

Rheem Commercial Classic® Series Package Heat Pump

RJNL-C High Efficiency Series

With ClearControl™ Nominal Sizes 7.5 & 10 Ton [26.4 & 35.2 kW] ASHRAE 90.1-2010 Compliant Models

"Proper sizing and installation of equipment is critical to achieve optimal performance. Ask your Contractor for details or visit www.energystar.gov."

TABLE OF CONTENTS

Unit Features & Benefits	3-7
Model Number Identification	8
Options	9
Selection Procedure	10
General Data	
RJNL-C Series	11-14
General Data Notes	15
Gross Systems Performance Data	
RJNL-C Series	16-17
Airflow Performance	
RJNL-C Series	18-19
Units with Heater Kits	20-22
Electrical Data	
RJNL-C Series	23-24
Dimensional Data	25-28
Accessories	29-49
Mechanical Specifications	50-55
Wiring Diagrams	56-58
Limited Warranty	59

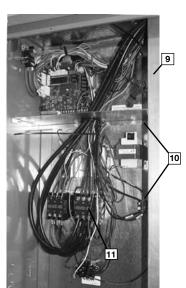
STANDARD FEATURES INCLUDE:

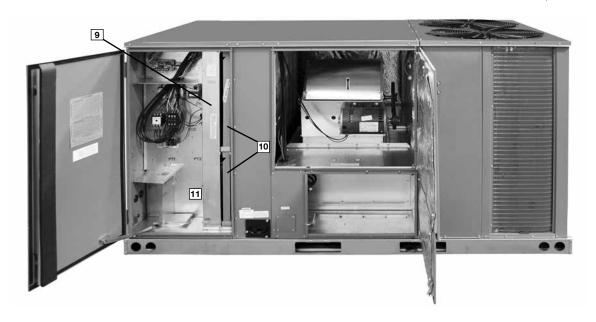
- R-410A HFC refrigerant.
- Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- · Convertible airflow.
- TXV refrigerant metering system.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.

- Forkable base rails for easy handling and lifting.
- Single point electrical connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils.
- Supplemental electric heat provides 100% efficient heating.
- Factory Installed ClearControl[™], a Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.

Rheem Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Rheem label (1) identifies the brand to the customer. The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The optional Rheem hail guard (4) is its trademark, and sets the standard for coil protection in the industry. Every Rheem package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return cover and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. The drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

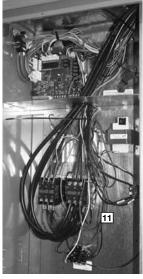

During development, each unit was tested to U.L. 1995, AHRI 340-370 and other Rheem-required reliability tests. Rheem adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (18). Contractors can rest assured that when a Rheem package unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, heating section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).

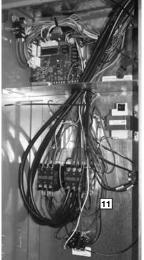
Control/filter blower and electric heat compartment access are through large, hinged-access panels secured with 1/4 turn fasteners. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found

on the control box cover. which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

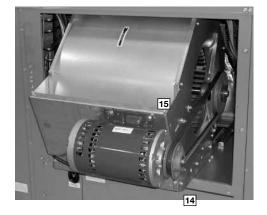

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

For added convenience in the field, a factory-installed convenience outlet (12) is available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip on the cooling control board. The high-voltage connection is terminated at the terminal block inside electric heat compartment. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

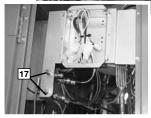

The externally mounted gauge ports, which are permanently identified by embossed wording that

clearly identifies the high pressure connection and the low pressure connection, extend through the compressor access panel (13). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

The blower compartment access door is hinged and secured with 1/4 turn fasteners to allow easy maintenance of the blower assembly, the entire assembly slides out by removing the 3/8" screws from the blower retention bracket. The adjustable



motor pulley (14) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the pulley is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Rheem has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (15) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.



13

The freeze sensor (16) is attached to the suction line in the blower section. The freeze sensor protects the compressor if evaporator coil gets too cold (below freezing) due to low airflow or low evaporator load and allows monitoring of the suction line temperature on the controller display. The high and low pressure switches (17) and the optional low ambient control are mounted on the gauge port lines inside the compressor access panel. The high pressure switch will shut off the com-

pressor if pressure exceeds 610 PSIG. The low pressure switch is used for loss of charge protection. The low ambient control allows for cooling operation down to 0 degrees ambient by cycling the outdoor fans. Enhanced feature demand defrost con-

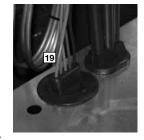
trol has high and low pressure control inputs with unique pressure switch logic built into the rooftop unit controller (RTU-C) to provide compressor and system protection without nuisance lock-outs. LED's and a LCD display on the unit controller provide diagnostic information for service personnel. (18)

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RJNL-C Package Heat Pump has a Rooftop Unit Controller

(RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/Integral control algorithms perform specific unit functions that govern unit

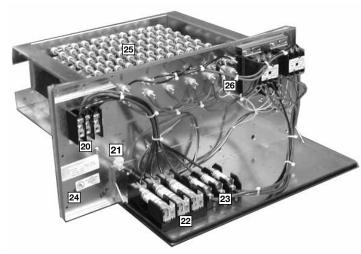
operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RJNL-C Package Heat Pump with the RTU-C is specifically designed to be applied in four distinct applications:

The RJNL-C is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.


The RJNL-C is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RJNL-C is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

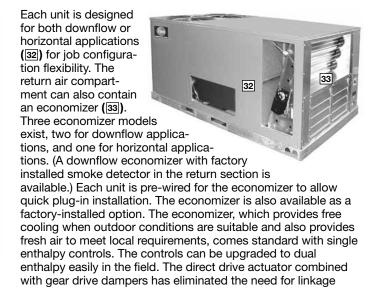
The RJNL-C is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.


A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network or connected to the "L-Terminal" of a thermostat for notification.

Inside the blower compartment the evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The thermal expansion valve and venturi distributor assure even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulk-

head or blower deck, a molded wire harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

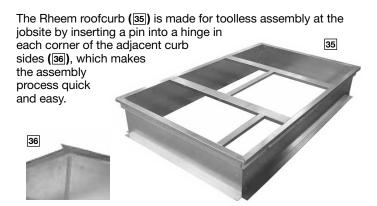

The heating compartment contains the latest electric furnace technology on the market. The 100% efficient electric furnace can be factory-installed or easily field-installed. Built with easeof-installation in mind, the electric furnace is completely wired for slide-in, plug-and-play installation in the field. With choices of 15 to 40 kilowatt offerings, the contractor is assured to get the correct amount of heating output to meet the designed heating load.

Power hook-up in the field is easy with single-point wiring to a terminal block (20) and a polarized plug for the low-voltage connection ([21]). The electric furnace comes with fuses for the unit ([22]) and for the electric furnace (23), and is UL certified (24). The electric heating elements are of a wound-wire construction (25) and isolated with ceramic bushings. The limit switch (26) protects the design from over-temperature conditions. Each electric furnace has the capability to be converted from singlestage operation to two-stage operation by removing a jumper on the low-voltage terminal strip.

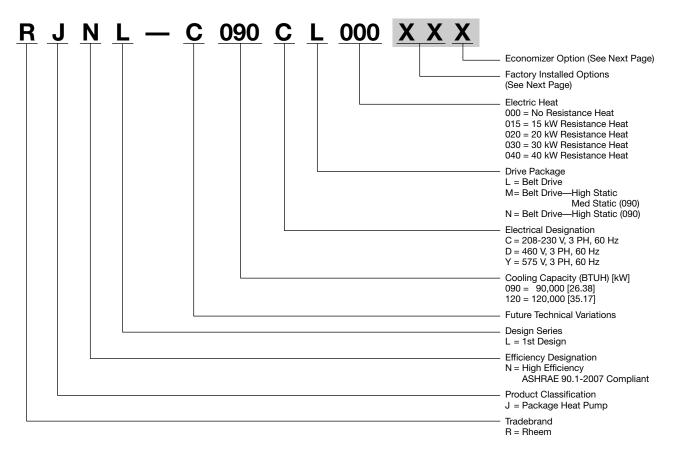
The compressor compartment houses the heartbeat of the unit. The scroll compressor (27) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines (28) are designed to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle imposed on the refrigerant tubing.

A liquid line bi-flow filter drier (29) is conveniently located near the TXV in the outdoor section. The condenser fan motors (30) can easily be accessed and maintained through the unit top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (31) for the most effective method of heat transfer. Optional louvered panels offer hail protection to outdoor coils without obstructing airflow.



adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO2 setpoint. Barometric relief is standard on all economizers. Power Exhaust (34) is easily field-installed. The power exhaust is housed in the barometric relief


opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a return air mounted smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

33

FACTORY INSTALLED OPTION CODES FOR RJNL-C (7.5 & 10 TON) [26.4 & 35.2 kW]

Option Code	Hail Guard	Non-Powered Convenience Outlet	Low Ambient/ Comfort Alert
AD	X		
AG		Х	
AR			Х
JD	Х		Х
BJ	X	x	
CZ	X	X	X
JE		Х	X

ECONOMIZER SELECTION FOR RJNL-C (7.5 & 10 TON) [26.4 & 35.2 kW]

	No Economizer	DDC Single Enthalpy Economizer With Barometric Relief	DDC Single Enthalpy Economizer With Barometric Relief And Smoke Detector
А	х		
Н		X	
J			Х

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

SELECTION PROCEDURE

To select an RJNL-C Heat Pump unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

230V-3 Phase-60 Hz Voltage-Total Cooling Capacity— 106,000 BTUH [31.0 kW] 82,000 BTUH [24.0 kW] Sensible Cooling Capacity-Heating Capacity-130,000 BTUH [38.1 kW] *Condenser Entering Air— 95°F [35.0°C] DB -65°F [18.3°C] WB *Evaporator Mixed Air Entering-78°F [25.6°C] DB 3600 CFM [1699 L/s] *Indoor Air Flow (vertical)— *External Static Pressure— 0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 4000 CFM [1888 L/s] indoor air flow (table basis):

Total Cooling Capacity = 121,950 BTUH [35.71 kW] Sensible Cooling Capacity = 102,750 BTUH [30.09 kW] Power Input (Compressor and Cond. Fans) = 9,400 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

102,750 + (1.10 x 3,600 x (1 – 0.05) x (78 – 80)) Sensible Cooling Capacity = 95,226 BTUH [27.88 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $121,950 \times 0.99 = 120,731$ BTUH [35.35 kW] Sensible Capacity = $95,226 \times 0.97 = 92,369$ BTUH [27.05 kW] Power Input = $9,400 \times 0.99 = 9,306$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.08 in. WG [.02 kPa] for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.48 (0.5) in. WG [.12 kPa], and determine:

RPM = 755 WATTS = 1,488 DRIVE = L (standard 2 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

 $1,488 \times 3.412 = 5,077 BTUH [1.49 kW]$

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 120,731 - 5,077 = 115,654 BTUH [33.86 kW]

Net Sensible Capacity = 92,369 - 5,077 = 87,292 BTUH [25.56 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 9,306 (step 3) + 1,488 (step 4) = 10,794 Watts

EER = $\frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{115,654}{10,794} = 10.71$

8. SELECT UNIT HEATING CAPACITY.

From Heater Kit Table select kW to meet heating capacity requirement; multiply kW x 3412 to convert to BTUH.

