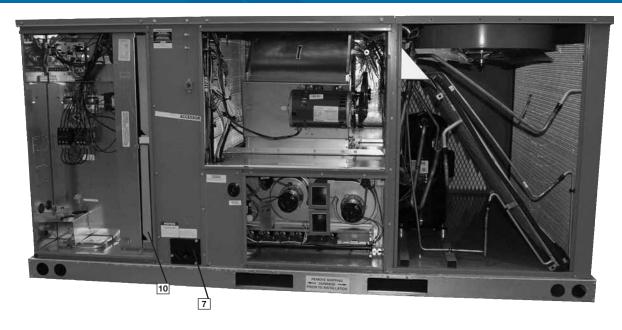
www.SureComfort.com ______ 3

Sure Comfort Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Sure Comfort label $(\boxed{1})$ identifies the brand to the customer.

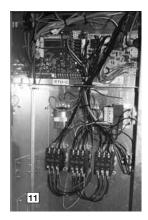
The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The Sure Comfort hail guard (4) (optional) is its trademark, and sets the standard for coil protection in the industry. Every Sure Comfort package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.




During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Sure Comfort-required reliability tests. Sure Comfort adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate. Contractors can rest assured that when a Sure Comfort package unit arrives at the job, it is ready to go with a factory charge and quality checks.

Access is granted with 1/4 turn fasteners and hinged access panels. Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large hinged-access panel. The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test

assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and colorcoded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKRL-C/H Package Gas Electric Unit has a Rooftop Unit Con-

troller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/Integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system ([12]). New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKRL-C/H Package Gas/Electric with the RTU-C is specifically designed to be applied in four distinct applications:

The RKRL-C/H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RKRL-C/H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKRL-C/H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKRL-C/H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

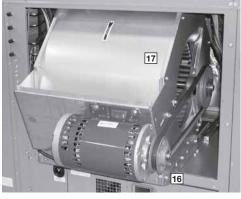
www.SureComfort.com _____ 5

-H models with factory installed supply fan Variable Frequency Drive (VFD) (13) optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 126%

more moisture is removed improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desired speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the number 1 compressor contactor. The suggested

mounting for the field-installed disconnect is on the exterior side of the electrical control box.


To the right of the electrical and filter compartment are the externally mounted gauge ports, which are permanently identified by embossed wording that clearly identifies the compressor circuit,

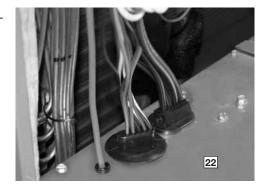
high pressure connection and low pressure connection (15). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily. Brass caps on the schrader fitting assure that the gauge parts are leak proof.


The blower compartment is to the right of the gauge ports and can be accessed by 1/4 turn fastener. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing two 3/8" screws from the blower retention bracket. The adjustable motor pulley ([16]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static, Sure Comfort has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H"

bushing which firmly secures the pulley to the blower shaft for years of troublefree operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft. creating burrs that

make blower-pulley removal difficult.

Also inside the blower compartment is the low-ambient control (18), low-pressure switch (19), high-pressure switch (20) and freeze sensor (21). The lowambient control allows for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch will shut off the compressors if pressures in excess of 610 PSIG are detected, as may occur if the outdoor fan motor fails. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow and allows monitoring of the suction line temperature on the controller display. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs and schrader fittings allow for easy field installation.



Inside the blower compartment the interlaced evaporator can

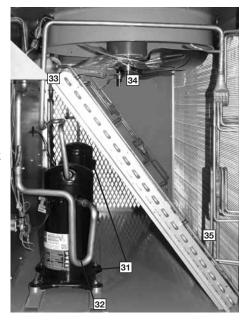
also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator. (Note: the single stage 6 ton utilizes an orifice).

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly ([22]) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken

to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

The furnace compartment contains the latest furnace technology on the market. The draft inducers (23) draw the flame from the Sure Comfort exclusive in-shot burners (24) into the aluminized tubular heat exchanger (25) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipment with a two-stage gas valve (26), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.

The direct spark igniter (27) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (28) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.


Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (29) to assure adequate combustion airflow before ignition.
- Rollout switches (30) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.

www.SureComfort.com ______ 7

The compressor compartment houses the heartbeat of the unit. The scroll compressor (31) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (32) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is

clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage. (072 single stage)

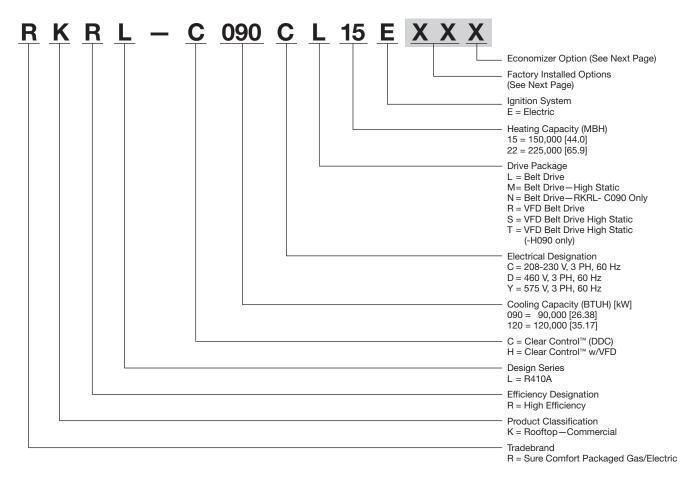
Each unit comes standard with filter dryer 3. The condenser fan motor (34) can easily be accessed and maintained through the top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (35) for the most effective method of heat transfer. The outdoor coil is protected by optional* louvered panels, which allow unobstructed airflow while protecting the unit from both Mother Nature and vandalism.

Each unit is designed for both downflow or horizontal applications (36) for job configuration flexibility. The return air compartment can also contain an economizer (37).

Three models exist, two for downflow applications, and one for horizontal applications (a downflow

economizer with factory installed smoke detector in the return section is available. Each unit is pre-wired for the economizer to allow quick plug-in installation. The economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The


economizer control has a minimum position setpoint, an outdoor-air setpoint, a mixair setpoint, and a CO2 setpoint. Barometric relief is standard on all economizers. Power Exhaust (37) is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plugin assembly. The wire harness to the economizer also has accom-

modations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

[] Designates Metric Conversions

www.SureComfort.com _____

FACTORY INSTALLED OPTION CODES FOR KRL-C (7.5 & 10 TON) [21.1 & 44.0 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AD	X			
AJ		X		
AH			x	
AR				X
BF	Х		x	
BG	Х	х		
JD	X			X
JB		х	x	
KA	Х	х		X
DP	X	X	X	X

NOTES: (1) High and low pressure is standard on all models.

ECONOMIZER SELECTION FOR KRL (7.5 & 10 TON) [26.4 & 35.2 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer w/Barometric Relief	DDC Single Enthalpy Economizer w/Barometric Relief and Smoke Detector
А	Х		
Н		х	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a two-character option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

RKRL-C120CL22E	this unit has no factory installed options.
RKRL-C120CL22EBGA	this unit is equipped with hail guard and stainless steel heat exchanger.
RKRL-C120CL22E <u>AHA</u>	this unit is equipped with a <u>non-powered convenience outlet</u> and <u>unfused service disconnect.</u>

RKRL-C120CL22EAHHthis unit is equipped as above and includes an Economizer with single enthalpy sensor and with barometric relief.

RKRL-C120CL22EAAH.....this unit is equipped with an Economizer with single enthalpy sensor and Barometric Relief.

[] Designates Metric Conversions

[&]quot;x" indicates factory installed option.

To select an RKRL-C/H Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

*External Static Pressure -

Voltage—

Total cooling capacity—

Sensible Cooling Capacity—
Heating Capacity—

*Condenser Entering Air—

*Evaporator Mixed Air Entering—
*Indoor Air Flow (vertical)—

*208/240V—3 Phase 60 Hz
106,000 BTUH [31.0 kW]
82,000 BTUH [24.0 kW]
150,000 BTUH [43.9 kW]
95°F [35.0 °C] DB
78°F [25.6 °C] DB
3600 CFM [1699 L/s]

0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 3750 CFM [1770 L/s] indoor air flow (table basis):

Total Cooling Capacity = 118,900 BTUH [34.82 kW] Sensible Cooling Capacity = 99,950 BTUH [29.27 kW] Power Input (Compressor and Cond. Fans) = 8,950 watts

Use formula in note (1) to determine sensible capacity at 78° F [25.6 $^{\circ}$ C] DB evaporator entering air:

99,950 + (1.10 x 3,600 x (1 – 0.03) x (78 – 80)) Sensible Cooling Capacity = 92,268 BTUH [27.02 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $118,900 \times 0.98 = 116,522$ BTUH [34.12 kW] Sensible Capacity = $92,268 \times 0.95 = 87,655$ BTUH [25.67 kW] Power Input = $8,950 \times 0.99 = 8,861$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.076 in. WG [.02 kPa] for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.476 (0.5) in. WG [.12 kPa], and determine:

RPM = 796 WATTS = 1,576 DRIVE = L (standard 2 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

 $1,576 \times 3.412 = 5,377 BTUH [1.57 kW]$

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 116,522 - 5,377 = 111,145 BTUH [32.54 kW]

Net Sensible Capacity = 87,655 - 5,377 = 82,278 BTUH [24.09 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 8,861 (step 3) + 1,576 (step 4) = 10,437 Watts

EER = $\frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{111,145}{10,437} = 10.65$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 182,250 BTUH [53.4 kW]

9. CHOOSE MODEL RKRL-C120CL22E

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

11

[] Designates Metric Conversions

www.SureComfort.com _____

Model RKRL- Model RKRL- (with VFD)	C090CL15E H090CR15E	C090CL22E H090CR22E	C090CM15E H090CS15E	C090CM22E H090CS22E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]
EER/SEER ²	13/NA	13/NA	13/NA	13/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]
AHRI Net Cooling Capacity Btu [kW]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]
Net Sensible Capacity Btu [kW]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]
Net Latent Capacity Btu [kW]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]
IEER3 (Standard / VFD)	14/15.8	14/15.8	14/15.8	14/15.8
Net System Power kW	7.04	7.04	7.04	7.04
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C]	25-55 [13.9-30.6] /	40-70 [22.2-38.9] /	25-55 [13.9-30.6] /	40-70 [22.2-38.9] /
(1st Stage / 2nd Stage)	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 15 [6]	3 / 15 [6]	3 / 15 [6]	3 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	2	2	2	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]
Weights				
Net Weight lbs. [kg]	1056 [479]	1092 [495]	1056 [479]	1092 [495]
Ship Weight lbs. [kg]	1093 [496]	1129 [512]	1093 [496]	1129 [512]
See Page 19 for Notes.	<u> </u>	<u> </u>		gnates Metric Conversion

See Page 19 for Notes.

[] Designates Metric Conversions

Model RKRL- Model RKRL- (with VFD)	C090CN15E H090CT15E	C090CN22E H090CT22E	C090DL15E H090DR15E	C090DL22E H090DR22E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]
EER/SEER2	13/NA	13/NA	13/NA	13/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]
AHRI Net Cooling Capacity Btu [kW]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]
Net Sensible Capacity Btu [kW]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]
Net Latent Capacity Btu [kW]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]
IEER3 (Standard / VFD)	14/15.8	14/15.8	14/15.8	14/15.8
Net System Power kW	7.04	7.04	7.04	7.04
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 15 [6]	3 / 15 [6]	2 / 18 [7]	3 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	2	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]
Weights	<u> </u>		<u> </u>	
Net Weight lbs. [kg]	1064 [483]	1100 [499]	1056 [479]	1092 [495]
Ship Weight lbs. [kg]	1101 [499]	1137 [516]	1093 [496]	1129 [512]
See Page 19 for Notes.	£ 3	£1		nates Metric Conversion

www.SureComfort.com _____ 1

Model RKRL- Model RKRL- (with VFD)	C090DM15E H090DS15E	C090DM22E H090DS22E	C090DN15E H090DT15E	CO9ODN22E Ho9odt22E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]
EER/SEER2	13/NA	13/NA	13/NA	13/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]
AHRI Net Cooling Capacity Btu [kW]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]
Net Sensible Capacity Btu [kW]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]
Net Latent Capacity Btu [kW]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]
IEER3 (Standard / VFD)	14/15.8	14/15.8	14/15.8	14/15.8
Net System Power kW	7.04	7.04	7.04	7.04
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 15 [6]	3 / 15 [6]	3 / 15 [6]	3 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]
Weights			. 55.5, . 55.5 [2504, 2504]	
Net Weight lbs. [kg]	1056 [479]	1092 [495]	1064 [483]	1100 [499]
Ship Weight lbs. [kg]	1093 [496]	1129 [512]	1101 [499]	1137 [516]
See Page 19 for Notes.	נסטדן סטטן	1120 [012]		gnates Metric Conversion

Model RKRL- Model RKRL- (with VFD)	C090YL22E	C090YM22E	C090YN22E	C120CL15E H120CR15E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	95,000 [27.83]	95,000 [27.83]	95,000 [27.83]	124,000 [36.33]
EER/SEER2	13/NA	13/NA	13/NA	12.5/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	3000/2600 [1416/1227]	4000/3575 [1888/1687]
AHRI Net Cooling Capacity Btu [kW]	92,000 [26.96]	92,000 [26.96]	92,000 [26.96]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	66,200 [19.4]	66,200 [19.4]	66,200 [19.4]	87,600 [25.67]
Net Latent Capacity Btu [kW]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]	32,400 [9.49]
IEER3 (Standard / VFD)	14	14	14	13.8/15.6
Net System Power kW	7.04	7.04	7.04	9.62
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	112,500/225,000 [32.96/65.92]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	40-70 [22.2-38.9] / 40-70 [22.2-38.9]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	9	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.5 [12.7]
· · · ·	0.73 [19]	0.75 [18]	0.75 [18]	0.3 [12.7]
Compressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB)5	88	88	88	88
<u> </u>				
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	2 / 23 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	15.75 [1.46]
Rows / FPI [FPcm]	3 / 15 [6]	3 / 15 [6]	3 / 15 [6]	4 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single	Single	Single	Single / Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	2
Motor RPM				
Motor Frame Size	1725 56	1725 56	1725 56	1725 56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes (0)0.40.40.151.457.457	Yes (0)0.40.40.154.457.457	Yes (0)0 40 40 151 457 457
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	105.6/105.6 [2994/2994]	153.6/156.8 [4355/4445]
Weights				
Net Weight lbs. [kg]	1092 [495]	1092 [495]	1100 [499]	1205 [547]
Ship Weight lbs. [kg]	1129 [512]	1129 [512]	1137 [516]	1242 [563]

www.SureComfort.com _____ 15

Model RKRL- Model RKRL- (with VFD)	C120CL22E H120CR22E	C120CM15E H120CS15E	C120CM22E H120CS22E	C120DL15E H120DR15E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW] EER/SEER ²	124,000 [36.33] 12.5/NA	124,000 [36.33] 12.5/NA	124,000 [36.33] 12.5/NA	124,000 [36.33] 12.5/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3575 [1888/1687]	4000/3575 [1888/1687]	4000/3575 [1888/1687]	4000/3575 [1888/1687]
AHRI Net Cooling Capacity Btu [kW]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	87,600 [25.67]	87,600 [25.67]	87,600 [25.67]	87,600 [25.67]
Net Latent Capacity Btu [kW]	32,400 [9.49]	32,400 [9.49]	32,400 [9.49]	32,400 [9.49]
IEER³ (Standard / VFD)	13.8/15.6	13.8/15.6	13.8/15.6	13.8/15.6
Net System Power kW	9.62	9.62	9.62	9.62
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor	0.70 [10]	0.0 [12.7]	0.70 [10]	0.0 [12.7]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled Rifled		Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	2	3	3	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457] (3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610] (3)2x18x24 [51x457x610]		(3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	153.6/156.8 [4355/4445]	153.6/156.8 [4355/4445]	153.6/156.8 [4355/4445]	153.6/156.8 [4355/4445]
Weights	1	r1	£1	, s ₁
Net Weight lbs. [kg]	1241 [563]	1213 [550]	1249 [567]	1205 [547]
Ship Weight lbs. [kg]	1278 [580]	1250 [567]	1286 [583]	1242 [563]
See Page 19 for Notes.	[]	[,]		nates Metric Conversion