Use 40 kW Heater Kit

Heater Kit Model: Heater Kit Capacity: RXJJ-CC40C 131,021 BTUH [38.4 kW]

Add indoor blower heat effect (step 5) to Heater Kit Capacity to get total heating capacity:

131,021 + 5,077 = 136,098 BTUH [39.9 kW]

9. CHOOSE MODEL RJNL-C120CL040

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

[] Designates Metric Conversions

10

Model RJNL-C Series	C090CL	C090CM	C090CN	C090DL
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]
AHRI Net Cooling Capacity Btu [kW]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]
Net Sensible Capacity Btu [kW]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]
Net Latent Capacity Btu [kW]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]
IEER3	11.9	11.9	11.9	11.9
Net System Power kW	8.47	8.47	8.47	8.47
Heating Performance (Heat Pumps)				
High Temp. Btuh [kW] Rating	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]
System Power KW/COP	7.5/3.4	7.5/3.4	7.5/3.4	7.5/3.4
Low Temp. Btuh [kW] Rating	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]
System Power KW/COP	6.62/2.3	6.62/2.3	6.62/2.3	6.62/2.3
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB)4	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	2	2	3	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	350 [9922]	350 [9922]	350 [9922]	350 [9922]
Weights	000 [0022]	000 [0022]	000 [0022]	000 [0022]
Net Weight lbs. [kg]	1009 [458]	1009 [458]	1017 [461]	1009 [458]
Ship Weight lbs. [kg]	1089 [494]	1089 [494]	1017 [401]	1089 [494]
Soo Page 15 for Notes	1003 [434]	1003 [434]	1037 [430]	1005 [454]

See Page 15 for Notes.

Model RJNL-C Series	C090DM	C090DN	C090YL	C090YM
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]
EER/SEER2	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]
AHRI Net Cooling Capacity Btu [kW]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]
Net Sensible Capacity Btu [kW]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]
Net Latent Capacity Btu [kW]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]
IEER3	11.9	11.9	11.9	11.9
Net System Power kW	8.47	8.47	8.47	8.47
Heating Performance (Heat Pumps)				
High Temp. Btuh [kW] Rating	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]
System Power KW/COP	7.5/3.4	7.5/3.4	7.5/3.4	7.5/3.4
Low Temp. Btuh [kW] Rating	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]
System Power KW/COP	6.62/2.3	6.62/2.3	6.62/2.3	6.62/2.3
Compressor			*****	
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]		1/1 [25.4]	1/1 [25.4]	
	1/1 [25.4]			1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	2	3	2	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	350 [9922]	350 [9922]	350 [9922]	350 [9922]
Weights				
Net Weight lbs. [kg]	1009 [458]	1017 [461]	1009 [458]	1009 [458]
Ship Weight lbs. [kg]	1089 [494]	1097 [498]	1089 [494]	1089 [494]

See Page 15 for Notes.

Model RJNL-C Series	C090YN	C120CL	C120CM	C120DL
Cooling Performance ¹				CONTINUED ──➤
Gross Cooling Capacity Btu [kW]	98,000 [28.71]	125,000 [36.62]	125,000 [36.62]	125,000 [36.62]
EER/SEER2	11.1/NA	11/NA	11/NA	11/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2925 [1416/1380]	4000/4000 [1888/1888]	4000/4000 [1888/1888]	4000/4000 [1888/1888]
AHRI Net Cooling Capacity Btu [kW]	94,000 [27.54]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	70,800 [20.74]	91,600 [26.84]	91,600 [26.84]	91,600 [26.84]
Net Latent Capacity Btu [kW]	23,200 [6.8]	28,400 [8.32]	28,400 [8.32]	28,400 [8.32]
IEER3	11.9	11.6	11.6	11.6
Net System Power kW	8.47	10.91	10.91	10.91
Heating Performance (Heat Pumps)				
High Temp. Btuh [kW] Rating	87,000 [25.49]	109,000 [31.94]	109,000 [31.94]	109,000 [31.94]
System Power KW/COP	7.5/3.4	9.39/3.4	9.39/3.4	9.39/3.4
Low Temp. Btuh [kW] Rating	52,000 [15.24]	69,000 [20.22]	69,000 [20.22]	69,000 [20.22]
System Power KW/COP	6.62/2.3	8.79/2.3	8.79/2.3	8.79/2.3
Compressor	0.02/2.0	0.10/2.0	0.7 0/ 2.0	0.1 0/ 2.0
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	28.8 [2.68]	28.8 [2.68]	28.8 [2.68]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]
Rows / FPI [FPcm]	3 / 18 [7]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	3	2	3	2
Motor RPM	1725	1725	3 1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	 Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]
(140.) Oize riccommended in. [IIIII X IIIII X IIIIII]	(0)2110110 [01140114401]	(3)2x18x24 [51x457x610]	(3)2x18x24 [51x457x610]	(3)2x18x24 [51x457x610]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	350 [9922]	496 [14062]	496 [14062]	496 [14062]
Weights	000 [3322]	700 [14002]	730 [14002]	700 [14002]
Net Weight lbs. [kg]	1017 [461]	1185 [538]	1193 [541]	1185 [538]
Ship Weight lbs. [kg]	1097 [498]	1265 [574]	1273 [577]	1265 [574]
Omp Weight has [kg]	1037 [430]	1203 [374]	1210 [311]	1200 [3/4]

See Page 15 for Notes.

Model RJNL-C Series	C120DM	C120YL	C120YM	
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	125,000 [36.62]	125,000 [36.62]	125,000 [36.62]	
EER/SEER ²	11/NA	11/NA	11/NA	
Nominal CFM/AHRI Rated CFM [L/s]	4000/4000 [1888/1888]	4000/4000 [1888/1888]	4000/4000 [1888/1888]	
AHRI Net Cooling Capacity Btu [kW]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]	
Net Sensible Capacity Btu [kW]	91,600 [26.84]	91,600 [26.84]	91,600 [26.84]	
Net Latent Capacity Btu [kW]	28,400 [8.32]	28,400 [8.32]	28,400 [8.32]	
IEER3	11.6	11.6	11.6	
Net System Power kW	10.91	10.91	10.91	
Heating Performance (Heat Pumps)	10.91	10.91	10.91	
High Temp. Btuh [kW] Rating	109,000 [31.94]	100 000 [21 04]	100 000 [21 04]	
		109,000 [31.94]	109,000 [31.94]	
System Power KW/COP	9.39/3.4	9.39/3.4	9.39/3.4	
Low Temp. Btuh [kW] Rating	69,000 [20.22]	69,000 [20.22]	69,000 [20.22]	
System Power KW/COP	8.79/2.3	8.79/2.3	8.79/2.3	
Compressor	4./0 : : 11	4./0 11	4./0	
No./Type	1/Scroll	1/Scroll	1/Scroll	
Outdoor Sound Rating (dB)4	88	88	88	
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	28.8 [2.68]	28.8 [2.68]	28.8 [2.68]	
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	
Motor RPM	1075	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	
No. Motors	1	1	1	
Motor HP	3	2	3	
Motor RPM	1725	1725	1725	
Motor Frame Size	56	56	56	
Filter—Type	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	
(No.) Size Recommended in. [mm x mm x mm]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	
(1.5.) Olzo (1.500) ililili aliili aliili aliili aliili aliili	(3)2x18x24 [51x457x610]	(3)2x18x24 [51x457x610]	(3)2x18x24 [51x457x610]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	496 [14062]	496 [14062]	496 [14062]	
Weights	100 [17002]	700 [17002]	ן אַטטדון טעד	
Net Weight Ibs. [kg]	1193 [541]	1185 [538]	1193 [541]	
Ship Weight lbs. [kg]	1273 [577]	1265 [574]	1273 [577]	
Only Weight has [rig]	1210 [311]	1200 [0/4]	1210 [311]	

See Page 15 for Notes.

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 210/240 or 360.
- 4. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

COOLING PERFORMANCE DATA—C090

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]
		DR ①	.0	.02	.05	.0	.02	.05	.0	.02	.05
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	120.0 [35.2] 95.7 [28.1] 6.4	113.6 [33.3] 77.1 [22.6] 6.2	111.0 [32.5] 70.2 [20.6] 6.2	114.9 [33.7] 111.0 [32.5] 6.3	108.7 [31.9] 90.7 [26.6] 6.1	106.2 [31.1] 83.1 [24.4] 6.0	110.7 [32.4] 110.7 [32.5] 6.1	104.8 [30.7] 100.6 [29.5] 6.0	102.4 [30.0] 92.5 [27.1] 5.9
U T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	117.6 [34.5] 90.2 [26.4] 6.7	111.2 [32.6] 72.3 [21.2] 6.5	108.7 [31.9] 65.7 [19.3] 6.5	112.4 [32.9] 105.4 [30.9] 6.6	106.4 [31.2] 86.0 [25.2] 6.4	104.0 [30.5] 78.7 [23.1] 6.3	108.3 [31.7] 108.3 [31.7] 6.4	102.4 [30.0] 95.8 [28.1] 6.3	100.1 [29.3] 88.1 [25.8] 6.2
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	114.8 [33.6] 85.0 [24.9] 7.1	108.6 [31.8] 68.0 [19.9] 6.9	106.1 [31.1] 61.7 [18.1] 6.8	109.6 [32.1] 100.3 [29.4] 6.9	103.7 [30.4] 81.6 [23.9] 6.7	101.4 [29.7] 74.7 [21.9] 6.6	105.5 [30.9] 105.5 [30.9] 6.8	99.8 [29.2] 91.5 [26.8] 6.6	97.5 [28.6] 84.0 [24.6] 6.5
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	111.7 [32.7] 80.4 [23.6] 7.4	105.7 [31.0] 64.2 [18.8] 7.2	103.3 [30.3] 58.2 [17.1] 7.1	106.6 [31.2] 95.8 [28.1] 7.3	100.8 [29.5] 77.8 [22.8] 7.1	98.5 [28.9] 71.1 [20.8] 7.0	102.4 [30.0] 102.4 [30.0] 7.1	96.9 [28.4] 87.7 [25.7] 6.9	94.7 [27.8] 80.5 [23.6] 6.9
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	108.3 [31.7] 76.3 [22.4] 7.8	102.5 [30.0] 60.8 [17.8] 7.6	100.2 [29.4] 55.1 [16.2] 7.5	103.2 [30.2] 91.7 [26.9] 7.7	97.6 [28.6] 74.4 [21.8] 7.5	95.4 [28.0] 68.0 [19.9] 7.4	99.0 [29.0] 99.0 [29.0] 7.5	93.7 [27.5] 84.3 [24.7] 7.3	91.6 [26.8] 77.4 [22.7] 7.3
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	104.7 [30.7] 72.9 [21.4] 8.3	99.0 [29.0] 57.9 [17.0] 8.0	96.8 [28.4] 52.5 [15.4] 7.9	99.5 [29.2] 88.1 [25.8] 8.1	94.2 [27.6] 71.6 [21.0] 7.9	92.0 [27.0] 65.4 [19.2] 7.8	95.4 [28.0] 95.4 [28.0] 8.0	90.2 [26.4] 81.4 [23.9] 7.8	88.2 [25.8] 74.8 [21.9] 7.7
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	100.7 [29.5] 69.9 [20.5] 8.7	95.3 [27.9] 55.6 [16.3] 8.5	93.1 [27.3] 50.3 [14.8] 8.4	95.6 [28.0] 85.3 [25.0] 8.6	90.4 [26.5] 69.2 [20.3] 8.3	88.4 [25.9] 63.3 [18.6] 8.3	91.4 [26.8] 91.4 [26.8] 8.4	86.5 [25.4] 79.1 [23.2] 8.2	84.5 [24.8] 72.6 [21.3] 8.1
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	96.4 [28.3] 67.4 [19.8] 9.2	91.2 [26.7] 53.6 [15.7] 9.0	89.2 [26.1] 48.6 [14.3] 8.9	91.3 [26.8] 82.7 [24.2] 9.1	86.4 [25.3] 67.3 [19.7] 8.8	84.4 [24.7] 61.5 [18.0] 8.7	87.1 [25.5] 87.1 [25.5] 8.9	82.4 [24.1] 77.2 [22.6] 8.7	80.6 [23.6] 71.0 [20.8] 8.6
ر دا	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	91.8 [26.9] 65.6 [19.2] 9.7	86.9 [25.5] 52.3 [15.3] 9.5	84.9 [24.9] 47.4 [13.9] 9.4	86.7 [25.4] 80.8 [23.7] 9.6	82.0 [24.0] 65.8 [19.3] 9.3	80.2 [23.5] 60.3 [17.7] 9.2	82.5 [24.2] 82.5 [24.2] 9.4	78.1 [22.9] 75.8 [22.2] 9.2	76.3 [22.4] 69.7 [20.4] 9.1

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES:

① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 - DR) x (dbE - 80)].

HEATING PERFORMANCE DATA—C090

		IDB		60°F [15.5°C]		<u> </u>	70°F [21.1°C]			80°F [26.7°C]	
	CF	-M [L/s]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]
0	0	Total BTUH [kW]	33.5 [9.82]	32.8 [9.61]	32.5 [9.52]	30.1 [8.82]	29.4 [8.62]	29.2 [8.56]	26.7 [7.82]	26.1 [7.65]	25.8 [7.56]
	[-17.8]	Power	9.6	10.0	10.1	9.6	10.0	10.1	9.6	10.0	10.1
T D O	5 [26.7]	Total BTUH [kW] Power	39.4 [11.55] 9.2	38.5 [11.28] 9.6	38.2 [11.20] 9.7	36.0 [10.55] 9.2	35.2 [10.32] 9.6	34.9 [10.23] 9.7	32.5 [9.52] 9.2	31.8 [9.32] 9.6	31.5 [9.23] 9.7
R	10	Total BTUH [kW]	45.3 [13.28]	44.3 [12.98]	43.9 [12.87]	41.8 [12.25]	40.9 [11.99]	40.5 [11.87]	38.4 [11.25]	37.5 [10.99]	37.2 [10.90]
	[-12.2]	Power	8.9	9.2	9.4	8.9	9.2	9.4	8.9	9.2	9.4
D R Y	15 [32.2]	Total BTUH [kW] Power	51.1 [14.98] 8.5	50.0 [14.65] 8.8	49.6 [14.54] 9.0	47.7 [13.98] 8.5	46.6 [13.66] 8.8	46.2 [13.54] 9.0	44.3 [12.98] 8.5	43.3 [12.69] 8.8	42.9 [12.57] 9.0
B	20	Total BTUH [kW]	57.0 [16.71]	55.7 [16.32]	55.2 [16.18]	53.6 [15.71]	52.4 [15.36]	51.9 [15.21]	50.1 [14.68]	49.0 [14.36]	48.6 [14.24]
U	[-6.6]	Power	8.1	8.5	8.6	8.1	8.5	8.6	8.1	8.5	8.6
L	25	Total BTUH [kW]	62.9 [18.43]	61.5 [18.02]	60.9 [17.85]	59.4 [17.41]	58.1 [17.03]	57.6 [16.88]	56.0 [16.41]	54.8 [16.06]	54.3 [15.91]
B	[37.8]	Power	7.8	8.1	8.2	7.8	8.1	8.2	7.8	8.1	8.2
E	30	Total BTUH [kW]	68.7 [20.13]	67.2 [19.69]	66.6 [19.52]	65.3 [19.14]	63.9 [18.73]	63.3 [18.55]	61.8 [18.11]	60.5 [17.73]	60.0 [17.58]
M	[-1.1]	Power	7.4	7.7	7.8	7.4	7.7	7.8	7.4	7.7	7.8
P E R	35 [43.3]	Total BTUH [kW] Power	74.6 [21.86] 7.0	73.0 [21.39] 7.3	72.3 [21.19] 7.4	71.1 [20.84] 7.0	69.6 [20.40] 7.3	69.0 [20.22] 7.4	67.7 [19.84] 7.0	66.2 [19.40] 7.3	65.6 [19.23] 7.4
A T U	40 [4.4]	Total BTUH [kW] Power	80.4 [23.56] 6.7	78.7 [23.06] 7.0	78.0 [22.86] 7.1	77.0 [22.57] 6.7	75.3 [22.07] 7.0	74.7 [21.89] 7.1	73.6 [21.57] 6.7	72.0 [21.10] 7.0	71.3 [20.90] 7.1
RE	45	Total BTUH [kW]	86.3 [25.29]	84.4 [24.74]	83.7 [24.53]	82.9 [24.30]	81.1 [23.77]	80.3 [23.53]	79.4 [23.27]	77.7 [22.77]	77.0 [22.57]
	[46.1]	Power	6.3	6.6	6.7	6.3	6.6	6.7	6.3	6.6	6.7
°F	50	Total BTUH [kW]	92.2 [27.02]	90.2 [26.44]	89.4 [26.20]	88.7 [26.00]	86.8 [25.44]	86.0 [25.20]	85.3 [25.00]	83.4 [24.44]	82.7 [24.24]
[°C]	[10]	Power	6.0	6.2	6.3	6.0	6.2	6.3	6.0	6.2	6.3

IDB-Indoor air dry bulb

COOLING PERFORMANCE DATA—C120

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]
		DR ①	.03	.05	.01	.03	.05	.01	.03	.05	.01
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	151.2 [44.3] 115.7 [33.9] 8.0	147.4 [43.2] 104.8 [30.7] 7.9	141.0 [41.3] 87.4 [25.6] 7.8	141.4 [41.4] 132.2 [38.8] 8.0	137.9 [40.4] 120.6 [35.4] 7.9	131.8 [38.6] 101.7 [29.8] 7.7	135.2 [39.6] 135.2 [39.6] 7.9	131.8 [38.6] 131.8 [38.6] 7.8	126.1 [37.0] 113.0 [33.1] 7.6
ÜTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	148.0 [43.4] 107.4 [31.5] 8.4	144.4 [42.3] 97.2 [28.5] 8.3	138.1 [40.5] 80.7 [23.7] 8.1	138.2 [40.5] 124.0 [36.4] 8.3	134.8 [39.5] 113.0 [33.1] 8.2	128.9 [37.8] 95.1 [27.9] 8.0	132.0 [38.7] 132.0 [38.7] 8.2	128.7 [37.7] 125.3 [36.7] 8.1	123.1 [36.1] 106.3 [31.2] 8.0
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	144.8 [42.4] 100.5 [29.5] 8.8	141.2 [41.4] 90.7 [26.6] 8.7	135.0 [39.6] 75.0 [22.0] 8.5	134.9 [39.5] 116.9 [34.3] 8.7	131.6 [38.6] 106.4 [31.2] 8.6	125.8 [36.9] 89.3 [26.2] 8.4	128.7 [37.7] 128.7 [37.7] 8.6	125.5 [36.8] 118.7 [34.8] 8.5	120.1 [35.2] 100.6 [29.5] 8.3
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	141.4 [41.4] 94.5 [27.7] 9.2	137.9 [40.4] 85.2 [25.0] 9.1	131.9 [38.7] 70.3 [20.6] 8.9	131.6 [38.6] 111.0 [32.5] 9.1	128.3 [37.6] 100.9 [29.6] 9.0	122.7 [36.0] 84.6 [24.8] 8.8	125.4 [36.8] 124.1 [36.4] 9.0	122.3 [35.8] 113.4 [33.2] 8.9	116.9 [34.3] 95.9 [28.1] 8.7
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	138.0 [40.4] 89.8 [26.3] 9.7	134.6 [39.4] 80.9 [23.7] 9.5	128.7 [37.7] 66.6 [19.5] 9.3	128.2 [37.6] 106.3 [31.2] 9.6	125.0 [36.6] 96.6 [28.3] 9.4	119.5 [35.0] 80.9 [23.7] 9.2	122.0 [35.8] 119.3 [35.0] 9.5	118.9 [34.8] 108.9 [31.9] 9.4	113.7 [33.3] 92.1 [27.0] 9.2
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	134.5 [39.4] 86.3 [25.3] 10.1	131.2 [38.5] 77.7 [22.8] 10.0	125.4 [36.8] 63.8 [18.7] 9.8	124.7 [36.5] 102.8 [30.1] 10.0	121.6 [35.6] 93.4 [27.4] 9.9	116.3 [34.1] 78.2 [22.9] 9.7	118.5 [34.7] 115.8 [33.9] 9.9	115.5 [33.8] 105.7 [31.0] 9.8	110.5 [32.4] 89.4 [26.2] 9.6
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	130.9 [38.4] 83.8 [24.6] 10.6	127.6 [37.4] 75.4 [22.1] 10.5	122.1 [35.8] 62.1 [18.2] 10.3	121.1 [35.5] 100.4 [29.4] 10.5	118.1 [34.6] 91.2 [26.7] 10.4	112.9 [33.1] 76.4 [22.4] 10.2	114.9 [33.7] 113.5 [33.3] 10.4	112.0 [32.8] 103.6 [30.4] 10.3	107.1 [31.4] 87.6 [25.7] 10.1
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	127.2 [37.3] 82.6 [24.2] 11.1	124.1 [36.4] 74.4 [21.8] 11.0	118.6 [34.8] 61.2 [17.9] 10.8	117.4 [34.4] 99.1 [29.1] 11.1	114.5 [33.6] 90.1 [26.4] 10.9	109.5 [32.1] 75.6 [22.2] 10.7	111.2 [32.6] 111.2 [32.6] 11.0	108.4 [31.8] 102.5 [30.0] 10.8	103.7 [30.4] 86.8 [25.4] 10.6
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	123.5 [36.2] 82.6 [24.2] 11.7	120.4 [35.3] 74.4 [21.8] 11.6	115.1 [33.7] 61.4 [18.0] 11.3	113.6 [33.3] 99.0 [29.0] 11.6	110.8 [32.5] 90.1 [26.4] 11.5	106.0 [31.1] 75.7 [22.2] 11.2	107.4 [31.5] 107.4 [31.5] 11.5	104.7 [30.7] 102.5 [30.0] 11.4	100.2 [29.4] 87.0 [25.5] 11.1

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES:

① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 - DR) x (dbE - 80)].