See Page 19 for Notes

Model RKRL- Model RKRL- (with VFD)	C120DL22E H120DR22E	C120DM15E H120DS15E	C120DM22E H120DS22E	C120YL22E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	124,000 [36.33]	124,000 [36.33]	124,000 [36.33]	124,000 [36.33]
EER/SEER ²	12.5/NA	12.5/NA	12.5/NA	12.5/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3575 [1888/1687]	4000/3575 [1888/1687]	4000/3575 [1888/1687]	4000/3575 [1888/1687]
AHRI Net Cooling Capacity Btu [kW]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	87,600 [25.67]	87,600 [25.67]	87,600 [25.67]	87,600 [25.67]
Net Latent Capacity Btu [kW]	32,400 [9.49]	32,400 [9.49]	32,400 [9.49]	32,400 [9.49]
IEER3 (Standard / VFD)	13.8/15.6	13.8/15.6	13.8/15.6	13.8
Net System Power kW	9.62	9.62	9.62	9.62
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	112,500/225,000 [32.96/65.92
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	91,125/182,250 [26.7/53.4]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.75 [19]
Compressor	. ,		. ,	
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered Louvered		Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single
No. Motors	1	3ingle / Multiple	,	Jiligie 1
Motor HP	2	3	1 3	2
Motor RPM	2 1725	3 1725	3 1725	2 1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable			Disposable
Furnished	Ves	Disposable Yes	Disposable Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	(3)2x18x24 [51x457x610] 153.6/156.8 [4355/4445]	(3)2x18x24 [51x457x610] 153.6/156.8 [4355/4445]	(3)2x18x24 [51x457x610] 153.6/156.8 [4355/4445]	(3)2x18x24 [51x457x610] 153.6/156.8 [4355/4445]
	133.0/130.0 [4333/4443]	100.0/100.0 [4000/4440]	133.0/130.0 [4303/4443]	133.0/130.0 [4333/4443]
Weights Not Weight the [kg]	10/1 [560]	1010 [EE0]	1040 [567]	10/1 [500]
Net Weight lbs. [kg] Ship Weight lbs. [kg]	1241 [563] 1278 [580]	1213 [550] 1250 [567]	1249 [567] 1286 [583]	1241 [563] 1278 [580]

Model RKRL- Model RKRL- (with VFD)	C120YM22E	
Cooling Performance ¹		
Gross Cooling Capacity Btu [kW]	124,000 [36.33]	
EER/SEER2	12.5/NA	
Nominal CFM/AHRI Rated CFM [L/s]	4000/3575 [1888/1687]	
AHRI Net Cooling Capacity Btu [kW]	120,000 [35.16]	
Net Sensible Capacity Btu [kW]	87,600 [25.67]	
Net Latent Capacity Btu [kW]	32,400 [9.49]	
IEER³ (Standard / VFD)	13.8	
Net System Power kW	9.62	
Heating Performance (Gas) ⁴	0.02	
Heating Input Btu [kW] (1st Stage / 2nd Stage)	112,500/225,000 [32.96/65.92]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)	91,125/182,250 [26.7/53.4]	
Temperature Rise Range °F [°C]	25-55 [13.9-30.6] /	
(1st Stage / 2nd Stage)	25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	
No. Burners	9	
No. Stages	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	
Compressor	0.10 [10]	
No./Type	2/Scroll	
Outdoor Sound Rating (dB) ⁵	88	
Outdoor Coil—Fin Type	Louvered	
Tube Type	MicroChannel	
•		
MicroChannel Depth in. [mm]	1 [25.4]	
Face Area sq. ft. [sq. m]	27 [2.51]	
Rows / FPI [FPcm]	2 / 23 [9]	
Indoor Coil—Fin Type	Louvered	
Tube Type	Rifled	
Tube Size in. [mm]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	15.75 [1.46]	
Rows / FPI [FPcm]	4 / 13 [5]	
Refrigerant Control	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	
No. Used/Diameter in. [mm]	2/24 [609.6]	
Drive Type/No. Speeds	Direct/1	
CFM [L/s]	8000 [3775]	
No. Motors/HP	2 at 1/3 HP	
Motor RPM	1075	
Indoor Fan—Type	FC Centrifugal	
No. Used/Diameter in. [mm]	1/15x15 [381x381]	
Drive Type	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single	
No. Motors	1	
Motor HP	3	
Motor RPM	1725	
Motor Frame Size	56	
Filter—Type	Disposable	
Furnished	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	153.6/156.8 [4355/4445]	
Weights		
Net Weight lbs. [kg]	1249 [567]	
Ship Weight lbs. [kg]	1249 [307]	
See Page 19 for Notes.	1200 [303]	[] Designates Metric Conversion

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 340/360.
- 4. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

GROSS SYSTEMS PERFORMANCE DATA—C/H090

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbe ①										
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	3600 [1699]	2600 [1227]	2400 [1133]	3600 [1699]	2600 [1227]	2400 [1133]	3600 [1699]	2600 [1227]	2400 [1133]
		DR ①	.0	.03	.05	.0	.03	.05	.0	.03	.05
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	121.5 [35.6] 82.0 [24.0] 5.2	113.6 [33.3] 61.6 [18.0] 5.0	112.0 [32.8] 57.8 [16.9] 5.0	115.0 [33.7] 95.3 [27.9] 5.1	107.5 [31.5] 73.3 [21.5] 5.0	106.0 [31.1] 69.2 [20.3] 4.9	109.4 [32.1] 105.8 [31.0] 5.1	102.3 [30.0] 82.6 [24.2] 4.9	100.9 [29.6] 78.3 [22.9] 4.9
U T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	5.5	110.5 [32.4] 60.8 [17.8] 5.3	108.9 [31.9] 57.1 [16.7] 5.3	111.6 [32.7] 94.0 [27.5] 5.4	104.4 [30.6] 72.5 [21.2] 5.3	102.9 [30.1] 68.5 [20.1] 5.2	106.1 [31.1] 104.6 [30.6] 5.4	99.2 [29.1] 81.8 [24.0] 5.2	97.8 [28.7] 77.5 [22.7] 5.2
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	114.8 [33.6] 79.4 [23.3] 5.8	107.3 [31.4] 59.8 [17.5] 5.6	105.8 [31.0] 56.2 [16.5] 5.6	108.2 [31.7] 92.6 [27.1] 5.8	101.2 [29.7] 71.5 [20.9] 5.6	99.7 [29.2] 67.5 [19.8] 5.5	102.7 [30.1] 102.7 [30.1] 5.7	96.0 [28.1] 80.8 [23.7] 5.5	94.7 [27.7] 76.6 [22.4] 5.5
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	111.3 [32.6] 77.6 [22.7] 6.2	104.0 [30.5] 58.5 [17.1] 6.0	102.6 [30.1] 55.1 [16.1] 5.9	104.7 [30.7] 90.8 [26.6] 6.1	97.9 [28.7] 70.2 [20.6] 5.9	96.5 [28.3] 66.3 [19.4] 5.9	99.2 [29.1] 99.2 [29.1] 6.1	92.7 [27.2] 79.5 [23.3] 5.9	91.4 [26.8] 75.4 [22.1] 5.8
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	107.7 [31.6] 75.6 [22.2] 6.6	100.7 [29.5] 57.1 [16.7] 6.3	99.3 [29.1] 53.7 [15.7] 6.3	101.2 [29.7] 88.9 [26.0] 6.5	94.5 [27.7] 68.7 [20.1] 6.3	93.2 [27.3] 65.0 [19.0] 6.3	95.6 [28.0] 95.6 [28.0] 6.5	89.4 [26.2] 78.1 [22.9] 6.2	88.1 [25.8] 74.0 [21.7] 6.2
H M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	104.0 [30.5] 73.2 [21.4] 7.0	97.2 [28.5] 55.3 [16.2] 6.7	95.9 [28.1] 52.1 [15.3] 6.7	97.5 [28.6] 86.6 [25.4] 6.9	91.1 [26.7] 67.0 [19.6] 6.7	89.8 [26.3] 63.3 [18.5] 6.7	92.0 [27.0] 92.0 [27.0] 6.9	85.9 [25.2] 76.3 [22.4] 6.6	84.7 [24.8] 72.4 [21.2] 6.6
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	100.3 [29.4] 70.8 [20.7] 7.4	93.7 [27.5] 53.4 [15.6] 7.2	92.4 [27.1] 50.2 [14.7] 7.1	93.7 [27.5] 84.0 [24.6] 7.4	87.6 [25.7] 65.1 [19.1] 7.1	86.4 [25.3] 61.6 [18.0] 7.1	88.2 [25.8] 88.2 [25.8] 7.3	82.4 [24.1] 74.4 [21.8] 7.1	81.3 [23.8] 70.7 [20.7] 7.0
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	96.5 [28.3] 67.9 [19.9] 7.9	90.2 [26.4] 51.3 [15.0] 7.6	88.9 [26.0] 48.2 [14.1] 7.6	89.9 [26.3] 81.1 [23.8] 7.8	84.0 [24.6] 62.9 [18.4] 7.6	82.9 [24.3] 59.6 [17.5] 7.5	84.4 [24.7] 84.4 [24.7] 7.8	78.9 [23.1] 72.3 [21.2] 7.5	77.8 [22.8] 68.6 [20.1] 7.5
[C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	92.5 [27.1] 64.8 [19.0] 8.4	86.5 [25.3] 48.9 [14.3] 8.1	85.3 [25.0] 46.0 [13.5] 8.1	86.0 [25.2] 78.1 [22.9] 8.4	80.4 [23.6] 60.6 [17.8] 8.1	79.2 [23.2] 57.3 [16.8] 8.0	80.5 [23.6] 80.5 [23.6] 8.3	75.2 [22.0] 69.9 [20.5] 8.0	74.1 [21.7] 66.3 [19.4] 8.0

GROSS SYSTEMS PERFORMANCE DATA—C/H120

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4800 [2266]	3575 [1687]	3200 [1510]	4800 [2266]	3575 [1687]	3200 [1510]	4800 [2266]	3575 [1687]	3200 [1510]
		DR ①	.0	.04	.07	.0	.04	.07	.0	.04	.07
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	156.5 [45.9] 105.2 [30.8] 7.1	147.3 [43.2] 81.5 [23.9] 6.9	144.5 [42.3] 74.8 [21.9] 6.8	148.9 [43.6] 123.2 [36.1] 7.0	140.2 [41.1] 97.5 [28.6] 6.8	137.5 [40.3] 90.2 [26.4] 6.7	142.7 [41.8] 137.2 [40.2] 6.9	134.4 [39.4] 110.0 [32.2] 6.7	131.8 [38.6] 102.1 [29.9] 6.6
ÜTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	152.4 [44.7] 103.7 [30.4] 7.5	143.5 [42.0] 80.5 [23.6] 7.2	140.7 [41.2] 73.9 [21.7] 7.2	144.9 [42.5] 121.8 [35.7] 7.3	136.4 [40.0] 96.5 [28.3] 7.1	133.8 [39.2] 89.3 [26.2] 7.1	138.7 [40.6] 135.8 [39.8] 7.2	130.5 [38.2] 108.9 [31.9] 7.0	128.0 [37.5] 101.2 [29.7] 7.0
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	148.2 [43.4] 101.8 [29.8] 7.9	139.5 [40.9] 79.1 [23.2] 7.6	136.8 [40.1] 72.7 [21.3] 7.6	140.6 [41.2] 119.8 [35.1] 7.8	132.4 [38.8] 95.1 [27.9] 7.5	129.9 [38.1] 88.1 [25.8] 7.5	134.5 [39.4] 134.1 [39.3] 7.7	126.6 [37.1] 107.7 [31.6] 7.4	124.2 [36.4] 100.1 [29.3] 7.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	143.8 [42.1] 99.6 [29.2] 8.3	135.4 [39.7] 77.5 [22.7] 8.1	132.8 [38.9] 71.2 [20.9] 8.0	136.3 [39.9] 117.7 [34.5] 8.2	128.3 [37.6] 93.5 [27.4] 8.0	125.9 [36.9] 86.6 [25.4] 7.9	130.1 [38.1] 130.1 [38.1] 8.1	122.5 [35.9] 106.1 [31.1] 7.9	120.1 [35.2] 98.6 [28.9] 7.8
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	139.3 [40.8] 97.2 [28.5] 8.8	131.2 [38.4] 75.7 [22.2] 8.5	128.7 [37.7] 69.6 [20.4] 8.5	131.8 [38.6] 115.3 [33.8] 8.7	124.1 [36.4] 91.7 [26.9] 8.4	121.7 [35.7] 84.9 [24.9] 8.3	125.6 [36.8] 125.6 [36.8] 8.6	118.2 [34.6] 104.2 [30.5] 8.3	116.0 [34.0] 97.0 [28.4] 8.2
H M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	134.7 [39.5] 94.4 [27.7] 9.3	126.8 [37.2] 73.5 [21.5] 9.0	124.4 [36.4] 67.6 [19.8] 8.9	127.2 [37.3] 112.5 [33.0] 9.2	119.7 [35.1] 89.5 [26.2] 8.9	117.4 [34.4] 82.9 [24.3] 8.8	121.0 [35.5] 121.0 [35.5] 9.1	113.9 [33.4] 102.1 [29.9] 8.8	111.7 [32.7] 95.0 [27.8] 8.7
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	129.9 [38.1] 91.3 [26.8] 9.8	122.3 [35.8] 71.1 [20.8] 9.5	120.0 [35.2] 65.4 [19.2] 9.4	122.4 [35.9] 109.4 [32.1] 9.7	115.2 [33.8] 87.1 [25.5] 9.4	113.0 [33.1] 80.7 [23.6] 9.3	116.2 [34.0] 116.2 [34.0] 9.6	109.4 [32.1] 99.7 [29.2] 9.3	107.3 [31.4] 92.8 [27.2] 9.2
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	125.0 [36.6] 87.8 [25.7] 10.4	117.6 [34.5] 68.3 [20.0] 10.1	115.4 [33.8] 62.9 [18.4] 10.0	117.4 [34.4] 105.8 [31.0] 10.3	110.5 [32.4] 84.3 [24.7] 10.0	108.4 [31.8] 78.2 [22.9] 9.9	111.2 [32.6] 111.2 [32.6] 10.2	104.7 [30.7] 96.9 [28.4] 9.9	102.7 [30.1] 90.3 [26.5] 9.8
[U	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	119.9 [35.1] 84.0 [24.6] 11.0	112.9 [33.1] 65.4 [19.2] 10.6	110.7 [32.4] 60.1 [17.6] 10.5	112.3 [32.9] 102.0 [29.9] 10.9	105.7 [31.0] 81.3 [23.8] 10.5	103.7 [30.4] 75.4 [22.1] 10.4	106.1 [31.1] 106.1 [31.1] 10.7	99.9 [29.3] 93.9 [27.5] 10.4	98.0 [28.7] 87.5 [25.6] 10.3