HEATING PERFORMANCE DATA—C120

		IDB		60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CI	M [L/s]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]
	0	Total BTUH [kW]	45.2 [13.25]	44.7 [13.10]	43.9 [12.87]	41.7 [12.22]	41.3 [12.10]	40.6 [11.90]	38.3 [11.22]	37.9 [11.11]	37.3 [10.93]
Ιŭ	[-17.8]	Power	11.3	11.5	11.8	11.3	11.5	11.8	11.3	11.5	11.8
I L	5	Total BTUH [kW]	51.9 [15.21]	51.4 [15.06]	50.5 [14.80]	48.5 [14.21]	48.0 [14.07]	47.2 [13.83]	45.0 [13.19]	44.6 [13.07]	43.8 [12.84]
l o	[26.7]	Power	10.9	11.1	11.4	10.9	11.1	11.4	10.9	11.1	11.4
0	10	Total BTUH [kW]	58.6 [17.17]	58.0 [17.00]	57.1 [16.73]	55.2 [16.18]	54.7 [16.03]	53.7 [15.74]	51.8 [15.18]	51.3 [15.03]	50.4 [14.77]
"	[-12.2]	Power	10.5	10.7	11.0	10.5	10.7	11.0	10.5	10.7	11.0
D	15	Total BTUH [kW]	65.4 [19.17]	64.7 [18.96]	63.6 [18.64]	61.9 [18.14]	61.3 [17.97]	60.3 [17.67]	58.5 [17.14]	57.9 [16.97]	56.9 [16.68]
Y	[32.2]	Power	10.2	10.3	10.7	10.2	10.3	10.7	10.2	10.3	10.7
	20	Total BTUH [kW]	72.1 [21.13]	71.4 [20.93]	70.2 [20.57]	68.7 [20.13]	68.0 [19.93]	66.8 [19.58]	65.2 [19.11]	64.6 [18.93]	63.5 [18.61]
Ü	[-6.6]	Power	9.8	10.0	10.3	9.8	10.0	10.3	9.8	10.0	10.3
L	25	Total BTUH [kW]	78.8 [23.09]	78.1 [22.89]	76.7 [22.48]	75.4 [22.10]	74.7 [21.89]	73.4 [21.51]	72.0 [21.10]	71.3 [20.90]	70.0 [20.51]
	[37.8]	Power	9.4	9.6	9.9	9.4	9.6	9.9	9.4	9.6	9.9
Ī	30	Total BTUH [kW]	85.6 [25.09]	84.7 [24.82]	83.3 [24.41]	82.2 [24.09]	81.3 [23.83]	79.9 [23.42]	78.7 [23.06]	77.9 [22.83]	76.6 [22.45]
M	[-1.1]	Power	9.1	9.2	9.5	9.1	9.2	9.5	9.1	9.2	9.5
P	35	Total BTUH [kW]	92.3 [27.05]	91.4 [26.79]	89.8 [26.32]	88.9 [26.05]	88.0 [25.79]	86.5 [25.35]	85.5 [25.06]	84.6 [24.79]	83.2 [24.38]
R	[43.3]	Power	8.7	8.8	9.1	8.7	8.8	9.1	8.7	8.8	9.1
A	40	Total BTUH [kW]	99.1 [29.04]	98.1 [28.75]	96.4 [28.25]	95.6 [28.02]	94.7 [27.75]	93.1 [27.28]	92.2 [27.02]	91.3 [26.76]	89.7 [26.29]
lυ	[4.4]	Power	8.3	8.5	8.7	8.3	8.5	8.7	8.3	8.5	8.7
R	45	Total BTUH [kW]	105.8 [31.01]	104.7 [30.68]	103.0 [30.19]	102.4 [30.01]	101.3 [29.69]	99.6 [29.19]	98.9 [28.98]	98.0 [28.72]	96.3 [28.22]
-	[46.1]	Power	7.9	8.1	8.3	7.9	8.1	8.3	7.9	8.1	8.3
°F	50	Total BTUH [kW]	112.5 [32.97]	111.4 [32.65]	109.5 [32.09]	109.1 [31.97]	108.0 [31.65]	106.2 [31.12]	105.7 [30.98]	104.6 [30.66]	102.8 [30.13]
[°C]	[10]	Power	7.6	7.7	7.9	7.6	7.7	7.9	7.6	7.7	7.9

IDB-Indoor air dry bulb

AIRFLOW PERFORMANCE—7.5 TON [26.4 kW]

		Model		3JNL-	RJNL-8090, C090	0600																																		
Air		Voltage		208/23	208/230, 460, 575-3 Phase	1, 575	_3 P	hase																																
Flow																Q	terna	Stat	ic Pre	External Static Pressure—Inches of Water [kPa]	Ī	ches c	ıf Wai	ter [K	Pa]															
CFM [L/s] 0.1 [.02] 0.2 [.05]	S 0	1 [.02]	1 0.2	[.05]	0.3	0.3 [.07]	0.4 [.10]	[.10]	0.5	0.5[.12]		0.6[.15]	0.7	[.17]	0.8	[.20]	0.9	[.22]	1.0	0.8 [.20] 0.9 [.22] 1.0 [.25]		1.1 [.27]		[.30]	1.3	[.32]	1.2 [.30] 1.3 [.32] 1.4 [.35]	.35]	1.5	1.5 [.37] 1.6 [.40]	1.6	.40]	1.7 [1.7 [.42]	1.8 [.45]	-	1.9 [.47]	17] 2	2.0 [.50]	6
	RP	RPM W	RPI	M	RPM W RPM W RPM W RPM W	Μ	RPM	×	RPIN	M	RPM	M	RPN	W	RPIN	RPM W RPM	RPM		RPIN.	W	RPIN	W	RPIN	M	RPI	W	W RPW W RPW W RPW W RPW W RPW W RPW	×	RPM	Μ	W RPM W		RPM	Μ	RPM W RPM	Μ	RPM	WR	RPM	8
2400 [1133]	33] —	1	. 550	018	285		845 614	883	1 645	645 924	229	896	208		1015 740	1066	771	1119	802	1119 802 1175 833 1234 864	833	1234	864	1296	1296 895 1361	1361	924	1435	924 1435 955	1508	982	1584	1016	1663	985 1584 1016 1663 1046 1744 1077	1744	1077	1829 1107 1916	107 1	916
2500 [1180]	90]	1	. 559	839	290	928	622	916	653	626	684	1004	715		1053 745	1105	9//	1160	807	807 1218	837	837 1279 867	1 867		1343 897	1410		927 1490	957	957 1564		1641	1017	1721	987 1641 1017 1721 1047 1804 1077 1890 1107 1979	1804	1077 1	890 1	107 1	979
2600 [1227]	- [2	1	. 569	9 872	009	910	630	952	661	997	691	1044	722	$\overline{}$	1095 752	1149	782	1205	812	812 1265 842 1328 871	842	1328	871	1394	1 901	1462		1546	931 1546 961	1622	066	1701	1019	1782	990 1701 1019 1782 1049 1866 1078	1866	1078	1954 1107 2044	107 2	44
2700 [1274]		549 870	629	906 6	610	948	640	992	029	670 1038	669	1088	729	-	1140 759	1196	788	1255		818 1316	847	847 1381 876	876	1448	3 905	1519	932	1606	964	1683	993	1763	1022	1846	993 1763 1022 1846 1050 1931		1079 2	2020 1107	107 2	Ξ
2800 [1321]	21] 261	31 909	9 591	1 948	620	066		1036	650 1036 679 1084	1084	802	1135	737		1190 766	1247	795	1308	824	824 1371		853 1437	, 881	1507	910	910 1579		940 1667	896	1746	966	1827	1025	1911	996 1827 1025 1911 1052 1998 1080	1998	1080	2088 1108 2181	108 2	8
2900 [1368]	83 573	73 951	1 602	2 992	631	1036		1083	660 1083 689 1134	1134	718	1187	746		1243 775	1302	803	1365	831	1430	1430 860 1498	1498	888 1	1269	915	1644	945	1732	973	1811	1000	1894	1028	1980	1811 1000 1894 1028 1980 1055 2068 1082	2068	1082 2	2159 1109	109 2	2253
3000 [1416]		286 997	7 615	5 1040) 643	643 1086	672	1135	200	700 1187	728	1242	156	1300	784	1361	812	1425	839	1492	298	1563	894	1636	923	1720	026	1798	977	1879	1004	1963	1031	2050	977 1879 1004 1963 1031 2050 1058 2140 1084	2140	1084 2	2233 1	111 2	2328
3100 [1463]		600 1047	7 628	3 1092	2 656	1140	684	1190	711	711 1244	133	1301	99/	1361	794	1424	821	1490	848	1559		875 1631	905	1706	929	1787	926	1867	982		1009	2035	1035	1950 1009 2035 1035 2123 1061	1061	2215 1087	1087	2309 1	113 2	2405
3200 [1510]	0] 61.	615 1101	1 642	2 1147	699 2	1197	269		1250 724	1305	751	1364	777	1426	804	1491	831	1558	857	1629	884	884 1703	910	1780	936	1857	296	1939	886		1013	2109	1039	2199	2022 1013 2109 1039 2199 1064 2291		1090 2	2387 1	1115 2	2485
3300 [1557]		630 1158	8 657	7 1207	2 683	1258	710	1313	710 1313 736	1370	163	1431	789	1495	815	1561	841	1631	867	1703	893	1779	919	1858	3 943	1930	896	968 2012	993	2098	1018	2186	1043	2277	2098 1018 2186 1043 2277 1068 2371		1093 2468 1117	1 89 1	117 2	2567
3400 [1604]	14] 64	646 1220	0 672	2 1270) 698	698 1324 724 1380	724	1380		750 1439	9//	1502	801	1567	827	1636	852	1707	878	1781	_	903 1859	922	1924	1924 950	2002	975	2089	975 2089 999	2175	2175 1024 2265 1048 2357	2265	1048	2357	1072	1072 2453 1096	1096	2551 1	1120 2	2652
3500 [1652]	.2] 66	662 1285 688	5 688	3 133,	1337 713	1393	1393 739 1451	1451		764 1512	789	1576	814	1644	839	1714	864	1787		889 1863	914	1943	933	2000	928	2082	985	2167	1006	2255	1029	2346	1053	2440	914 1943 933 2000 958 2082 982 2167 1006 2255 1029 2346 1053 2440 1077 2537	2537	1100 2636 1124	636 1	124 2	739
3600 [1699]		679 1355 704	5 704	1 140	1409 729	1466	1466 754 1526 779 1589	1526	1779	1589	804	1655	828	1724	853		877	1871	901	1949	918	1998	942	2078	996	2162	686	2249	1012	2338	1035	2430	1058	2525	1796 877 1871 901 1949 918 1998 942 2078 966 2162 989 2249 1012 2338 1035 2430 1058 2556 1081 2623 1104 2724 1127 2828	2623	1104 2	724 1	127 2	328
				:			:	1																														ĺ		ĺ

NOTE: L-Drive left section, M-Drive center section, N-Drive right section.

_					
				9	919
				5	626
	37.1]	Ŧ	14	4	1031
z	3.0 [2237.1	BK65H	1VP-44	3	1085
				2	1134
				-	1192
				9	673
				2	713
	37.1]	Ŧ	14	4	752
Σ	3.0 [2237.1	BK90H	1VP-44	3	794
				2	830
				1	898
				9	548
				2	280
_	1491.4]	110H	VP-44	4	612
	2.0 [1	BK1	1	3	646
				2	9/9
				-	208
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Tums Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum or maximum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS

ACTUAL—CFM [L/s]	2400 [1133]	2600 [1227]	2800 [1321]	3000 [1416]	3200 [1510]	3400 [1604]	3600 [1699]
TOTAL MBH	26'0	0.98	0.99	1.00	1.02	1.03	1.04
SENSIBLE MBH	0.87	0.92	0.97	1.02	1.07	1.12	1.17
POWER KW	86'0	0.99	0.99	1.00	1.01	1.01	1.02

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIRFLOW RESISTANCE

			Standard Inc	door Airflow	Standard Indoor Airflow—CFM [L/s]		
Component	2400	2600	2800 [1321]	3000 [1416]	3200 [1510]	3400	3600
			Resistance-	Resistance—Inches of Water [kPa]	Water [kPa]		
Wet Coil	0.047	0.051	0.055	90.0	0.065	0.071	0.076
	[.012]	[.013]	[.014]	[.015]	[.016]	[.018]	[.019]
Downflow Economizer	0.02	90'0	0.07	80'0	60'0	0.10	0.11
RA Damper 100% Open	[.012]	[.015]	[.017]	[.020]	[.022]	[.025]	[.027]
Horizontal Economizer	0.03	0.04	0.04	0.05	0.05	90.0	90.0
RA Damper 100% Open	[.007]	[000]	[.010]	[.011]	[.012]	[.014]	[.015]
Horizontal Economizer	0.08	80'0	0.08	0.10	0.11	0.12	0.13
OA Damper 100% Open	[0.020]	[0.020]	[0.020]	[0.024]	[0.027]	[0:030]	[0.032]
Concentric Grill RXRN-FA65 or	VIV	0.17	0.20	0.25	0.31	0.37	VIVO
RXRN-FA75 with Transition RXMC-CD04	ANO	[0.042]	[0.050]	[0.062]	[0.077]	[0.092]	ANO
Concentric Grill RXRN-AA61 or RXRN-AA71 with Transition RXMC-CE05	DNA	DNA	DNA	DNA	DNA	DNA	0.17 [0.042]

NOTE: Add component resistance to duct resistance to determine external static pressure. DNA = Data not available.