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

^[] Designates Metric Conversions

AIRFLOW PERFORMANCE—7.5 TON [26.4 kW]—60 Hz—SIDEFLOW

	Σ	odel F	RKRL-	Model RKRL-C090 Voltage 208/230, 460, 575 — 3 Phase 60	Vol	tage 2	208/2	30, 4	60, 5,	75 —	3 Ph	ase 60	ZH (
Alf																Exter	nal St	tatic F	ressu	Ire-	nches	External Static Pressure—Inches of Water [kPa]	iter [k	Pa]															
CEM II (81 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	0.1	[.02]	0.2	.05]	0.3 [.	[70]	0.4 [.1 [0]	0.5[.12]	0.6 [.	.15	0.7 [17] [1.8 [.2	0]	9 [2	2] 1.	0 [.2	<u>ات</u>	1[.2]	$0.7[.17] \ \ 0.8[.20] \ \ 0.9[.22] \ \ 1.0[.25] \ \ 1.1[.27] \ \ 1.2[.30] \ \ 1.3[.32] \ \ 1.4[.35] \ \ 1.4[.35] \ \ 1.5[.37] \ \ 1.6[.40] \ \ 1.7[.42] \ \ 1.8[.45] \ \ 1.9[.47] \ \ 2.0[.50]$	[.30]	1.3	[.32]	1.4	[.35]	1.5	[.37]	1.6	[.40]	1.7	[.42]	1.8 [45]	1.9[.	17] 2.	0 [.50	Ξ
	RPM	8	RPM	RPM W RPM	RPM	M	RPM	8	RPM	8	RPM	W	3PM	W	Nd.	WR	١	V RF	١	V RP	M	/ RP	W	RPI	W	RPN	W	RPN	8	RPM	Μ	RPM	٨	RPM	W	PM	WRF	W M	
2400 [1133]	-	_	220	550 810 582 845 614 883 645 924 677	582	845	614	883	645	924		. 896	708	015 7	740 10	7 990	71 11	19 80	72 11	75 83	12:	708 1015 740 1066 771 1119 802 1175 833 1224 864 1296 895 1361 924 1435 955 1508 985 1584 1016 1663 1046 1744 1076 1829 1104 1916	1 129	6 895	136	924	1435	5 955	1508	1 985	1584	1016	1663	1046	1744 1	076	329 11	04 191	9
2500 [1180]	1	I	559	559 839 590 876 622 916 653 959 684 1004	290	9/8	622	916	653	929	684	1004	715 1	053 7	745 11	105 7	76 11	90 80	77 112	18 83	17 12	715 1053 745 1105 776 1160 807 1218 837 1279 867 1343 897 1410 927 1490 957 1564 987 1641 1017 1721 1047 1804 1077 1890 1105 1979	7 134	3 897	1410) 927	1490) 957	1564	1 987	1641	1017	1721	1047	1804	077	390 11	05 197	6
2600 [1227]	-	-	269	569 872 600 910 630 952 661 997 691	009	910	630	952	661	266	691 1	1044	722	2 260	752 11	149 7	82 12	.05 8.	12 12	65 84	12 13	722 1095 752 1149 782 1205 812 1265 842 1328 871 1394 901 1462 931 1546 961 1622 990 1701 1019 1782 1049 1866 1078 1954 1106 2044	1 139	4 901	1462	931	1546	3 961	1622	066	1701	1019	1782	1049	1866 1	078 1	954 11	06 204	44
2700 [1274] 549 870 579 908 610 948 640 992 670 1038 699 1088	1 549	870	579	806	610	948	640	992	029	1038	1 669	1088	729 1	140 7	759 11	1 96 7	88 12	55 8	18 13	16 84	17 13	729 1140 759 1196 788 1255 818 1316 847 1381 876 1448 905 1519 935 1606 964 1683 993 1763 1022 1846 1050 1931 1079 2020 1107 2111	3 144	8 905	1518	935	1606	3 964	1683	993	1763	1022	1846	1020	1931 1	079 2)20 11	07 211	Ξ
[2800 [1321] 561 909 591 948 620 990 650 1036 679 1084 708 <u> 1135 </u>	1 561	606	591	948	620	066	650	1036	629	1084	708	1135	737	190 7	766 12	247 7.	95 13	308 8%	24 13	71 85	3 14	737 1190 766 1247 795 1308 824 1371 853 1437 881 1507 910 1579 940 1667 968 1746 996 1827 1025 1911 1052 1998 1080 2088 1080	1 150	7 910	1579	940	1667	2 968	1746	966	1827	1025	1911	1052	1998	080 2)88 11	08 21 8	Ξ.
2900 [1368] 573 951 602 992 631 1036 660 1083 689 1134 718 1187	1 573	921	602	992	631	1036	099	1083	689	1134	718		746 1	243 7	75 13	302 81	03 13	65 8	31 14	30 86	30 14	746 1243 775 1302 803 1365 831 1430 860 1498 888 1569 915 1644 945 1732 973 1811 1000 1894 1028 1980 1055 2068 1082 2159 1109 2253	3 156	9 915	164	1 945	1732	2 973	1811	1000	1894	1028	1980	1055	2068 1	0822	159 11	09 225	33
3000 [1416]	1 586	997	615	586 997 615 1040 643 1086 672 1135 700 <u> 1187 728 1</u> 242	643	1086	672	1135	200	1187	728	1242	756 1	300 7	784 15	361 8	12 14	25 80	39 14	92 86	15,	756 1300 784 1361 812 1425 839 1492 867 1563 894 1636 <u>923 1720 </u> 950 1798 977 1879 1004 1963 1031 2050 1058 2140 1084 2233 111 12328	163	6 923	1720	7 950	1798	3 977	1879	1004	1963	1031	2050	1058	2140 1	084 2	233 11	11 232	28
3100 [1463] 600 1047 628 1092 656 1140 684 1190 711 1244 739 1301	009	1047	628	1092	. 929	1140	684	1190	711	1244	739		766	361 7	794 14	124 8;	21 14	8 06	48 15	59 87	75 16.	766 1361 794 1424 821 1490 848 1559 875 1631 902 1706 929 1787 956 1867 982 1950 1009 2035 1035 2123 1061 2215 1087 2309 1113 2405	2 170	928	1787	2 956	1867	7 982	1950	1009	2035	1035	2123	1061	2215	087	309	13 240	35
3200 [1510] 615 1101 642 1147 669 1197 697 1250 724 1305 751 1364	1 615	1101	645	1147	699	1197	269	1250	724	1305	751	1364	777	426	304 14	191 8,	31 15	58 85	57 16	29 88	14 17	777 1426 804 1491 831 1558 857 1629 884 1703 910 1780 936 1857 962 1939 988 2022 1013 2109 1039 2199 1064 2291 1090 2387 1115 2485	178	936	1857	7 962	1935	886 6	2022	1013	2109	1039	2199	1064	2291 1	090 2	387 11	15 248	35
3300 [1557] 630 1158 657 1207 683 1258 710 1313 736 1370 763 1431	1 630	1158	657	1207	683	1258	710	1313	736	1370	763		789 1	495 8	315 15	561 8	41 16	31 86	37 17	03 85	13 17	789 1495 815 1561 841 1631 867 1703 893 1779 919 1858 943 1930 968 2012 993 2098 1018 2186 1043 2277 1068 2371 1093 2468 1117 2567	9 185	8 943	1930	968	2012	2 993	2098	1018	2186	1043	2277	1068	2371 1	093 2	168 11	17 256	37
3400 [1604] 646 1220 672 1270 698 <u> 1324 724 </u> 1380 750 1439 776 1502	1 646	1220	672	1270	869	1324	724	1380	750	1439	776	1502	801	267	327 16	336 8	52 17	.07 87	78 17	.81	3 18	301 1567 827 1636 852 1707 878 1781 903 1859 925 1924 950 2006 975 2089 999 2175 1024 2265 1048 2357 1072 2453 1096 2551 1120 2652	5 192	4 950	2006	5 975	2085	666 6	2175	1024	2265	1048	2357	1072	2453 1	096	551 11	20 265	22
3500 [1652] 662 1285 688 1337 713 1393 739 1451 764 1512 789 1576	1 662	1285	989	1337	713	1393	739	1451	764	1512	1.88	1576	814	644 8	339 17	714 80	64 17	787	39 18	63 91	4 19	814 1644 839 1714 864 1787 889 1863 914 1943 933 2000 958 2082 982 2167 1006 2255 1029 2346 1053 2440 1077 2537 1100 2636 1124 2739	3 200	0 958	2082	982	2167	7 1006	3 2255	1029	2346	1053	2440	1077	25371	1002	336 11	24 273	68
3600 [1699] 679 1355 704 1409 729 1466 754 1526 779 1589 804 1655	629	1355	704	1409	729	1466	754	1526	779	1589	804	1655	828	724 8	353 17	2 96 8	77 18	171 90	71 119	49 91	8 19	828 1724 853 1796 877 1871 901 1949 918 1998 942 2078 966 2162 989 2249 1012 2338 1035 2430 1058 2525 1081 2623 1104 2724 1127 2828	2 207.	996 8	2162	989	2245	3 1012	2 2338	1035	2430	1058	2525	1081	2623 1	1042	724 11	27 282	82
THE PARTY OF THE P	4-1-	1-4 5-	A Line		the fire and	4 3- 4-7	11 11	IN		44.00	-1- 3-	11-1-1-1																											

NOTE: L-Drive left of bold line, M-Drive right of bold line, N-Drive right of double line.

				9	919
				2	979
	7.1]	Η	44	4	1085 1031
N	3 [2237.1]	ВК65Н	1VP-44	3	1085
				2	1134
				٦	1192
				9	673
				2	713
	1.4]	Ξ	44	4	752
Σ	2 [1491.4]	ВК90Н	1VP-44	3	794
				2	830
				-	868
				9	548
				9	280
_	2 [1491.4]	BK110H	IVP-44	4	612
	2 [14	BK1	1VF	3	646
				2	676
				-	708
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum or maximum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE - 7.5 TON [26.4 kW]

22

					Comp	Component Airflow Resistance	esistance	
Airliow CFM [L/s]	•	Airlow Correction Factors*		Wet Coil	Downflow	Downflow Economizer RA Damper Open	Horizontal Economizer RA Damper Open	Concentric Grill RXRN-FA65 or RXRN-FA75 & Transition RXMC-CC04
	Total MBH	Sensible MBH	Power kW			Resistance — Inches of Water [kPa]	er [kPa]	
2400 [1133]	0.97	0.87	0.98	0.09 [.02]	0.08 [.02]	0.10 [.02]	0.10 [.02]	0.13 [.03]
2500 [1180]	0.97	0.90	0.98	0.10 [.02]	0.08 [.02]	0.10 [.02]	0.10 [.02]	0.15 [.04]
2600 [1227]	0.98	0.92	0.99	0.10 [.02]	0.09 [.02]	0.11 [.03]	0.11 [.03]	0.17 [.04]
2700 [1274]	0.98	0.94	0.99	0.11 [.03]	0.09 [.02]	0.11 [.03]	0.11 [.03]	0.19 [.05]
2800 [1321]	0.99	0.97	0.99	0.11 [.03]	0.10 [.02]	0.12 [.03]	0.12 [.03]	0.21 [.05]
2900 [1368]	1.00	0.99	1.00	0.12 [.03]	0.10 [.02]	0.12 [.03]	0.12 [.03]	0.23 [.06]
3000 [1416]	1.00	1.02	1.00	0.12 [.03]	0.11 [.03]	0.13 [.03]	0.13 [.03]	0.25 [.06]
3100 [1463]	1.01	1.04	1.00	0.13 [.03]	0.11 [.03]	0.13 [.03]	0.13 [.03]	0.28 [.07]
3200 [1510]	1.02	1.06	1.01	0.13 [.03]	0.11 [.03]	0.14 [.03]	0.14 [.03]	0.31 [.08]
3300 [1557]	1.02	1.06	1.01	0.13 [.03]	0.11 [.03]	0.14 [.03]	0.14 [.03]	0.34 [.08]
3400 [1604]	1.02	1.06	1.01	0.13 [.03]	0.11 [.03]	0.15 [.04]	0.15 [.04]	0.37 [.09]
3500 [1652]	1.02	1.06	1.01	0.14 [.03]	0.11 [.03]	0.15 [.04]	0.15 [.04]	0.40 [.10]
3600 [1699]	1.02	1.06	1.01	0.14 [.03]	0.11 [.03]	0.15 [.04]	0.15 [.04]	0.44 [.11]
*Multiply correction factor tin	nes gross performance da	Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity	ty cannot exceed total	capacity.			[] Designate	[] Designates Metric Conversions

AIRFLOW PERFORMANCE—10 TON [35.1 kW]—60 Hz—SIDEFLOW

_			_					_	_		_	_	_	_	_	_	_		_	_
		.50]	×	2332	2431	2536	2646	2761	2881	3006	1	1	1	1	1	1	1	1	1	1
		0.8120 $0.91.22$ $1.01.25$ $1.11.25$ $1.11.27$ $1.11.21.30$ $1.11.21.30$ $1.11.21.30$ $1.11.21.30$ $1.11.21.30$ $1.11.21.30$ $1.11.21.30$ $1.11.21.30$	PM	1544 920 1620 946 1697 971 1774 995 1852 1019 1930 1043 2009 1065 2089 1087 2169 1109 2250 1130 2332	1777 980 1857 1004 1937 1028 2018 1051 2100 1073 2182 1095 2264 1116 2348 1136 2431	833 1461 861 1540 888 1620 914 1700 940 1781 965 1862 990 1945 1013 2027 1037 2111 1059 2195 1081 2279 1081 2279 1103 2450 1143 2386	845 1538 872 1620 899 1702 925 1785 950 1869 975 1953 999 2037 1023 2122 1045 2208 1068 2295 1089 2382 1110 2469 1131 2557 1150 2646	857 1621 884 1705 910 1790 936 1875 961 1961 985 2048 1009 2135 1035 2222 1054 2311 1076 2400 1098 2489 1118 2579 1138 2670 1158 2761	1971 971 2059 995 2148 1019 2237 1041 2328 1063 2418 1085 2510 1106 2602 1126 2694 1146 2787 1165 2881	172	Ι	Т	Ι	1	1	1	Т	ı	Τ	Т
		7] [2	VR	50 1	48 1	501	571	70 1	87 1	10	37	20	ı	ī	1	ı	ī	ı	1	ī
		1.4	M	1922	623	324	1 25	8 26	627	4 29	1 30	931	_	_	•	-	Ŀ	Ė	Ė	
		1.9	RPI	110	111	112	113	113	114	115	116	116	-	-		١	ı	1		1
		45]	Μ	2169	2264	2364	2469	2579	2694	2814	2939	3069	3204	3344	1	1	1	1	1	1
		.8 [PM	387	362	103	110	118	126	134	142	151	129	168		ı	ī	П	Т	Π
] 1	/ R	391(32 1(791-	321	39 1-)2 1-	191	12 1-	391-)2 1-	391-	'		H.	·	÷	
		[.42	_	508	218	227	238	248	260	. 27	287	296	31(323	338	327				1
		1.7	RPIV	1065	1073	1081	1089	1098	1106	1114	1123	1132	1140	1149	1158	1168	1	1	1	1
		0		600	001	195	595	100	510	325	745	370	000	35	275	120	570	725	ī	1
		3 [.4	Σ	13 20	1 2.	.6 5	8 22	,6 5	15 25	14 26	13 27	2 28	1 30	30 3-	10 32	⁷ 8 61	69	3.	_	
		1.	RP	104	105	106	106	107	108	100	110	Ξ	112	113	114	114	113	116	ı	1
		37]	×	1930	2018	2111	2208	2311	2418	2531	2648	2771	2899	3031	3169	3311	3459	3612	3769	3932
		.5 [.	ЫМ	119)28	37 [)45)54	963)73)85	190	101	11	20	30	40	20	191	7
		_	≖	2 10	7 10	7 10	2 10	2 10	8 10	9	3 10	3 10	8 11	8 11	3 11	3 11	8	1	4 11	4
		.35	×	185	193	202	212	222	232	243	255	267	279	292	306	320	334	349	365	381
		1.4	łРМ	995	004	013	023	032	041	051	061	070	080	060	100	111	121	131	142	153
		. [2	٧ ٢	74	57 1	45 1	37 1	35 1	37 1	45	58 1	75 1	98	26 1	58 1	96	39	86 1	39 1	97 1
		[.3	۸ ا	17	18	119	20	9 21	9 22	8 23	8 24	9 25	9 26	9 28	0 29	0 30	1 32	2 33	3 35	4 36
	<u>-</u>	1.3	RPI	971	980	990	999	100	101	102	103	104	105	106	108	109	110	=	112	13
	본	30]	W	697	777	862	953	048	148	253	363	478	599	724	854	686	129	274	425	580
	ater	2[.	Z	16 1	55 1	35 1	75 1	35 2	35 2	05 2	16 2	26 2	37 2	48 2	59 2	20/	81	92	03 3	15
	of N	_	RF	6 0	1698 955	1 96	9.	1 98	96	2 10	9 10	2 10	0 10	2 10	0 10	3 10	9	3 10	1 11	4
	hes	.27	8	162		178	186	196	205	216	226	238	250	262	275	288	302	316	331	346
	후	1.1	₽ M	920	930	940	950	961	971	982	993	003	1014	025	037	048	029	071	083	095
	-en	[9	N	944	1620	00	,85	375	171	171	9/	98	. ZO	. 22	. 24	. 44.	12	. 23	- 86	48
	ress] [.2	Σ	3 16	4 16	4 17	5 1.	6 18	9 16	7 20	9 2-	0 22	1 2	3 25	4 26	9.	88	90 30	3.3	4 33
	External Static Pressure—Inches of Water [kPa]	-	RP	893	904	91	92	93	946	95	893 1900 919 1991 944 2083 969 2176 993 2269 1016 2363 1038 2458 1061 2553 1082 2648 1103 2745 1123 2842 1142 2939 1161 3037	2003 931 2097 956 2191 980 2286 1003 2382 1026 2478 1049 2575 1070 2673 1091 2771 1112 2870 1132 2969 1151 3069 1169 3170	2110 943 2207 967 2304 991 2402 1014 2500 1037 2599 1059 2698 1080 2798 1101 2899 1121 3000 1140 3102 1159 3204	930 2223 955 2322 979 2422 1003 2522 1025 2622 1048 2724 1069 2826 1090 2928 1111 3031 1130 3135 1149 3239 1168 3344	943 2341 967 2442 991 2544 1014 2647 1037 2750 1059 2854 1080 2958 1100 3063 1120 3169 1140 3275 1158 3382	956 2464 980 2568 1003 2672 1026 2777 1048 2883 1070 2989 1090 3096 1111 3203 1130 3311 1149 3420 1168 3529	969 2592 992 2698 1015 2805 1038 2912 1059 3021 1081 3129 1101 3239 1121 3348 1140 3459 1159 3570	982 2725 1005 2833 1028 2943 1050 3053 1071 3163 1092 3274 1112 3386 1131 3499 1150 3612 1169 3725	995 2862 1018 2974 1040 3086 1062 3198 1083 3311 1103 3425 1123 3539 1142 3654 1161 3769	008 3005 1031 3119 1053 3233 1074 3348 1095 3464 1115 3580 1134 3697 1153 3814 1171 3932
	Stat	.22]	8	1466	850 1465 877 1542	1620	1702	1790	1883	1981	2083	2191	2304	2422	2544	2672	2805	2943	3086	3233
	rnal	16.0	łРМ	998	877	888	899	910	921	933	944	926	967	979	991	003	015	028	040	053
	Exte	[0	N	394	91	940	320	202	96,	391	166	197	702	322	142	98	98	333 1)74 1	19
		8 [.2	M	8 13	0 17	1 15	2 16	4 17	5 17	7 18	9 16	1 20	3 22	5 23	7 24	0 25	2 26)5 28	8 26	31
		0	RP) 83	3 85	1 86	3 87	1 88	68	2 90) 91	33	94	3 95	1 96	4 98	66	2 100	2/10-	2100
		.17]	≥	132	138	146	153	162	170	180	190	200	211(222	234	246	259	272	286	300
H		17.0	₽M	810 1320 838 1394 866 1469	822 1388	833	845	857	869 1709 895 1796 921 1883	881	893	902	918	930	943	926	696	982	995	80
e 60		2]	V	46			22			14		60		25	40			10	25	92
has][1	М	1 12	3 13	5 13	7 114	9 15	2 16	4 17	7 18	9 19	2 20	5 21	8 22	1 23	4 24	8 26	1 27	5 28
-31		0.	RP	3 78	9 2	1 80	81	82	84	3 85	98	87	88	6	91	3 93	94	95	6 97	86 (
72 –		.12]	Ν	1173	1236	130	1377	1455	1538	1626	1719	1817	1919	2027	214(2258	2381	2509	2642	2780
0, 5] 2 [PM	52	764	76	89	301	314	327	340	353	998	379	392	906	320	333	147	961
Voltage 208/230, 460, 575 — 3 Phase 60)][VR	691 1029 721 1101 752 1173 781 1246	672 1014 703 1087 734 1161 764 1236 793 1312	686 1074 717 1150 747 1227 776 1304 805 1382	97	73 8	53 8	39	50	24 8	25 8	30	41 8	99	3/2/	05	32 6	89
/230		1.1	۸ ا	11	11	12	12	13	14	15	5 16	17) 18	19	3 20) 21	1 22	3 24	5 25	7 26
208		0.4	RPI	.72	782	747	759	322	78	799	81,2	825	§83	85,	998)88	768	306	376	63
tage		[/0	M	029	087	150	218	291	369	452	540	633	731	834	942	055	173	296	424	557
N		.3 [.	M	11)3 1	17 1	30	13 1	96 1	70	34 1	37 1	11	25 1	39 1	54 2	88	32 2	37 [2	12
0		0	RF		4 70	4 7	9 7	72 0	5 75	2 9	1 78	2 79	-8 2	8 8	3 8%	4 86	8	0 88	2 86	9
C12		.05	Μ	1	101	107	113	121	128	136	145	154	163	173	184	195	206	219	231	244
æ		0.2	₽M	1	672	989	669	713	727	741	755	69/	783	797	812	826	841	856	871	988
el R		2]	N F	П	<u> </u>	<u> </u>	191	59	0.5	181	194	52	45	143	46	54	129	982	80	36
Model RKRL-C120		1 [.0	RPM W RPM	H	-		3 10	2 11	5 12	1 12	5 13	0 14	4 15	9 16	4 17	9 18	4 19	9 20	4 22	9 23
_		0	RP	1	-	1	99	789	69	71	72	74(127	76	78	79	8	82	84	86
		FIUW CEM [1.02] 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	6	510]	557]	3400 [1604]	3500 [1652] 668 1061 699 1139 730 1218 759 1297 789 1377 817 1457	3600 [1699] 682 1129 713 1210 743 1291 772 1373 801 1455 829 1538	3700 [1746] 696 1202 727 1285 756 1369 785 1453 814 1538 842 1623	3800 [1793] 711 1281 741 1366 770 1452 799 1539 827 1626 854 1714 881 1802 907 1891 933 1981 957 2071 982 2162 1065 2253 1051 2253 1051 2438 1073 2531 1094 2625 1114 2719 1134 2814 1154 2910 1175 3006	3900 [1840] 725 1364 755 1451 784 1540 812 1629 840 1719 867 1809	4000 [1888] 740 1452 769 1542 797 1633 825 1724 853 1817 879 1909	4100 [1935] 754 1545 783 1637 811 1731 839 1825 866 1919 892 2015	4200 [1982] 769 1643 797 1738 825 1834 852 1930 879 2027 <mark> 905 2</mark> 125	4300 [2029] 784 1746 812 1843 839 1942 866 2041 <u> 892 2140</u> 918 2240	4400 [2076] 799 1854 826 1954 854 2055 880 2156 906 2258 931 2361	4500 [2123] 814 1967 841 2069 868 2173 894 2277 920 2381 944 2486	4600 [2171] 829 2085 856 2190 882 2296 908 2402 933 2509 958 2616	4700 [2218] 844 2208 871 2315 897 2424 922 2532 947 2642 971 2752	4800 [2265] 860 2336 886 2446 912 2557 937 2668 961 2780 985 2892
	¥ 5			3200 [1510]	3300 [1557]	10 [1	10 [1	10 [1	10 [1	1) 0(10 [1	10 [1	10 [1	10 [1	2] 0(2) 0(2) 0()0 [2	2] مر	2) 0(
		5	5	320	33(34(35(360	370	380	390	400	410	420	43(44(45(460	470	48(

NOTE: L-Drive left of bold line, M-Drive right of bold line.

3 [2237.1]	
SK65H RK65H 1VP-44 1 5 6 1 2 3 4 5 706 667 1160 1117 1068 1014 960	2 [1491.4]
5 6 1 2 3 4 5 706 667 1160 1117 1068 1014 960	ВК90Н
5 6 1 2 3 4 5 706 667 1160 1117 1068 1014 960	1VP-44
706 667 1160 1117 1068 1014 960	2 3
	822 785 747

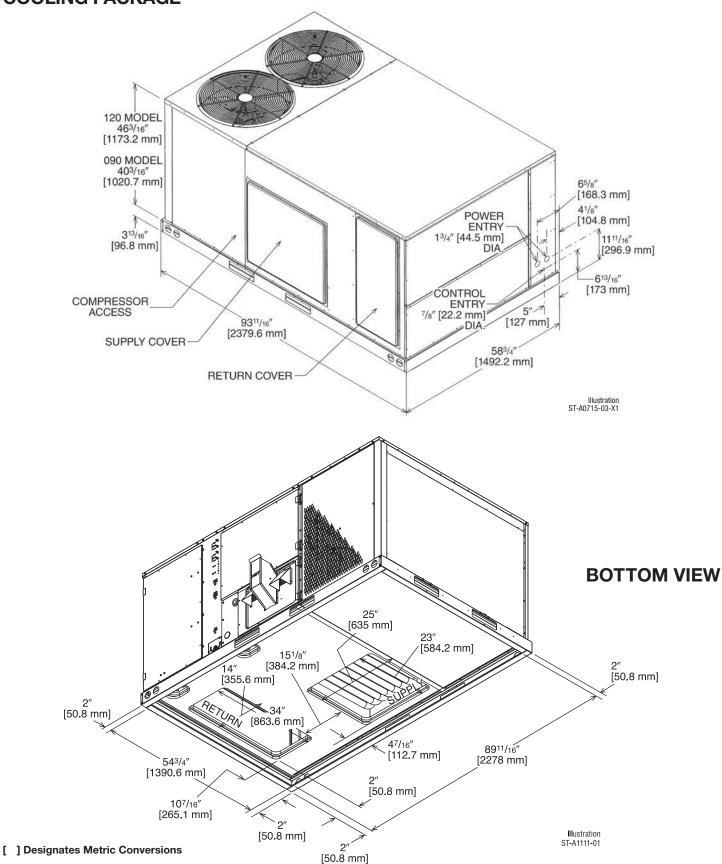
NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not yet motor sheave below minimum or maximum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE-10 TON [35.1 kW]