18

ے Air

AIRFLOW PERFORMANCE—10 TON [35.2 kW]

			<u></u>	>	11	908	901	910	320	34	353		ı	ı	ı	П	ı	ı	Ι	ı	Ι	
			2.0 [.50]	RPM	85 22	91 23	98 24	06 25	13 26	20 27	27 28	<u>'</u>	<u>.</u> 	<u> </u>	· 1	L' T	1	<u> </u>	<u>'</u> 	· 	<u>.</u> 	
			=	/ RF	40 10	32 10	29 10	31 11	38 11	50 11	56 11	Ŀ		l .	Ė	H	Ė	ŀ.	_	Ė	Ė	
			1.9 [.47]	N M	53 21	955 1876 979 1945 1002 2016 1025 2087 1048 2159 1070 2232 1091 2306	964 1960 987 2032 1010 2105 1033 2179 1055 2254 1077 2329 1098 2406	973 2049 996 2124 1019 2199 1041 2276 1063 2353 1084 2431 1106 2510	982 2143 1005 2220 1027 2298 1049 2377 1071 2457 1092 2538 1113 2620	991 2241 1014 2321 1036 2402 1057 2484 1079 2566 1100 2650 1120	07 27	1115 2887	1123 3013	31 3144			1			 -	 -	
			_	RPM	9 10	10.	10	3 10	57 109	99 110	30 11(11.	22 112	50 11	34 —	11	1		Ė	Ė	Ė	
			3 [.45]	×	10 206	18 21	55 225	33 235	7 24	3 256	37 268	35 279	3 292	2 306	20 318	3321		 -	 -	 -	<u> </u>	
			1.8	RPM	107	107	301 6	901 9.	7 107	4 107	2 108	1 109	2 110	7 111	8 112	3 112	(5)	8	1	-	-	
			1.7 [.42]	N N	7 200	5 208	3 217	1 227	9 237	7 248	6 259	4 271	3 283	2 295	0 308	9 322	8 336	7 3508	-	 	-	
			-	RPM	1 101	5 102	5 103	9 104	8 104	2 105	1 106	4 107	2 108	5 109	3 110	5 110	4 111	5 112	3	2	-	
			1.6 [.40]	×	193	2 201	0 210	9 219	7 229	3 240	1 251	3 262	2 274	1 286) 299	3 312	326	3 340	3 355	3 370		
				RPM	1 994	100	101(101	105	103	104	1053	1062	107	1080	108	109	1108	1118	3 1128		
			1.5 [.37]	>	1864	1945	2032	2124	2220	2321	2427	2538	2654	2774	2900	3030	3165	3304	3446	3228	3752	
			1.5	RPIV	026	626	987	966	1005	1014	1023	1032	1041	1050	1060	1069	1079	1089	1099	1109	1119	
			[32]	8	1797	1876	1960	2049	2143	2241	2345	2453	2566	2684	2807	2934	3066	3204	3346	3492	3644	
			1.4 [.35]	RPM W RPM	946 1797 970 1864 994 1931 1017 2000 1040 2069 1063 2140 1085 221						1000	987 2369 1010 2453 1032 2538 1053 2624 1074 2711 1095 2799	1019	1029	1039	1048	1058	1069	1079	1089	1099	
					1731	1807	940 1889	949 1975	928 2066	968 2162	2263	2369	2479	2595	2715	2840	2969	3104	3243	3387	3536	
		_	1.2 [.30] 1.3 [.32]	RPM W	870 1601 896 1666 921 1731	930	940	949	958	968	931 2103 954 2183 977 2263 1000 2345 1023 2427 1044 2511 1066 2595 1087 2680 1107 2766 1127 2853	987	951 2308 974 2393 997 2479 1019 2566 1041 2654 1062 2742 1083 2832 1103 2922	962 2418 985 2506 1007 2595 1029 2684 1050 2774 1071 2865 1092 2957 1112 3050 1131	973 2533 995 2624 1017 2715 1039 2807 1060 2900 1080 2993 1100 3088 1120 3184	984 2653 1006 2746 1027 2840 1048 2934 1069 3030 1089 3126 1109 3223 1129	995 2778 1016 2873 1038 2969 1058 3066 1079 3165 1099 3264 1118 3363	984 [2810] 1006 [2907] 1027 [3005] 1048 [3104] 1069 [3204] 1089 [3304] 1108 [3406] 1127	2842 995 2941 1017 3041 1038 3142 1059 3243 1079 3346 1099 3449 1118 3553	2976 1007 3078 1028 3180 1049 3283 1069 3387 1089 3492 1109 3598 1128 3705	2909 975 3012 997 3115 1018 3219 1039 3324 1060 3430 1080 3536 1099 3644 1119 3752	
		External Static Pressure—Inches of Water [kPa]	30]	8	9991	1740	1819	1902	1991	2084	2183	5286	2393	. 9097	. 624	. 94/2	873	3008	3142	3283	3430	
		Wate	1.2 [RPM	968	. 308	915	900 1830 925 1902	934	920 2007 944 2084	954	2203 964 2286	974	985	362	900	016	027	038	049	090	
		s of	. [2	W	601	880 1673 905	890 1749 915	830	910 1916 934	200	103	203	308	418	233	653 1	778 1	907 1	041 1	180 1	324 1	
		-Inche	1.1 [.27]	RPM	870 1	880 1	890 1	900 1	910 1	920 2	931 2	941 2	951 2	962 2	973 2	984 2	995 2	006 2	017 3	028 3	039 3	
		nre	5]	W	238		_		ı	_		\vdash				_		310	941 1	1 8/0	219 1	
		ress	0.8 [.20] 0.9 [.22] 1.0 [.25]	RPM	818 1476 844 1538	854 1607	865 1681	875 1759	885 1843	896 1931	906 2024	917 2122	928 2224	939 2332	950 2444	961 2561	972 2683	84 28	195 29	107 30	118 32	
		tatic	2] 1	W	3 9/	1542 8	1613 8	1689 8	1770 8	1855 8	1946 9	2041 8		l	2356 6	2470 8	2589 9	2714 8	42 6	76 10	15 10	
		nal St	9 [.2		8 14	828 15	839 16	849 16	860 17	871 18	882 19	893 20	904 2141	915 2246	927 23	938 24	950 25	961 27	973 28	985 29	17 31	
		Exteri	0	/ RPM	14 81								26 80						12 97		12 99	
			3 [.20	M	1414	2 1478	2 154	3 1620	1698	3 1781	1869	3 1961) 206	1 2161	3 2268	5 2380	3 2497	9 2618	1 2745	3 2876	2 30-	
			<u></u>	RPM	354 791	415 802	1481 812 1546	1551 823	7 834	707 846	1792 857	883 868	921 880 2029	2077 891	1 903	1 915	5 926	4 939	2648 951	6 963	6 97	
			[.17	×	-	Ψ.			1627	F	-	_	_		2181	2291	2405	2524		1 2776		
			0.7	RPM	1 764	2 775	758 1416 786	1 797	808	9 8 8 2 0	7 831	5 843	855	1 867	879	891	1 903	892 2430 915	1 928	940	3 953	
			0.6[.15]	>	1297	1352	1416	1487	1557	1635	1717	817 1805	1897	1997	854 2096	2202	2312	2430	2551	917 2677	2808	
			9.0	RPM W RPM W RPM W	679 1177 707 1235 736 1294	1171 691 1230 719 1291 747 1352 775	758	687 1287 715 1351 743 1417 770 1484 797	1352 727 1419 755 1488 782 1557	793	802		829	842		998	879	892	904	917	930	
			0.5 [.12]	>	1235	1291	703 1288 731 1352	1417	1488	1353 712 1422 740 1492 767 1563	1643	1728	1817	1912	2011	2115	2224	2338	2456	2579	2708	
			0.5	RPM	707	719	731	743	755	292	779	791	804	816	829	842	854	867	880	894	807	
	hase		<u>=</u>	Μ	1177	1230	1288	1351	1419	1492	1569	1651	1738	1830	1927	2028	2135	2246	2362	2483	2608	
	–3 Pł		0.4	RPM	629	691	703	715	727	740	752	292	777	790	803	816	829	843 2246 867	856	870	883	
120	575-		[/0	8	ı	171	1226	287	352	422	496	9/9	199	750	844	943	940	155	5268	386	506	
20 , C	208/230, 460, 575-3 Phase		0.3 [.07] 0.4 [.10]	RPM W	ı	. 799	674	. 289	. 669	712	. 522	. 882	. 191	. 492	. 111	. 162	304	318	331 2	345 2	326 5	
RJNL-8120, C120	/230,			W	Т	1	1		285 (353	425	502	584 7	9.20	762	828	926	3 690	176	291	412 8	
	208		.2 [.0	RPM W	Ė	Ī	Ī	_	671 1285 699	684 13	97 17	10 1	24 19	37 16	51 1.	64 18	78 19	92 20	06 2	20 23	35 54	
	ge		CFM [L/s] 0.1 [.02] 0.2 [.05]	۸ چ	<u> </u>			_	9	39	3800 [1793] 669 1354 697 1425 725 1496 752 1569 779 1643 805 1717 831	682 1428 710 1502 738 1576 765 1651 791 1728	1000 [1888] 696 1507 724 1584 751 1661 777 1738 804 1817 829 1897 855	4100 [1935] 710 1592 737 1670 764 1750 790 1830 816 1912 842 1994 867	4200 [1982] 724 1680 751 1762 777 1844 803 1927 829 2011	4300 [2029] 738 1774 764 1858 791 1943 816 2028 842 2115 866 2202 891	1400 15076 152 1873 1778 1959 804 2046 829 2135 854 2224 879 2314	4500 [2123] 766 1976 792 2065 818 2155	4600 [2171] 781 2084 806 2176 831 2268 856 2362 880 2456 <u>904 2551</u> 928	4700 [2218] 795 2197 820 2291 845 2386 870 2483 894 2579	4800 [2265] 810 [2315] 835 [2412] 859 [2509] 883 [2608] 907 [2708] 930 [2808] 953	
Model	Voltage		1.0	RPM W	H	H	H	_		\vdash	39 13	32 14	15	0 15	34 16	38 17	72 18	36 19	31 20	15 21	0 23	
			<u>s</u>	쮼	<u> </u> [0]	57] —)4] —	.5] —	<u> </u>	Te] —	33] <u>66</u>	10] 68	38] 66	35] 71	32] 72	29] 73	76] 75	3] 76	71] 78	8] 75	35] 81	
	Air	Flow	<u>∏</u>		3200 [1510]	3300 [1557]	3400 [1604]	3500[1652]	3600 [1699]	3700 [1746]	0 [179	3900 [1840]	0 [188	0 [193	0 [198	0 [202	0 [207	0 [212	0 [217	0 [221	0 [226	
		_	E		320	330	340(320	3600	3700	380	3900	4000	410	4200	430(4400	420(4600	4700	4800	

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	915
				2	896
M	237.1]	3K65H	1VP-44	4	1018
~	3.0 [2237.1	BK	1VF	3	1074
				2	1127
				1	1179
				9	199
				5	700
	2.0 [1491.4]	ВК90Н	1VP-44	4	739
_	2.0 [14	BK6	1VP	က	6//
				2	816
				-	853
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Tums Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

Do not set motor sheave below minimum or maximum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS-10 TON [35.2 kW]

ACTUAL—CFM	3200	3300	3400	3500	3600	3700	3800	3900	4000	4100	4200	4300	4400	4500	4600	4700	4800
[L/s]	[1510]	[1557]	[1604]	[1652]	[1699]	[1746]	[1793]	[1840]	[1888]	[1935]	[1982]	[2029]	[2076]	[2123]	[2171]	[2218]	2265]
TOTAL MBH	96'0	0.97	76.0	0.98	0.97	1.00	96.0	1.01	86.0	1.02	66.0	1.02	0.99	1.02	1.00	1.02	1.00
SENSIBLE MBH	0.87	1.00	0.92	1.01	0.97	1.01	1.02	1.02	1.06	1.02	1.06	1.03	1.06	1.03	1.06	1.04	1.06
POWER KW	0.87	0.98	0.88	0.99	06.0	1.00	0.92	1.00	0.93	1.01	0.95	1.01	0.97	1.01	0.99	1.01	1.00

NOTES: 1. Multiply correction factor times gross performance data.