						Compon	Component Airflow Resistance	Resistance		
Airflow CFM [L/s]	Airf	Airflow Correction Factors*	*_	Wet Coil	Downflow	Downflow Economizer RA Damper Open	Horizontal Economizer RA Damper Open	Concentric Grill RXRN-FA665 or RXRN-FA75 & Transition RXMC-CD04	Concentric Grill RXRN-AA61 or RXRN-AA71& Transition RXMC-CE05	Concentric Grill RXRN-AA66 or RXRN-AA76 & Transition RXMC-CF06
	Total MBH	Sensible MBH	Power kW			Resis	Resistance — Inches of Water [kPa]	ater [kPa]		
3200 [1510]	96:0	0.87	96.0	0.06 [.01]	0.05 [.01]	0.09 [.02]	0.05 [.01]	0.31 [.08]	-	I
3300 [1557]	76.0	0.88	0.99	0.07 [.02]	0.05 [.01]	0.10 [.02]	0.05 [.01]	0.34 [.08]	I	ı
3400 [1604]	76.0	06:0	0.99	0.07 [.02]	0.05 [.01]	0.10 [.02]	0.06 [.01]	0.37 [.09]	I	I
3500 [1652]	0.98	0.92	0.99	0.07 [.02]	0.06 [.01]	0.11 [.03]	0.06 [.01]	I	I	I
3600 [1699]	96.0	0.93	0.99	0.08 [.02]	0.06 [.01]	0.11 [.03]	0.06 [.01]	I	0.16 [.04]	I
3700 [1746]	0.99	0.95	1.00	0.08 [.02]	0.06 [.01]	0.12 [.03]	0.06 [.01]		0.18 [.04]	1
3800 [1793]	0.99	26.0	1.00	0.08 [.02]	[20:] 20:0	0.12 [.03]	0.07 [.02]	_	0.19 [.05]	1
3900 [1840]	1.00	0.99	1.00	0.08 [.02]	0.07 [.02]	0.13 [.03]	0.07 [.02]	-	0.20 [.05]	1
4000 [1888]	1.00	1.00	1.01	0.09 [.02]	[20:] 20:0	0.13 [.03]	0.07 [.02]	_	0.21 [.05]	1
4100 [1935]	1.00	1.02	1.01	0.09 [.02]	0.08 [.02]	0.14 [.03]	0.07 [.02]	I	0.23 [.06]	ı
4200 [1982]	1.01	1.04	1.01	0.09 [.02]	[20:] 80:0	0.14 [.03]	0.08 [.02]	_	0.24 [.06]	1
4300 [2029]	1.01	1.06	1.01	0.10 [.02]	[20:] 80:0	0.15 [.04]	0.08 [.02]	1	0.25 [.06]	ı
4400 [2076]	1.02	1.07	1.02	0.10 [.02]	[20:] 80:0	0.15 [.04]	0.08 [.02]	_	0.27 [.07]	1
4500 [2123]	1.02	1.09	1.02	0.10 [.02]	0.09 [.02]	0.16 [.04]	0.09 [.02]	I	I	I
4600 [2171]	1.03	1.11	1.02	0.10 [.02]	[20:] 60:0	0.16 [.04]	0.09 [.02]		_	0.30 [.07]
4700 [2218]	1.03	1.12	1.03	0.11 [.03]	[20:] 60:0	0.17 [.04]	0.09 [.02]	_		0.31 [.08]
4800 [2265]	1.04	1.14	1.03	0.11 [.03]	0.10 [.02]	0.17 [.04]	0.10 [.02]	_	I	0.32 [.08]

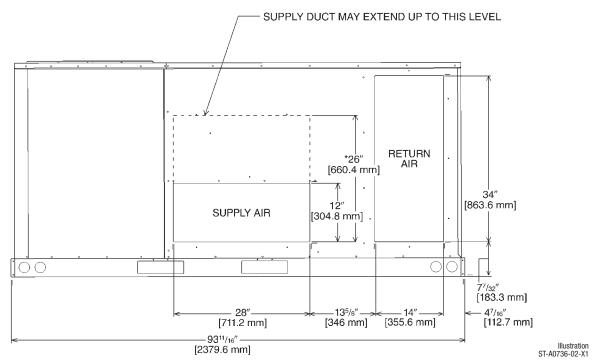
^{*}Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.


[] Designates Metric Conversions

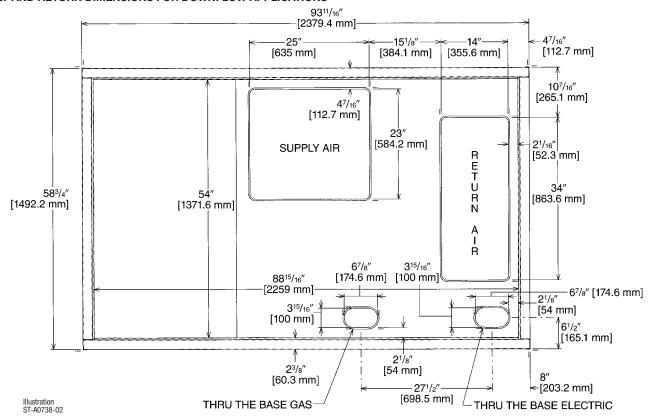
			EL	ECTRICAL	L DATA – I	RKRL-				
		CO90CL HO90CR	CO90CM HO90CS	CO9OCN HO9OCT	CO90DL HO90DR	CO90DM HO90DS	CO90DN HO90DT	C090YL	C090YM	CO90YN
_	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506	518-632	518-632	518-632
atio	Volts	208/230	208/230	208/230	460	460	460	575	575	575
l iii	Minimum Circuit Ampacity	44/44	44/44	49/49	21	21	24	16	16	21
Unit Information	Minimum Overcurrent Protection Device Size	50/50	50/50	60/60	25	25	30	20	20	25
ח	Maximum Overcurrent Protection Device Size	50/50	50/50	60/60	25	25	30	20	20	25
	No.	2	2	2	2	2	2	2	2	2
	Volts	200/240	200/240	200/240	480	480	480	600	600	600
=	Phase	3	3	3	3	3	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450
Sor	HP, Compressor 1	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4
res	Amps (RLA), Comp. 1	13.6/13.6	13.6/13.6	13.6/13.6	6.1	6.1	6.1	4.2	4.2	4.2
m	Amps (LRA), Comp. 1	83.1/83.1	83.1/83.1	83.1/83.1	41	41	41	33	33	33
ت	HP, Compressor 2	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4
	Amps (RLA), Comp. 2	13.6/13.6	13.6/13.6	13.6/13.6	6.1	6.1	6.1	4.2	4.2	4.2
	Amps (LRA), Comp. 2	83.1/83.1	83.1/83.1	83.1/83.1	41	41	41	33	33	33
-	No.	2	2	2	2	2	2	2	2	2
Mot	Volts	208/230	208/230	208/230	460	460	460	575	575	575
sor	Phase	1	1	1	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
m	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4	1	1	1
ತ	Amps (LRA, each)	4.7/4.7	4.7/4.7	4.7/4.7	2.4	2.4	2.4	1.5	1.5	1.5
	No.	1	1	1	1	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460	460	575	575	575
Evaporator Fan	Phase	3	3	3	3	3	3	3	3	3
por:	HP	2	2	3	2	2	3	2	2	3
Eva	Amps (FLA, each)	8/8	8/8	13/13	4	4	7	4	4	8
	Amps (LRA, each)	56/56	74.5/74.5	74.5/74.5	28	28	38.1	19	19	20

www.SureComfort.com ______ 25

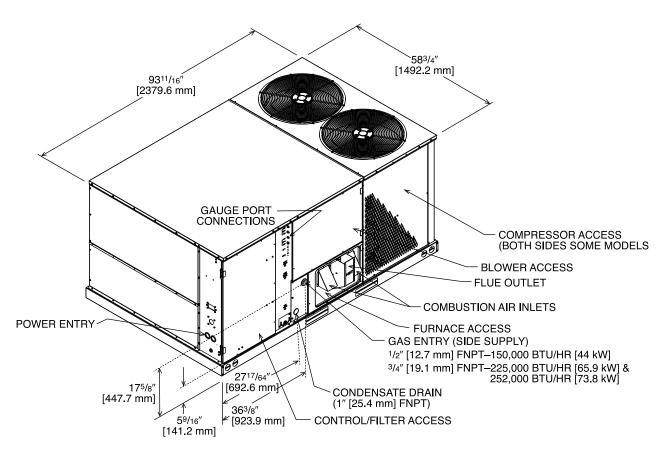
		ELEC	TRICAL DATA	A – RKRL-			
		C120CL H120CR	C120CM H120CS	C120DL H120DR	C120DM H120DS	C120YL	C120YM
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632
a ie	Volts	208/230	208/230	460	460	575	575
Ë	Minimum Circuit Ampacity	49/49	54/54	23	26	18	23
Unit Information	Minimum Overcurrent Protection Device Size	60/60	60/60	25	30	20	30
-	Maximum Overcurrent Protection Device Size	60/60	60/60	25	30	20	30
	No.	2	2	2	2	2	2
	Volts	200/240	200/240	480	480	575	575
<u> </u>	Phase	3	3	3	3	3	3
M det	RPM	3450	3450	3450	3450	3450	3450
or [HP, Compressor 1	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4
Compressor Motor	Amps (RLA), Comp. 1	15.9/15.9	15.9/15.9	7.1	7.1	5.1	5.1
g [Amps (LRA), Comp. 1	110/110	110/110	52	52	39.5	39.5
త [HP, Compressor 2	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4	4 1/4
Γ	Amps (RLA), Comp. 2	15.9/15.9	15.9/15.9	7.1	7.1	5.1	5.1
	Amps (LRA), Comp. 2	110/110	110/110	52	52	39.5	39.5
or	No.	2	2	2	2	2	2
Mot	Volts	208/230	208/230	460	460	575	575
or [Phase	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3
g [Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	1	1
Ö	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	1.5	1.5
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575
Evaporator Fan	Phase	3	3	3	3	3	3
30ra	HP	2	3	2	3	2	3
Eva	Amps (FLA, each)	8/8	13/13	4	7	4	8
_ [Amps (LRA, each)	56/56	74.5/74.5	28	38.1	19	20


GAS HEAT / ELECTRIC COOLING PACKAGE

www.SureComfort.com ______ 27


GAS HEAT / ELECTRIC COOLING PACKAGE

SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

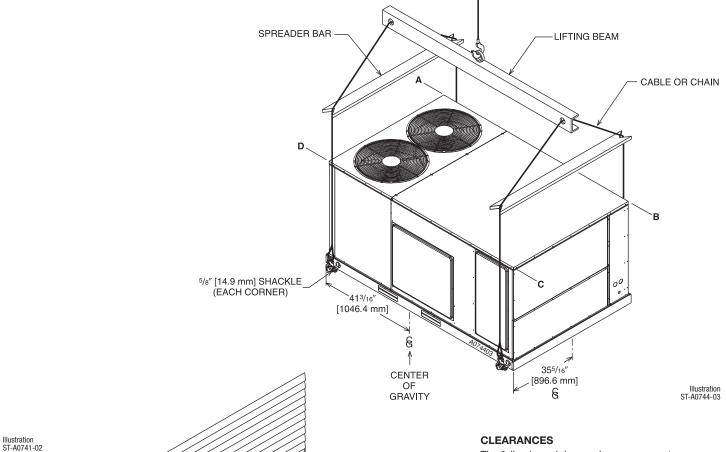

*RECOMMENDED DUCT DIMENSIONS ARE 26"

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

[] Designates Metric Conversions

GAS HEAT / ELECTRIC COOLING PACKAGE

[] Designates Metric Conversions


Illustration

VERTICAL CLEARANCE

WEIGHTS

Accessory	Shipping—Ibs [kg]	Operating—lbs [kg]
Economizer	90 [40.82]	81 [36.70]
Power Exhaust	44 [19.96]	42 [19.05]
Fresh Air Damper (Manual)	26 [11.79]	21 [9.53]
Fresh Air Damper (Motorized)	43 [19.50]	38 [17.24]
Roof Curb 14"	90 [40.82]	85 [38.60]
Roof Curb 24"	140 [63.50]	135 [61.23]

Capacity Tons [k	W]	Corner	Weights	by Perd	entage
		Α	В	С	D
6-12.5 [21.1-44.	.0]	33%	27%	17%	23%

The following minimum clearances must be observed for proper unit performance and serviceability.

Recommended Clearance In. [mm]	Location
48 [1219]	A - Front
18 [457]	B - Condenser Coil
18 [457]	C - Duct Side
18 [457]	*D - Evaporator End
60 [1524]	E - Above
*Without Economizer. 48" [1	219 mm] With Economizer

[] Designates Metric Conversions

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Economizer w/Single Enthalpy (Downflow)	AXRD-PJCM3	90 [40.8]	81 [36.7]	Yes
Economizer w/Single Enthalpy and Smoke Detector (Downflow)	AXRD-SJCM3	91 [41.3]	82 [37.2]	Yes
Dual Enthalpy Kit	RXRX-AV03	1 [.5]	1 [.5]	No
Horizontal Economizer w/Single Enthalpy	AXRD-RJCM3	94 [42.6]	89 [40.4]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No
Manual Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDA1	26 [11.8]	21 [9.5]	No
Manual Fresh Air Damper (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.1]	No
Motor Kit for RXRF-KDA1 (Left Panel Mounted)	RXRX-AW02	35 [15.9]	27 [12.2]	No
Modulating Motor Kit w/position feedback for RXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No
Motorized Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDB1	43 [19.5]	38 [17.2]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
Posts hadout	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to 20" Round)	RXMC-CD04 ①	15 [6.8]	13 [5.9]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 @	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 ③	20 [9.1]	18 [8.2]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [1.0]	Yes
Outdoor Coil Louver Kit	AXRX-AAD02A (7.5 Ton)	29 [13.1]	26 [11.8]	Yes
Outdoor Coil Louver Kit	AXRX-AAD03A (10 Ton)	32 [14.5]	28 [12.7]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [.7]	Yes
Unfused Service Disconnect	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.5]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No

NOTES: ① Used with RXRN-FA65 and RXRN-FA75 concentric diffusers.

NOTICE: Please refer to conversion kit index provided with the unit for LP conversion kit.