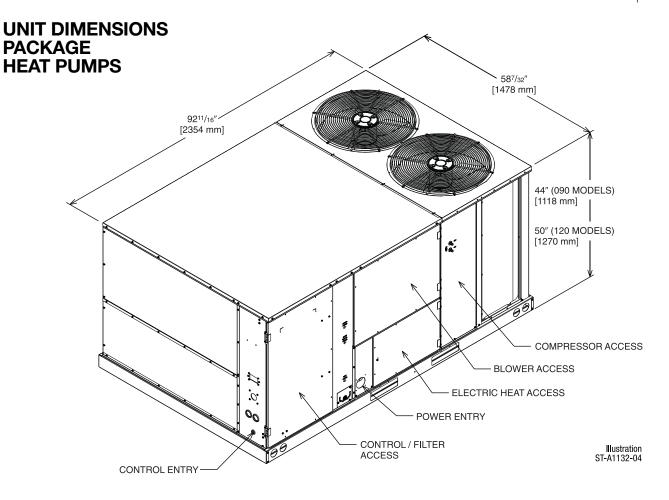
2. Resulting sensible capacity cannot exceed total capacity.

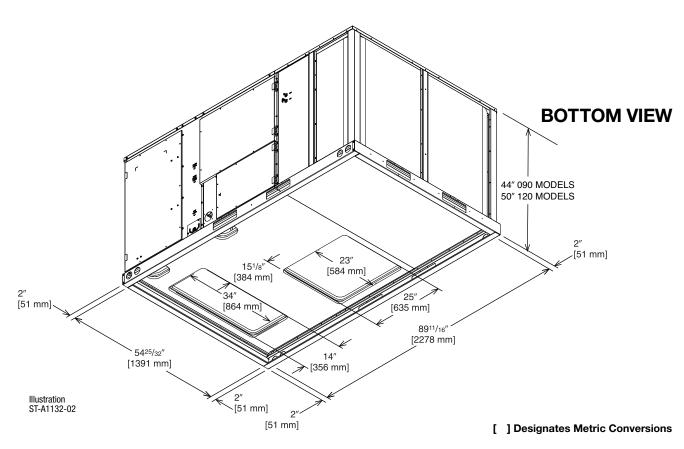
[] Designates Metric Conversions

AIRFLOW RESISTANCE— 10 TON [35.2 kW]

							Standa	Standard Indoor Airflow—CFM [L/s]	r Airflo	W-CFI	M [L/s]						
Component	3200 [1510]	3300 [1557]		3400 3500 3600 [1604] [1652] [1699]	3600	3700 [1746]	3800 [1793]	3900 4000 4100 4200 [1840] [1888] [1935] [1982]	4000	4100	4200 [1982]	4300 [2029]	4400	4300 4400 4500 4600 [2029] [2076] [2123] [2171]	4600	4700 4800 [2218] [2265]	4800 [2265]
				1	1		Resista	Resistance—Inches of Water [kPa]	nches o	f Water	[kPa]						
Wet Coil	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.11	0.11
Downflow Economizer RA Damper Open	0.09	0.10	0.10	0.11	0.11	0.12	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.16	0.16	0.17	0.17
Horizontal Economizer RA Damper Open	0.05	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.09	0.09	0.09	0.10
Horizontal Economizer OA Damper Open	0.11	0.12 [.03]	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.16	0.16	0.17	0.17	0.18	0.19	0.19	0.20
Concentric Grill RXRN-FA65 or RXRN-FA75 & Transition RXMC-CD04	0.31	0.34	0.37	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
Concentric Grill RXRN-AA61 or RXRN-AA71 & Transition RXMC-CE05	DNA	DNA	DNA	DNA	0.17	0.18	0.18	0.20	0.21	0.23	0.24	0.25	0.27	DNA	DNA	DNA	DNA
Concentric Grill RXRN-AA66 or RXRN-AA76 & Transition RXMC-CF06	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.31	0.31	0.32

Note: Add component resistance to duct resistance to determine external static pressure. $DNA = Data \ not \ available.$

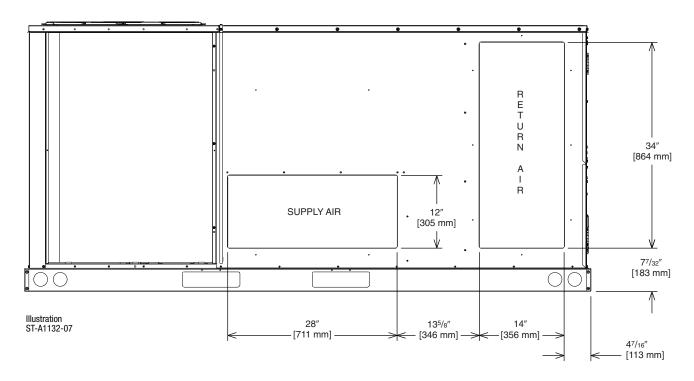

$\overline{}$				_	_					_					_					_					_				_
	it		Over Current Protective Device Size	Min./Max. 240V	20/60					20/00					09/09					02/09					08/09				1
	t and Heater K	Heat Pump	Over C Protective I	Min./Max. 208V	20/60	I	I			20/09		1	1		09/09			1		02/09		1			08/09		I	1	I
	oply for Both Unit		Min. Circuit	208/240V	43/43	I	I		I	43/43	I	l	1	l	45/45	l	l	I		20/20		1	I	I	52/52	l	1	1	ı
PLICATION	Separate Power Supply for Both Unit and Heater Kit	Heater Kit	Max. Fuse	208/240V	1	40/45	20/60	80/90	110/125	I	40/45	20/60	80/90	110/125	I	40/45	20/60	80/90	110/125	I	40/45	20/60	80/90	110/125	I	40/45	20/60	80/90	110/125
SISTICS AND API	ias 💮	Heat	Min. Ckt.	208/240V	I	38/44	20/28	28/92	101/116	I	38/44	20/28	28/92	101/116	I	38/44	20/28	28/92	101/116	I	38/44	20/28	28/92	101/116	I	38/44	20/28	28/92	101/116
IS CHARACTEF			Over Current Protective Device Size	Min./Max. 240V	20/60	100/100	110/110	150/150	175/175	20/00	100/100	110/110	150/150	175/175	09/09	100/100	125/125	150/150	175/175	02/09	100/110	125/125	150/150	175/175	08/09	110/110	125/125	150/150	200/200
IIC HEATER KIT		Heat Pump	Over C Protective	Min./Max. 208V	20/00	06/06	100/100	125/125	150/150	20/09	06/06	100/100	125/125	150/150	09/09	100/100	110/110	150/150	175/175	02/09	100/110	110/110	150/150	175/175	08/09	100/110	110/125	150/150	175/175
XILIARY ELECTF	it		Unit Min. Ckt.	208/240V	43/43	81/87	93/101	119/130	144/159	43/43	81/87	93/101	119/130	144/159	45/45	83/89	95/103	121/132	146/161	20/20	88/94	100/108	126/137	151/166	52/52	96/06	102/110	128/139	153/168
1ASE, 60 HZ, AU	nit and Heater K		Heater	208/240V	1	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4	I	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4	I	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4	I	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4	I	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4
208/240 VOLT, THREE PHASE, 60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	Single Power Supply for Both Unit and Heater Kit		Heater	208/240V	1	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	I	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	I	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	I	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131	I	36.84/49.13	49.13/65.5	73.69/98.25	98.25/131
208/240	Single Power S	Heater Kit	Rated Heater	208/240V	1	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	1	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	1	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	1	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4	I	10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4
			No. of	Steps	1	-	-	-	-	I	-	-	-	-	I	-	-	-	-	I	-	-	-	-		-	_	-	_
			RXJJ-	Nominal kW	No Heat	00150	CC20C	00800	CC40C	No Heat	00150	CC20C	00800	CC40C	No Heat	CC15C	CC20C	00800	CC40C	No Heat	CC15C	CC20C	00800	CC40C	No Heat	00150	CC20C	00800	CC40C
			Model No.	RJNL-			T00600					C090CM					C090CN					C120CL					C120CM		

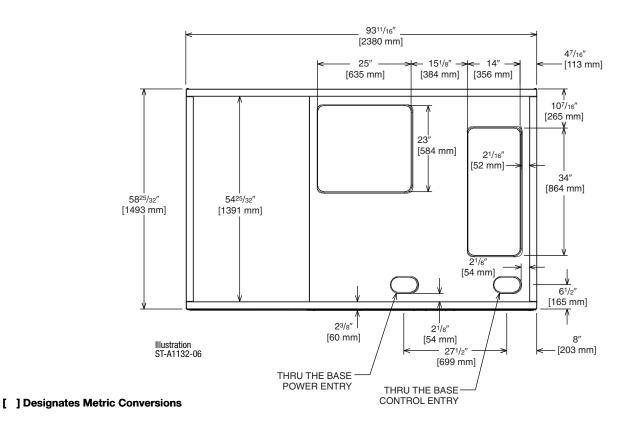

	Separate Power Supply for Both Unit and Heater Kit	Heat Pump	Min. Circuit Protective Device Size	480V Min./Max. Min./Max. 480V 480V	21 25/30 —		1			21 25/30 —		 			22 25/30 —	1			 	28 35/40 —	1 1			1	29 35/45 —	1 1		1 1	
LICATION	parate Power Su	Heater Kit	Max. Fuse	9126 480V		25	30	45	09	1	25	30	45	09	I	25	30	45	09	I	22	30	45	09	I	52	30	45	G
60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	Se	Hea	Min. Ckt.	480V	1	22	29	44	58	I	22	29	44	28	1	22	29	44	28	ı	22	29	44	28	I	22	29	44	8
CHARACTER			Over Current Protective Device Size	Min./Max. 480V		1				1		l			I				1	I	1				I	1			١
HEATER KITS		Heat Pump	Over C Protective I	Min./Max. 480V	25/30	20/20	09/09	20/20	90/90	25/30	20/20	09/09	20//02	06/06	25/30	20/20	09/09	08/08	06/06	35/40	09/09	09/09	80/80	06/06	35/45	09/09	20/20	80/80	100/100
ILIARY ELECTRIC	it		Unit Min. Ckt.	480V	21	43	20	65	79	21	43	20	65	79	22	44	51	99	80	28	20	22	72	98	59	51	28	73	87
	nit and Heater Kit		Heater	480V	1	17.4	23.1	34.7	46.2	I	17.4	23.1	34.7	46.2	I	17.4	23.1	34.7	46.2	I	17.4	23.1	34.7	46.2	I	17.4	23.1	34.7	46.2
480 VOLT, THREE PHASE,	Single Power Supply for Both Unit a		Heater	480V		49.13	65.5	98.25	131	I	49.13	65.5	98.25	131	1	49.13	65.5	98.25	131	-	49.13	65.5	98.25	131	1	49.13	65.5	98.25	131
480 Vi	Single Power S	Heater Kit	Rated Heater	480V		14.4	19.2	28.8	38.4	I	14.4	19.2	28.8	38.4	I	14.4	19.2	28.8	38.4	1	14.4	19.2	28.8	38.4	I	14.4	19.2	28.8	38.4
			No. of	Steps		-	-	-	-	I	-	_	-	-	I	-	-	-	_	I	-	-	-	-	I	-	-	-	-
			RXJJ-	Nominal KW	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	מטעטט
			Model No.	RJNL-			TQ0600					C090DM					CO90DN					C120DL					C120DM		