[] Designates Metric Conversions

www.SureComfort.com _____ 3

 $[\]ensuremath{\text{@}}$ Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

③ Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

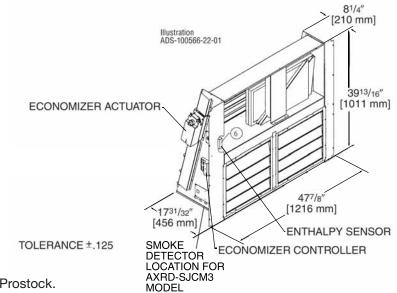
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

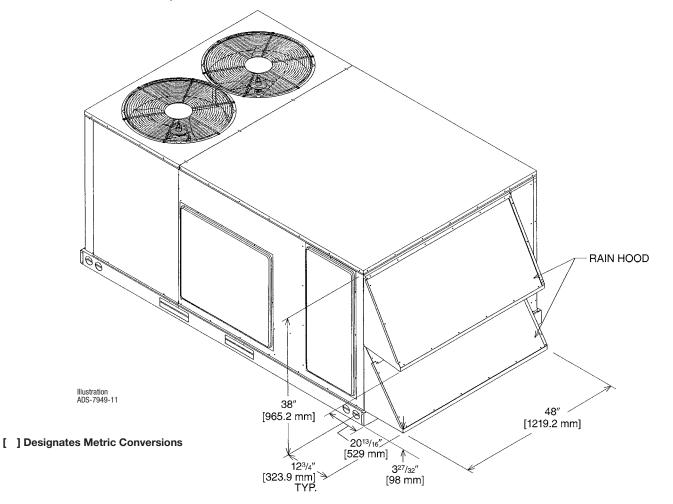
LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

32 _____ www.SureComfort.com

ECONOMIZER FOR DOWNFLOW DUCT INSTALLATION

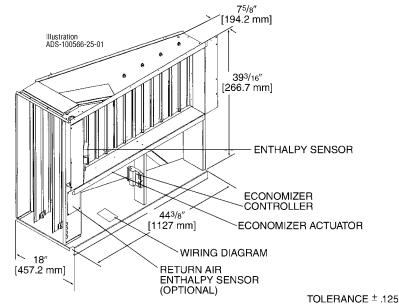

Use to Select Factory Installed Options Only


AXRD-PJCM3-Single Enthalpy (Outdoor) and AXRD-SJCM3 Single Enthalpy with Smoke Detector

RXRX-AV03—Dual Enthalpy Upgrade Kit

RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features **Honeywell** Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen

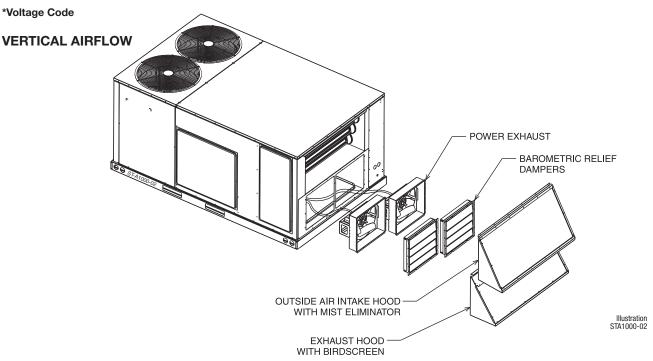

www.SureComfort.com 3

ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION

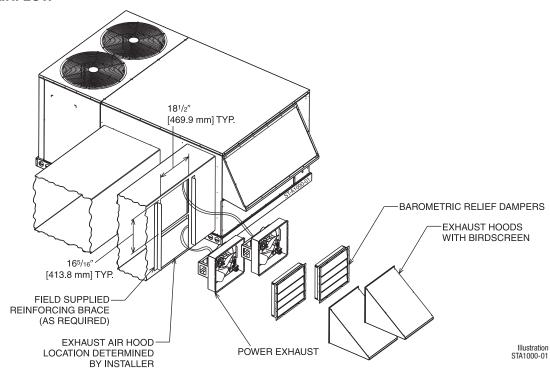
Field Installed Only

AXRD-RJCM3—Single Enthalpy (Outdoor) RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features **Honeywell** Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer
 (270 ohm) (Honeywell #S963B1136) is Available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen


EXHAUST AIR HOOD LOCATION DETERMINED BY INSTALLER [1219 mm]

[1087 mm]

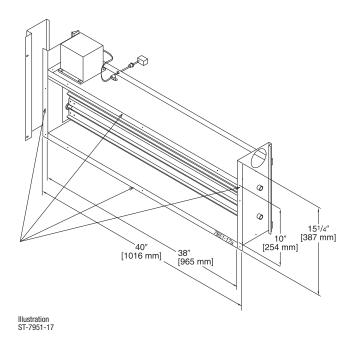

[] Designates Metric Conversions

POWER EXHAUST KIT FOR AXRD-PJCM3(-), AXRD-SJCM3(-) ECONOMIZERS

RXRX-BFF02 (C, D, or Y*)

HORIZONTAL AIRFLOW

Model No.	No. of Fans Volts	Volto	Phase	HP (ea.)	Low Speed		High Speed ①		FLA	LRA
		VUILS			CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8
RXRX-BFF02Y	2	575	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.81	1.5

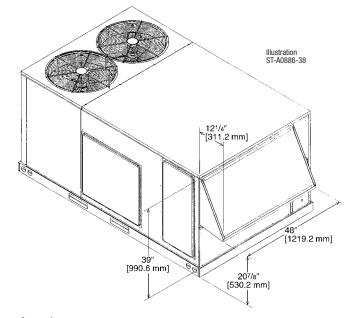

NOTES: ${\scriptsize \textcircled{\tiny 1}}$ Power exhaust is factory set on high speed motor tap.

[] Designates Metric Conversions

② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

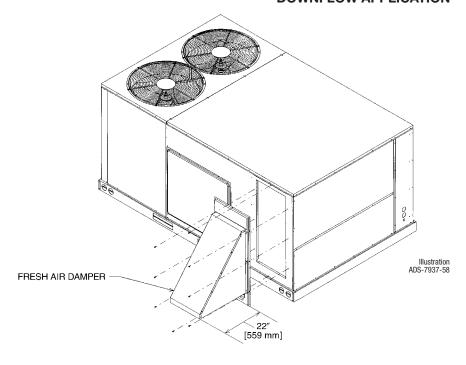
MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for AXRF-KDA1)

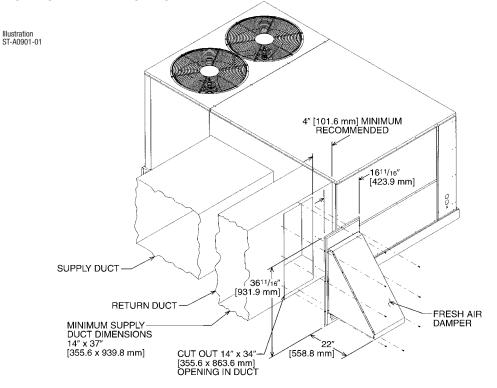

AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

[] Designates Metric Conversions

MOTORIZED DAMPER KIT RXRX-AW04 (Modulating Motor Kit with position feedback for AXRF-KDA1)


- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen


FRESH AIR DAMPER (Cont.)

AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)

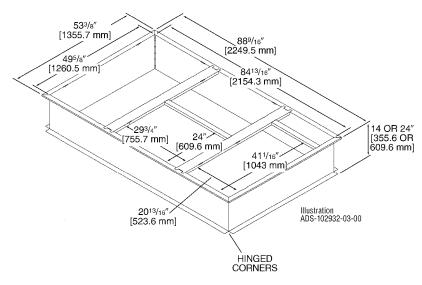
DOWNFLOW APPLICATION

HORIZONTAL APPLICATION

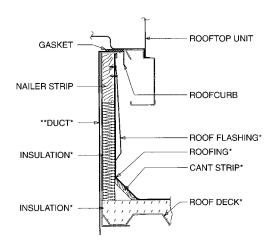
[] Designates Metric Conversions

www.SureComfort.com ______ 37

ROOFCURBS (Full Perimeter)


- Sure Comfort's roofcurb design can be utilized on all 7.5-10 ton [26.4-35.2 kW] RKRL- models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 1" [25 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (40' [12.2 m]) provided with Roofcurb.
- Packaged for easy field assembly.

Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]

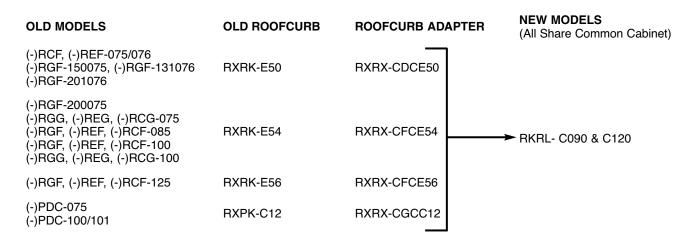

Illustration ST-A0743-02 SUPPLY RETURN **INSTALL GASKET** UNIT ROOFCURB SUPPLY RETURN NAILING STRIP DUCT FLANGE NOT TO EXCEED 1" [25.4 mm] SUPPLY DUCT CAULK ALL JOINTS WATERTIGHT

TYPICAL INSTALLATION

ROOFCURB INSTALLATION

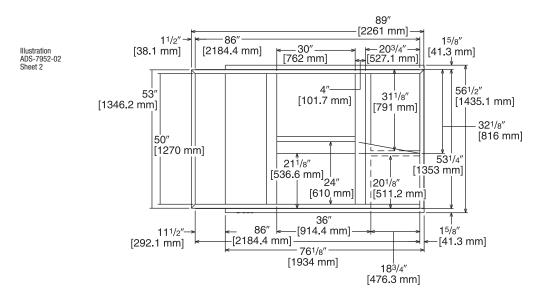
[] Designates Metric Conversions

HINGED

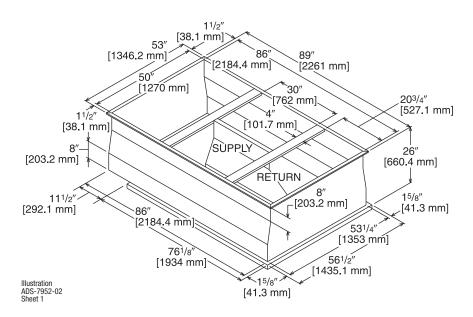

*BY CONTRACTOR

RETURN DUCT

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

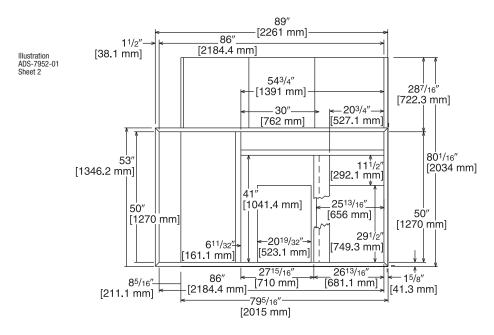

Illustration ST-A0743-02

ROOFCURB ADAPTERS



NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced. RKRL- C090, C120 fit on the same curb as the RKKB-A090, A120, A150, A181, RKMB- A090 & A120, RKNB- A090 & A120

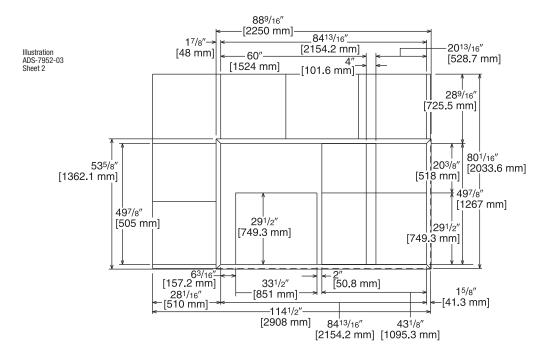
RXRX-CDCE50

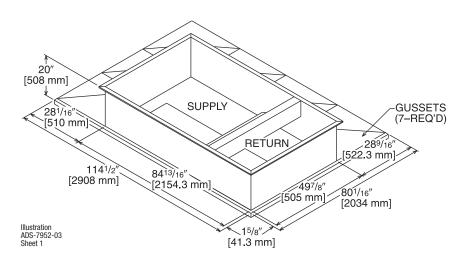

TOP VIEW

[] Designates Metric Conversions

40

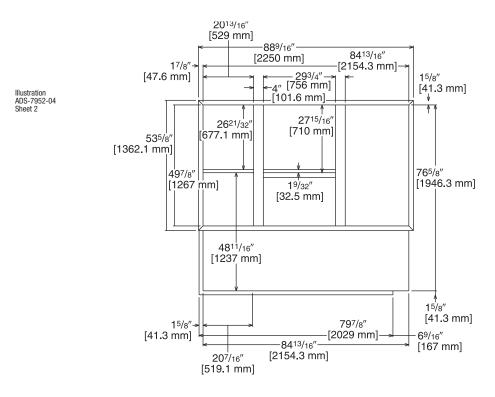
RXRX-CFCE54

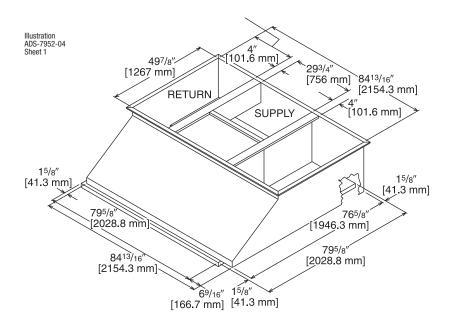

TOP VIEW


[] Designates Metric Conversions

www.SureComfort.com _______41

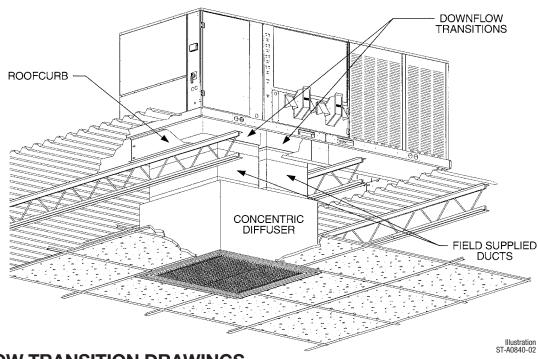
RXRX-CFCE56


TOP VIEW

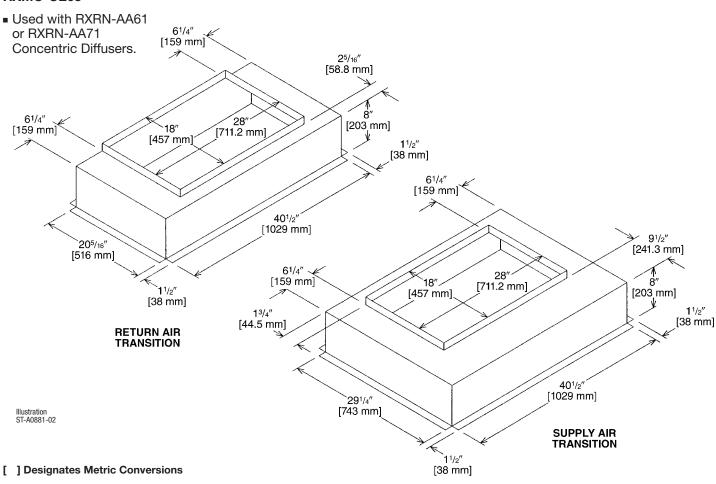

[] Designates Metric Conversions

42 _____ www.SureComfort.com

RXRX-CGCC12


TOP VIEW

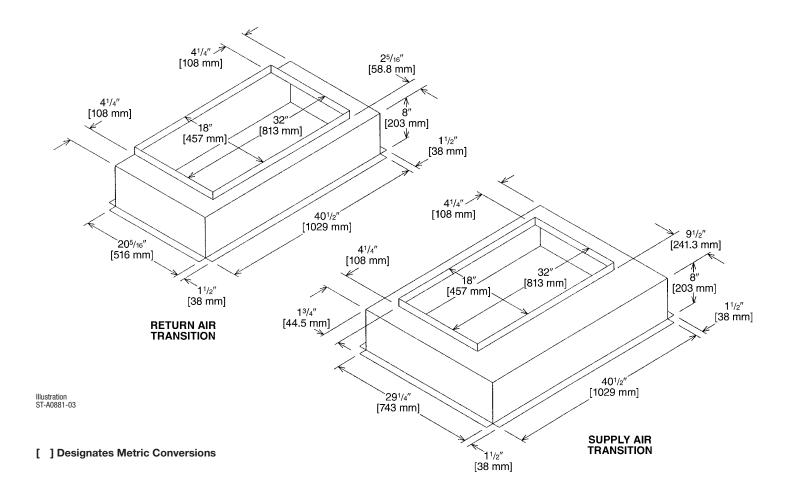
[] Designates Metric Conversions


www.SureComfort.com 43

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

RXMC-CE05

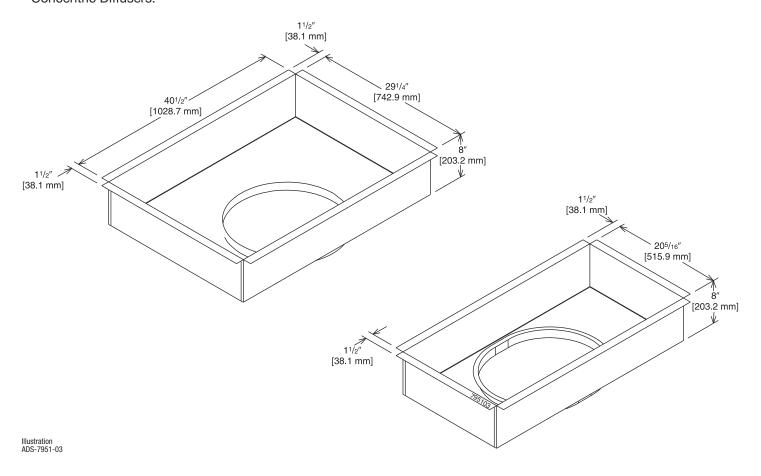


44 _____ www.SureComfort.com

DOWNFLOW TRANSITION DRAWINGS

RXMC-CF06

 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

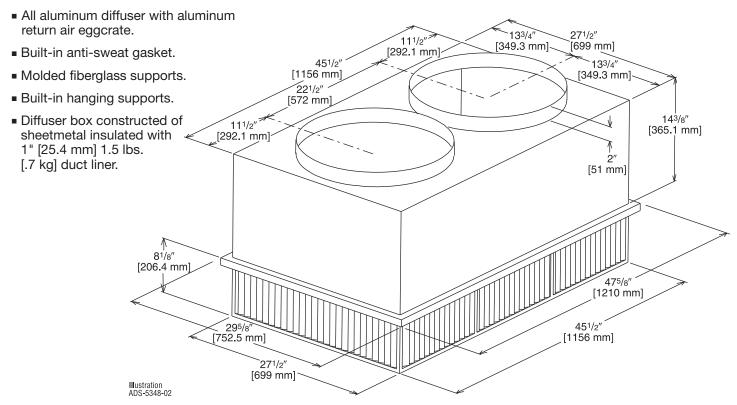


www.SureComfort.com 45

DOWNFLOW TRANSITION DRAWINGS

RXMC-CD04

 Used with RXRN-FA65 or RXRN-FA75 Concentric Diffusers.


[] Designates Metric Conversions

46

CONCENTRIC DIFFUSER-STEP DOWN

AXRN-FA65 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

ENGINEERING DATA[®]

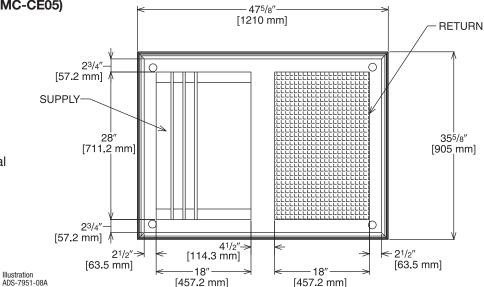
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

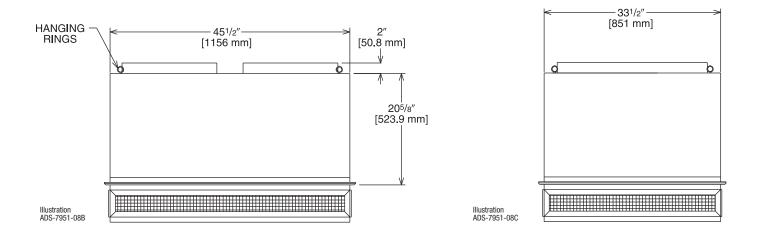
NOTES: ① All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.

[] Designates Metric Conversions

www.SureComfort.com ______ 47


④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

AXRN-AA61 (8.5 & 10 Ton [29.9 kW & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level 4 (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: 1 All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- $\ensuremath{\mathfrak{I}}$ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

[] Designates Metric Conversions

CONCENTRIC DIFFUSER—STEP DOWN 18" x 32" [457.2 x 813 mm]

RXRN-AA66 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

475/8" [1210 mm] RETURN 33/4" [95.3 mm] SUPPLY-415/8" [813 mm] [1057.3 mm] 33/4 [95.3 mm] 4¹/₂" [114.3 mm] 21/2" 18"-18" [457.2 mm] [63.5 mm] [63.5 mm] [457.2 mm]

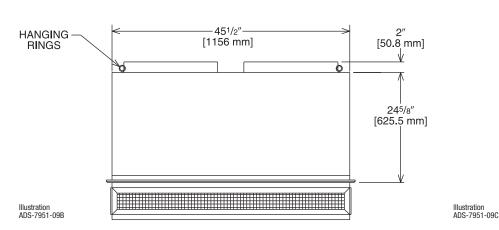
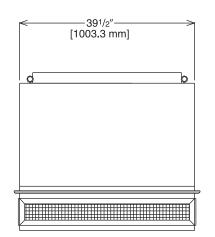



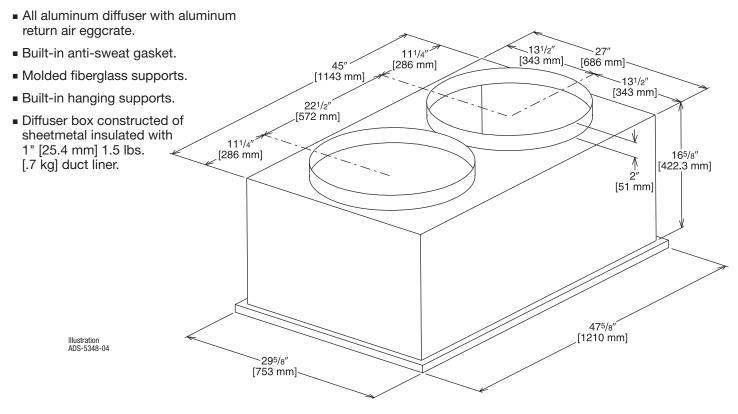
Illustration ADS-7951-09A

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	26-31 [7.9-9.4]	841 [4.3]	30
	4800 [2265]	0.32 [0.080]	27-32 [8.2-9.8]	878 [4.5]	30
RXRN-AA66	5000 [2359]	0.34 [0.085]	28-33 [8.5-10.1]	915 [4.6]	30
	5200 [2454]	0.36 [0.090]	28-34 [8.5-10.4]	951 [4.8]	30
	5400 [2548]	0.39 [0.097]	29-35 [8.8-10.7]	988 [6.0]	30

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


[] Designates Metric Conversions

www.SureComfort.com 49

FLUSH MOUNT CONCENTRIC DIFFUSER-FLUSH

RXRN-FA75 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

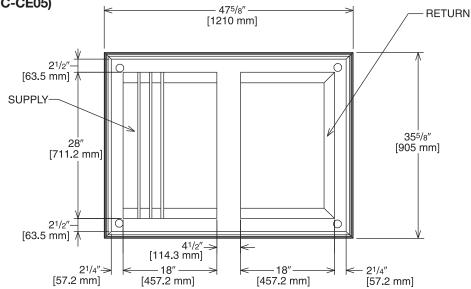
ENGINEERING DATA[®]

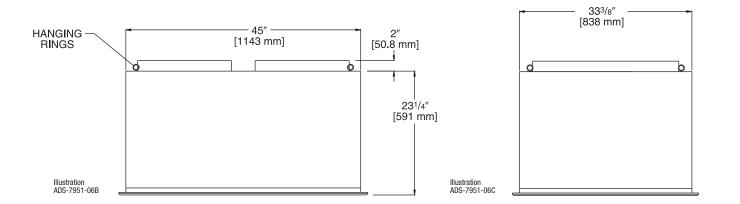
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
RXRN-FA75	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council quidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.

[] Designates Metric Conversions


④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (8.5 & 10 Ton [29.9 & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
RXRN-AA71	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: 1 All data is based on the air diffusion council guidelines.

- $\ensuremath{@}$ Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

Illustration ADS-7951-06A

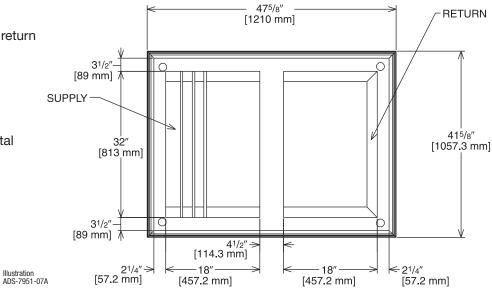
[] Designates Metric Conversions

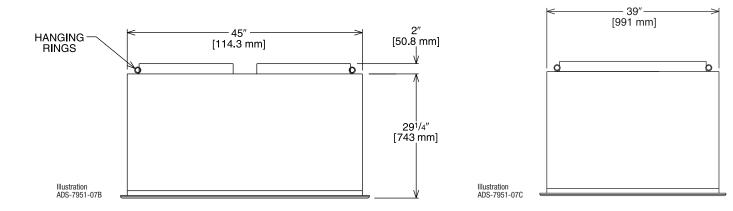
www.SureComfort.com ______ 5

CONCENTRIC DIFFUSER—FLUSH 18" x 32" [457.2 x 813 mm]

RXRN-AA76 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts


 All aluminum diffuser with aluminum return air eggcrate.


■ Built-in anti-sweat gasket.

Molded fiberglass supports.

■ Built-in hanging supports.

 Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ⊕ (dbA)
	4600 [2171]	0.31 [0.077]	25-34 [7.6-10.4]	922 [4.7]	40
	4800 [2265]	0.32 [0.080]	26-35 [7.9-10.7]	962 [4.9]	40
RXRN-AA76	5000 [2359]	0.34 [0.085]	27-36 [8.2-11.0]	1002 [5.1]	40
	5200 [2454]	0.36 [0.090]	30-39 [9.1-11.9]	1043 [5.3]	45
	5400 [2548]	0.39 [0.097]	32-41 [9.8-12.5]	1083 [5.5]	45

NOTES: $\ensuremath{\textcircled{0}}$ All data is based on the air diffusion council guidelines.

- $\ensuremath{\mathfrak{D}}$ Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

[] Designates Metric Conversions

Guide Specifications RKRL-C/H 090 thru 120

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification institute. www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 7.5 to 10 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

23 07 16.13.A. Evaporator fan compartment:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with foil face on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 07 16.13.B. Gas heat compartment:

- 1. Aluminum foil-faced fiberglass insulation shall be used.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters:

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2/ exhaust/occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

www.SureComfort.com _____ 53

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.
- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 13.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side (C072-C151 units have a resettable circuit breaker).
- 2. Shall utilize color-coded wiring.
- 3. Unit shall be include self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side with a resettable circuit breaker.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 6. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections:
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 33 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 (6-12.5 Ton) Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2010 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 50°F (10°C), ambient outdoor temperatures. Low ambient accessory kit is necessary if mechanically cooling at ambient temperatures to 0°F (-17.7°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

www.SureComfort.com _____ 55

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel.
- 2. Unit cabinet exterior paint shall be: powder coat paint.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1-1/2 lb density, flexible fiberglass insulation, foil faced on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
- 4. Base of unit shall have a location for thru-the-base gas and electrical connections standard.
- 5. Base Rail
 - a. Unit shall have base rails on a minimum of 4 sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop for fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material and be removable for cleaning.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - d. Shall be able to be easily removed.
- 7. Top panel:
 - a. Shall be a single piece top panel over indoor section.
- 8. Gas Connections:
 - a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a continuous raised, flange around opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet a a single, factory-prepared, continuous raised flange opening in the basepan.
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, continuous raised flange opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 10. Component access panels (standard)
 - a. Cabinet panels shall be easily opened for servicing.
 - Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and filters shall have hinges with 1/4 turn fasteners.
 - c. 1/4 fasteners shall be permanently attached.

23 81 19.13.I. Gas Heat

- 1. General
 - a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
 - b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
 - c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
 - d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microcompressor.
 - a. IFC board shall notify users of fault using a LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
 - d. Each heat exchanger tube shall contain tubulators for increased heating effectiveness.

- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motor and blower
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.
 - b. Shall be made from steel with a corrosion-resistant finish.
 - c. Shall be permanently lubricated sealed bearings.
 - d. Shall have inherent thermal overload protection.
 - e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall be aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed. (Note: 12-1/2 ton utilizes MicroChannel condensing coil).
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 400 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. TXV metering system shall prevent mal-distribution of two-phase refrigerant. C072 shall use orifice refrigerant control.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. External pressure gauge ports access shall be located in front exterior of cabinet.
- 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - c. Compressors shall be internally protected from high discharge temperature conditions.
 - d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - e. Compressor shall be factory mounted on rubber grommets.
 - f. Compressor motors shall have internal line break thermal and current overload protection.
 - g. Crankcase heaters shall not be required for normal operating range.
 - h. Compressor shall have molded electrical plug.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 320 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.

www.SureComfort.com _____ 57

2. Belt-driven Evaporator Fan:

- a. Belt drive shall include an adjustable-pitch motor pulley.
- b. Shall use sealed, permanently lubricated ball-bearing type.
- c. Blower fan shall be double-inlet type with forward-curved blades.
- d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. Enthalpy sensor shall be provided as standard. Outdoor air sensor set point shall be adjustable and shall range from 40 to 100°F / 4 to 38°C. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Dampers shall be completely closed when the unit is in the unoccupied mode.
 - m. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
 - o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
 - q. Economizer wire harness will have provision for smoke detector.
- 2. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 3. Liquid Propane (LP) Conversion Kit
 - Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 4. Flue Shield
 - a. Flue shield shall provide protection from the hot sides of the gas flue hood.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered style.