			N 009	600 VOLT, THREE PHASE, 60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	SE, 60 HZ, AUXI	LIARY ELECTRIC	HEATER KITS	CHARACTERIS	TICS AND APPLI	CATION	Hall should not talk	V zotoch bac	
			Single Power S	Single Power Supply for Both Unit	nit and Heater Kit				Sep	arate Power Sup	Separate Power Supply for Both Unit and Heater Kit	t and Heater K	1
			Heater Kit				Heat Pump		Heater Kit	ar Kit		Heat Pump	
Model No.	RXJJ-	No. of	Rated Heater	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device	Over Current Protective Device Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device Size	urrent Jevice Size
RJNL-	Nominal KW	Steps	0009	8810/H7 6000V	600V	Ampacity @ 600V	Min./Max. 600V	Min./Max. 600V	600V	0009	600V	Min./Max. 600V	Min./Max. 600V
	No Heat			1		16	20/20	1			16	20/20	
	CC15Y	_	14.4	49.13	13.9	34	40/40	1	18	20	ı	I	I
C090YL	CC20Y	-	19.2	65.5	18.5	40	45/45		24	25	1	l	l
	CC30Y	-	28.8	98.25	28.9	53	09/09		37	40	1	1	
	CC40Y	-	38.4	131	38.5	92	02/02		49	20	1	l	l
	No Heat	I	1			16	20/20				16	20/20	1
	CC15Y	-	14.4	49.13	13.9	34	40/40		9	20	1	l	I
C090YM	CC20Y	-	19.2	65.5	18.5	40	45/45		24	25	1	1	
	CC30Y	_	28.8	98.25	28.9	53	09/09	ı	37	40	1	1	1
	CC40Y	_	38.4	131	38.5	92	20/20	1	49	20	1	_	
	No Heat	1	I	1		17	20/25	I	I	1	17	50/52	ı
	CC15Y	_	14.4	49.13	13.9	32	45/45	1	18	20	ı	1	1
C090YN	CC20Y	-	19.2	65.5	18.5	41	20/20	I	24	22	ı	I	1
	CC30Y	-	28.8	98.25	28.9	54	09/09	1	37	40	ı	I	1
	CC40Y	-	38.4	131	38.5	66	80/80	1	49	50	1		
	No Heat	I	1	I	1	20	25/30	I	1	I	50	52/30	ı
	CC15Y	-	14.4	49.13	13.9	38	45/45	1	92	20	1	1	1
C120YL	CC20Y	-	19.2	65.5	18.5	44	20/20	1	24	25	1	1	1
	CC30Y	-	28.8	98.25	28.9	22	09/09	1	37	40	1	1	1
	CC40Y	_	38.4	131	38.5	69	80/80	1	49	20	1	_	
	No Heat	I	I	I		21	25/30	I	I	1	21	55/30	ı
	CC15Y	_	14.4	49.13	13.9	39	20/20	1	18	20	ı	1	1
C120YM	CC20Y	_	19.2	65.5	18.5	45	09/09	I	24	25	ı	I	I
	CC30Y	-	28.8	98.25	28.9	28	20/20	1	37	40	1	1	1
	CC40Y	_	38.4	131	38.5	20	80/80		49	20	1	I	

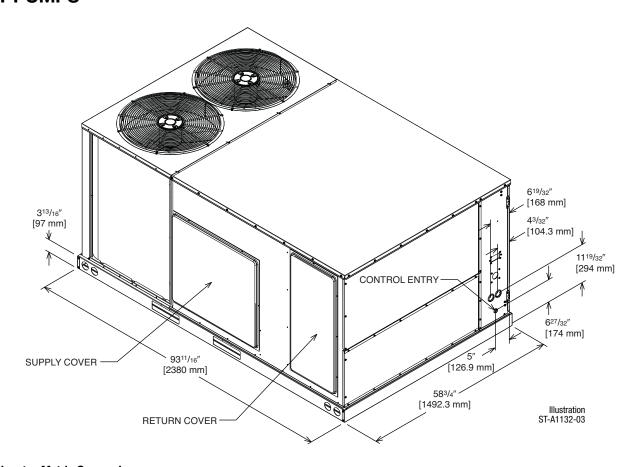
		FLEC	TRICAL I	DATA – R	ואו -ר פו	RIFS				
		CO90CL	CO90CM	CO90CN	CO90DL	C090DM	C090DN	C090YL	C090YM	C090YN
_	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506	517-632	517-632	517-632
ation	Volts	208/230	208/230	208/230	460	460	460	575	575	575
Ë	Minimum Circuit Ampacity	43/43	43/43	45/45	21	21	22	16	16	17
Unit Information	Minimum Overcurrent Protection Device Size	50/50	50/50	60/60	25	25	25	20	20	20
n	Maximum Overcurrent Protection Device Size	60/60	60/60	60/60	30	30	30	20	20	25
	No.	1	1	1	1	1	1	1	1	1
	Volts	200/230	200/230	200/230	460	460	460	575	575	575
-	Phase	3	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450
30r I	HP, Compressor 1	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4
Compressor Motor	Amps (RLA), Comp. 1	25/25	25/25	25/25	12.2	12.2	12.2	9	9	9
E	Amps (LRA), Comp. 1	164/164	164/164	164/164	100	100	100	78	78	78
ŏ	HP, Compressor 2	_	_	_	_	_	_	_	_	_
	Amps (RLA), Comp. 2	_	_	_	_	_	_	_	_	_
	Amps (LRA), Comp. 2	_	_	_		_	_	_	_	_
=	No.	2	2	2	2	2	2	2	2	2
] oto	Volts	208/230	208/230	208/230	460	460	460	575	575	575
er	Phase	1	1	1	1	1	1	1	1	1
Condenser Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
puo	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4	1	1	1
3	Amps (LRA, each)	3.9/3.9	3.9/3.9	3.9/3.9	1.8	1.8	1.8	1.5	1.5	1.5
	No.	1	1	1	1	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460	460	575	575	575
ıtor	Phase	3	3	3	3	3	3	3	3	3
Evaporator Fan	HP	2	2	3	2	2	3	2	2	3
Eval	Amps (FLA, each)	8/8	8/8	13/13	4	4	7	4	4	8
	Amps (LRA, each)	56/56	56/56	74.5/74.5	28	28	38.1	19	19	20

	E	LECTRICAL	DATA – RJNL	-C SERIES			
		C120CL	C120CM	C120DL	C120DM	C120YL	C120YM
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	517-632	517-632
ation	Volts	208/230	208/230	460	460	575	575
Ĩ.	Minimum Circuit Ampacity	50/50	52/52	28	29	20	21
Unit Information	Minimum Overcurrent Protection Device Size	60/60	60/60	35	35	25	25
5	Maximum Overcurrent Protection Device Size	70/70	80/80	40	45	30	30
	No.	1	1	1	1	1	1
	Volts	200/230	200/230	460	460	575	575
a	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
or I	HP, Compressor 1	12 3/4		12 3/4	12 3/4	12 3/4	12 3/4
Compressor Motor	Amps (RLA), Comp. 1	30.1/30.1	30.1/30.1	16.7	16.7	12.2	12.2
g [Amps (LRA), Comp. 1	225/225	225/225	114	114	80	80
<u>ت</u>	HP, Compressor 2	_	_	_	_	_	_
	Amps (RLA), Comp. 2	_	_	_	_	_	_
	Amps (LRA), Comp. 2	_	_	_	_	_	_
_	No.	2	2	2	2	2	2
loto	Volts	208/230	208/230	460	460	460	460
er S	Phase	1	1	1	1	1	1
Condenser Motor	HP	1/2	1/2	1/2	1/2	1/2	1/2
ond	Amps (FLA, each)	2.3/2.3	2.3/2.3	1.5	1.5	1	1
3	Amps (LRA, each)	5.6/5.6	5.6/5.6	3.1	3.1	2.2	2.2
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575
ig	Phase	3	3	3	3	3	3
Evaporator Fan	HP	2	3	2	3	2	3
Evat	Amps (FLA, each)	8/8	13/13	4	7	4	8
	Amps (LRA, each)	56/56	74.5/74.5	28	38.1	19	20

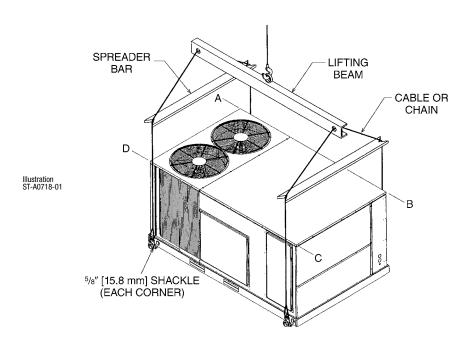




UNIT DIMENSIONS PACKAGE HEAT PUMPS

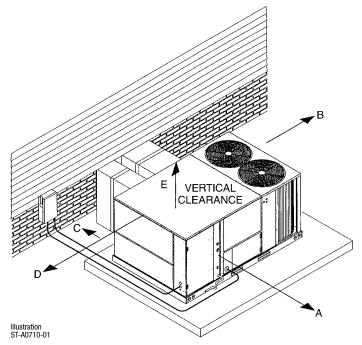

SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATION

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS



UNIT DIMENSIONS PACKAGE HEAT PUMPS

CORNER WEIGHTS


Capacity Tons [kW]	Corner Weights by Percentage					
	Α	В	С	D		
7.5-10 [26.4-35.2]	32%	26%	20%	22%		

CLEARANCES

The following minimum clearances are recommended for proper unit performance and serviceability.

Recommended Clearance In. [mm]	Location					
48 [1219]	A - Front					
18 [457]	B - Condenser Coil					
18 [457]	C - Duct Side					
18 [457]	*D - Evaporator End					
60 [1524]	E - Above					
*Without Economizer. 48" [1219 mm] With Economizer						

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?		
Thermostats	See Thermostat Spec	No				
	RXJJ-CC15 (C,D,Y)	46 [20.9]	36 [16.3]	Yes		
Floatric Hostons	RXJJ-CC20 (C,D,Y)	46 [20.9]	36 [16.3]	Yes		
Electric Heaters	RXJJ-CC30 (C,D,Y)	47 [21.3]	37 [16.8]	Yes		
	RXJJ-CC40 (C,D,Y)	49 [22.2]	39 [17.7]	Yes		
Economizer w/Single Enthalpy	AXRD-PJCM3	90 [40.8]	81 [36.7]	Yes		
Economizer w/Single Enthalpy and Smoke Detector	AXRD-SJCM3	91 [41.3]	82 [57.2]	Yes		
Dual Enthalpy Kit	RXRX-AV03	3 [1.4]	1 [.5]	No		
Horizontal Economizer w/Single Enthalpy	AXRD-RJCM3	94 [42.6]	89 [40.4]	No		
Carbon Dioxide Sensor	RXRX-AR02	3 [1.4]	2 [1.0]	No		
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No		
Manual Fresh Air (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.0]	No		
Manual Fresh Air (Return Panel)	AXRF-JDA1	26 [11.8]	21 [9.5]	No		
Motorized Fresh Air (Return Panel)	AXRF-JDB1	43 [19.5]	38 [17.2]	No		
Motor Kit for RXRF-KDA1	RXRX-AW02	35 [15.9]	27 [12.2]	No		
Modulating Motor Kit w/Position Feedback for RXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No		
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No		
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No		
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No		
	RXRX-CFCE54	325 [147.4]	315 [142.9]	No		
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No		
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No		
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No		
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No		
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No		
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No		
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No		
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No		
Downflow Transition (Rect. to Round)	RXMC-CD04	15 [6.8]	13 [5.9]	No		
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 ①	18 [8.2]	16 [7.3]	No		
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 @	20 [9.1]	18 [8.2]	No		
Low-Ambient Control Kit	RXRZ-A03	3 [1.4]	2 [1.0]	Yes		
Outdoor Coil Louver Kit (090)	AXRX-AAD01H	25 [11.3]	22 [10.0]	Yes		
Outdoor Coil Louver Kit (120)	AXRX-AAD01J	29 [13.2]	26 [11.8]	Yes		
Non-Powered Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [0.7]	Yes		
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes		
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No		
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No		

NOTES: ① Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

② Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

THERMOSTATS

200-Series *
Programmable

300-Series *
Deluxe
Programmable
400-Series *
Special Applications/

Programmable

500-Series * Communicating/ Programmable

Brand		Descripter (3 Characters)	Series (3 Characters)	System (2 Characters)	Type (2 Characters)	
RHC	-	TST	TST 213		MS	
RHC=Rheem		TST=Thermostat	200=Programmable 300=Deluxe Programmable 400=Special Applications/ Programmable 500=Communicating/ Programmable	GE=Gas/Electric UN=Universal (AC/HP/GE) MD=Modulating Furnace DF=Dual Fuel CM=Communicating	SS=Single-Stage MS=Multi-Stage	

^{*} Photos are representative. Actual models may vary.