6. Unit-Mounted, Non-Fused Disconnect Switch:

- a. Switch shall be factory-installed, internally mounted.
- b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
- c. Shall be accessible from outside the unit.
- d. Shall provide local shutdown and lockout capability.

7. Convenience Outlet:

- a. Non-Powered convenience outlet.
- b. Outlet shall be powered from a separate 115-120v power source.
- c. A transformer shall not be included.
- d. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.
- e. Outlet shall include 15 amp GFI receptacle with independent fuse protection.
- f. Outlet shall be accessible from outside the unit.

8. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.

9. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- a. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- b. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

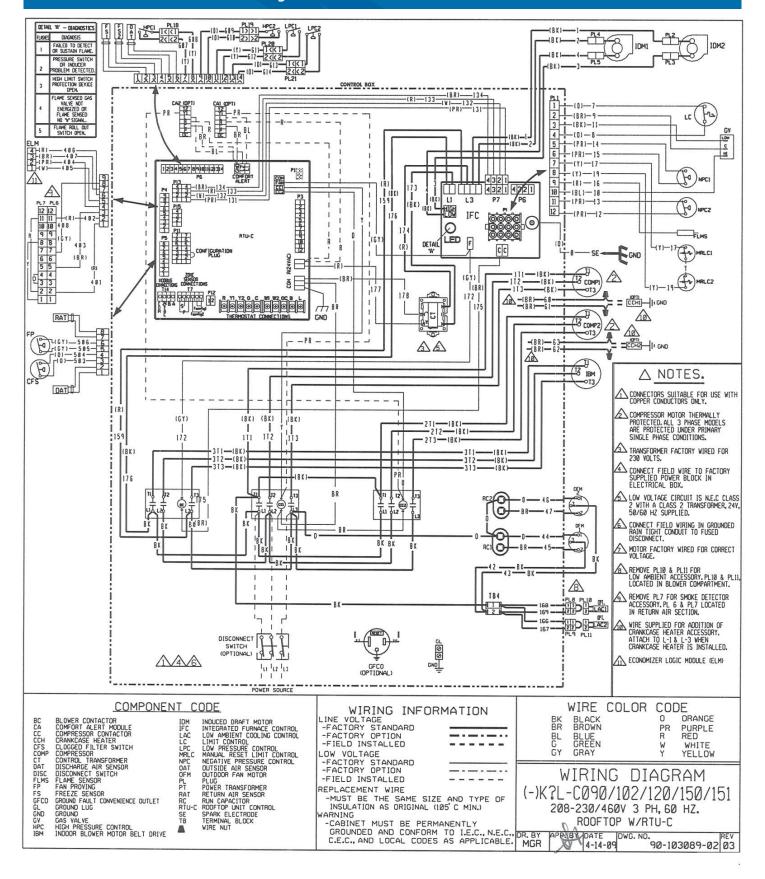
a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.

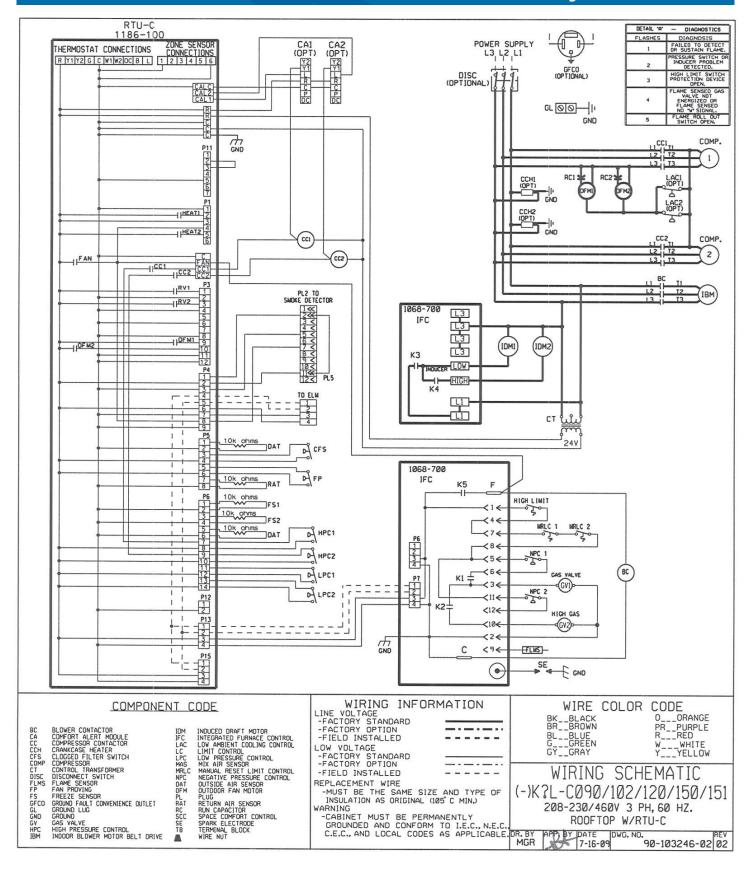
12. Return Air Enthalpy Sensor:

 a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

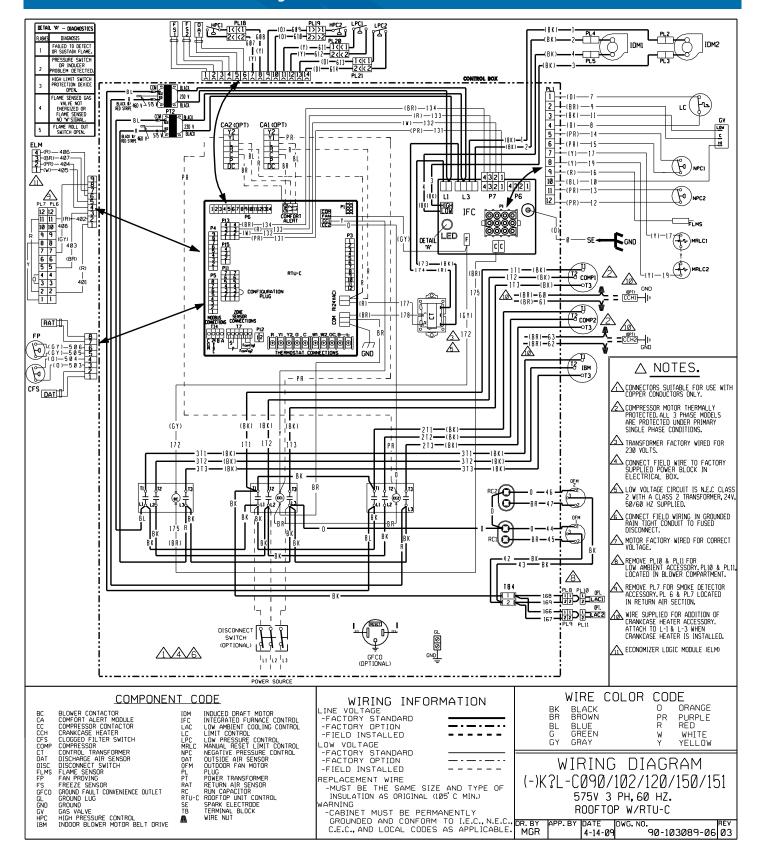
13. Indoor Air Quality (CO2) Sensor:

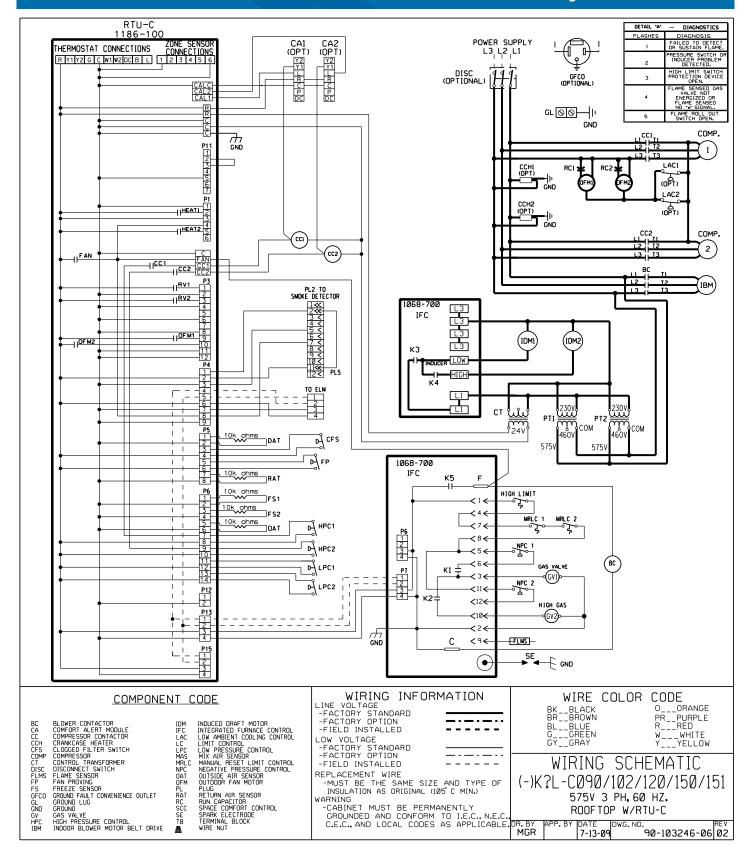
- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display. The set point shall have adjustment capability.

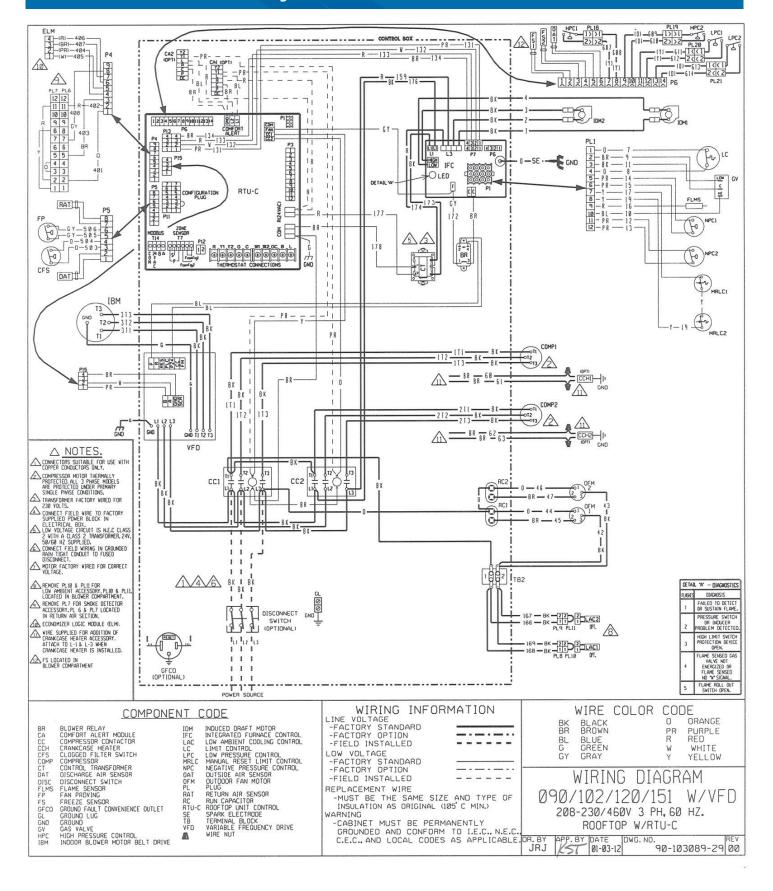

14. Smoke detectors:

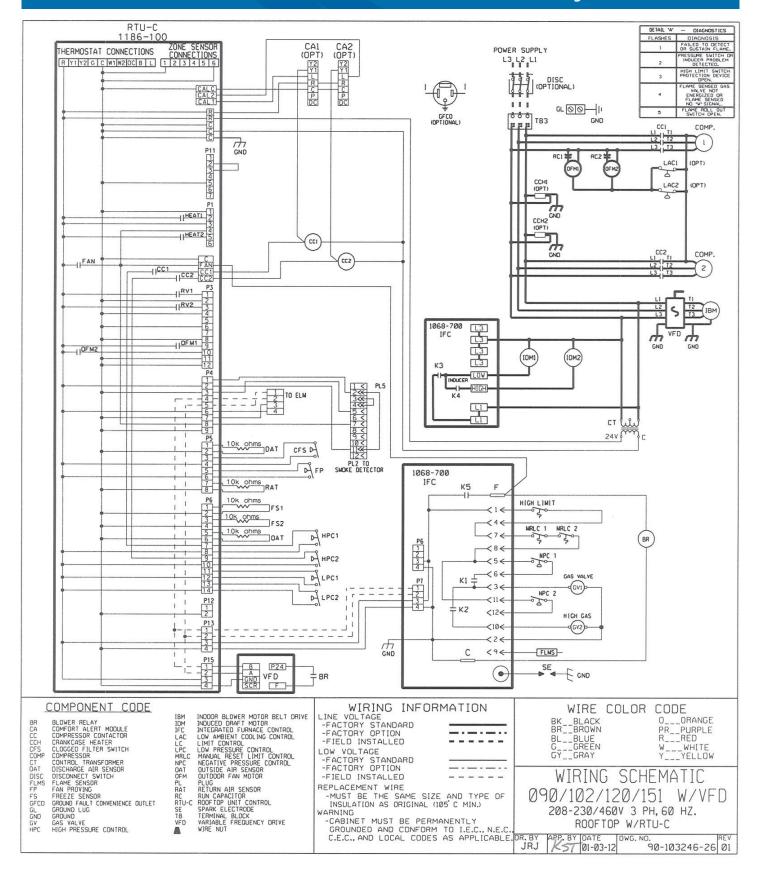

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - i. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

15. Barometric relief


- a. Shall include damper, seals, hard-ware, and hoods to relieve excess building pressure.
- b. Damper shall gravity-close upon shutdown.


www.SureComfort.com _____ 59




www.SureComfort.com ______61

www.SureComfort.com _____ 63

www.SureComfort.com ______65

Sura C	omfort®	DVDI C	/Ц	Package	Gac El	ectric Unit
Sure C	Jonnort	KKKL-C	/ П	Package	e Gas El	ectric unit

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Sure Comfort® will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Cor	npr	esso
-----	-----	------

3 Phase, Commercial Applications.....Five (5) Years Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years Parts

3 Phase, Commercial Applications.....One (1) Year

www.SureComfort.com ______6

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.