For detailed thermostat match-up information, see specification sheet form number T11-001.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

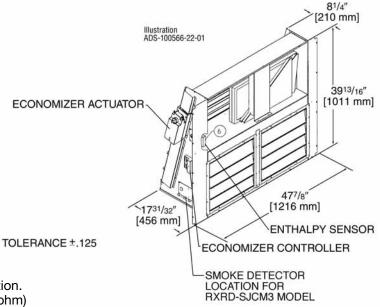
 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

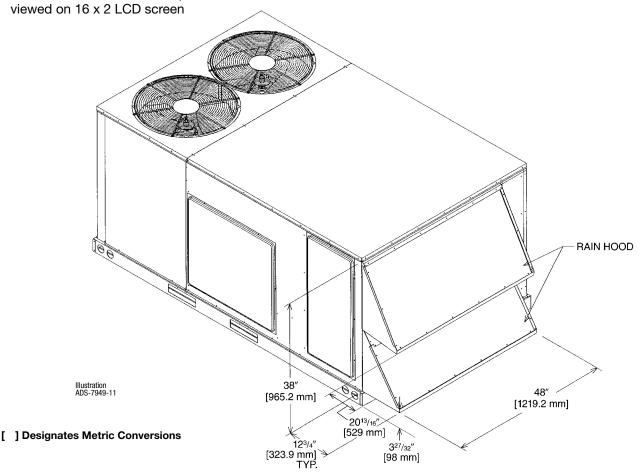
COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02


The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

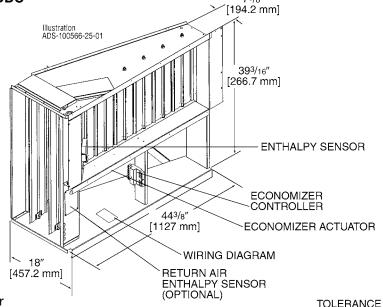

ECONOMIZERS

Use to Select Factory Installed Options Only

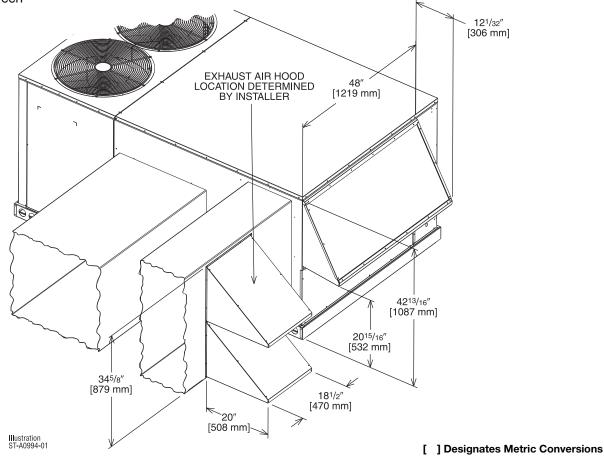
AXRD-PJCM3—Single Enthalpy (Outdoor) with DDC AXRD-SJCM3—Single Enthalpy w/Smoke Detector ar RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Optional Wall-Mounted CO, Sensor

- Features **Honeywell** Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to a thermostat, all economizer functions can be

ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION


Field Installed Only

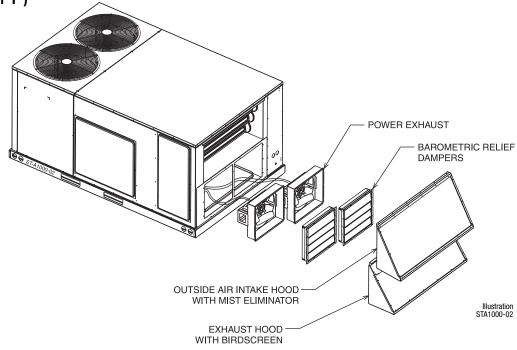
AXRD-RJCM3—Single Enthalpy (Outdoor) with DDC


RXRX-AV03—Dual Enthalpy Upgrade Kit

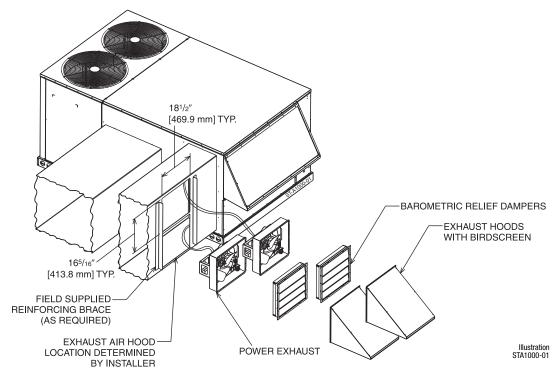
RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured— No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal **Duct Application**
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen

TOLERANCE ± .125



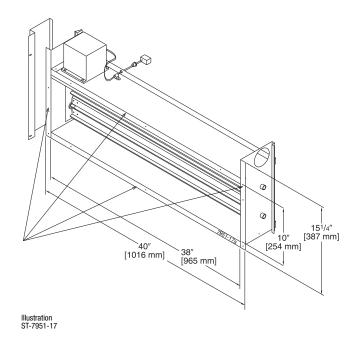
POWER EXHAUST KIT FOR AXRD-PJCM3(-), AXRD-RJCM3(-), RXRD-SJCM3 ECONOMIZERS


RXRX-BFF02 (C, D, or Y*)

*Voltage Code

VERTICAL AIRFLOW

HORIZONTAL AIRFLOW

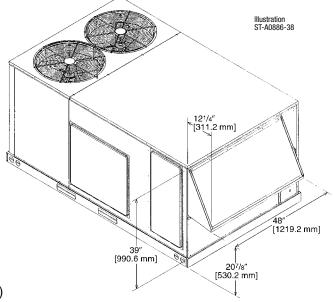


Model No.	No.	No. of Fans Volts	Phase	HP (ea.)	Low Speed		High Speed ①		FLA	LRA
of	of Fans				CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8
RXRX-BFF02Y	2	575	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.81	1.5

NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for RXRF-KDA1)

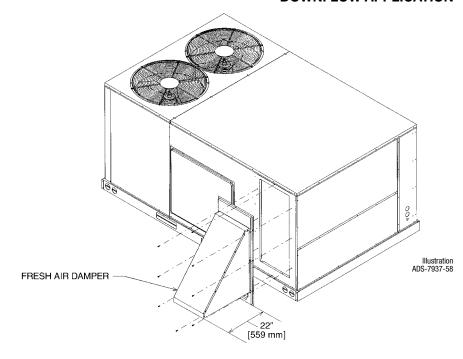

AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

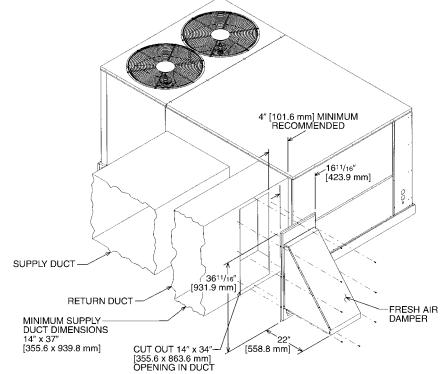
[] Designates Metric Conversions

RXRX-AW04 (Modulating Motor Kit with position feedback for AXRF-KDA1)

- Features **Honeywell** Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen



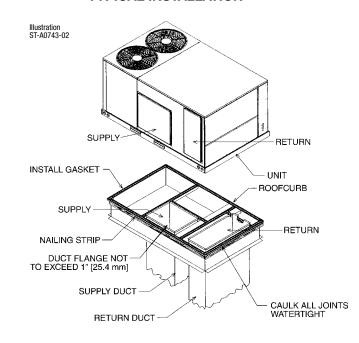
FRESH AIR DAMPER (Cont.)


AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)

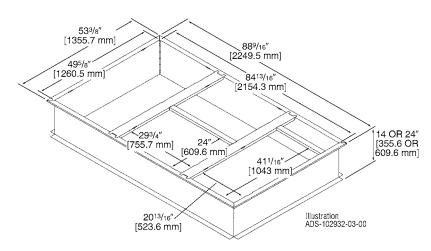
DOWNFLOW APPLICATION

HORIZONTAL APPLICATION

Illustration ST-A0901-01



ROOFCURBS (Full Perimeter)


- Rheem's new roofcurb design can be utilized on 7.5 and 10 ton [26.4 and 35.2 kW] RJNL-C models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 2" [51 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]


TYPICAL INSTALLATION

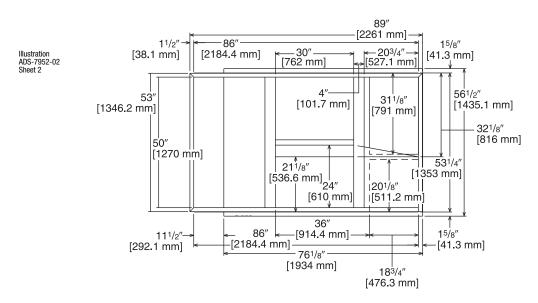
ROOFCURB INSTALLATION

[] Designates Metric Conversions

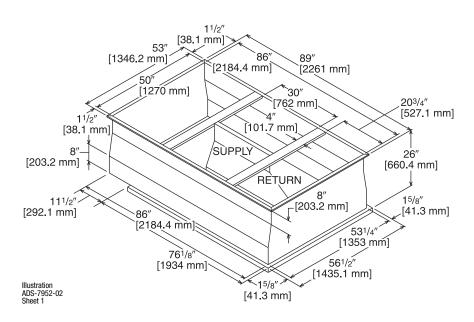
*BY CONTRACTOR

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

Illustration ST-A0743-02

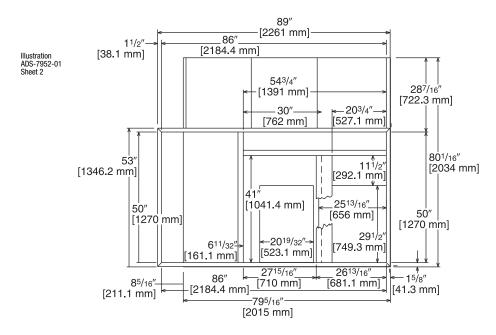


ROOFCURB ADAPTERS

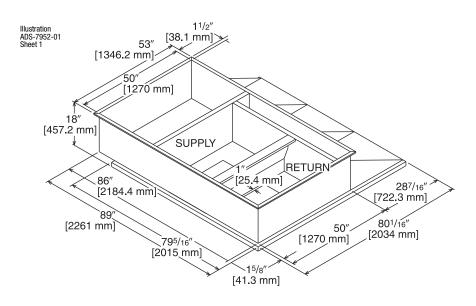

OLD MODELS	OLD ROOFCURB	ROOFCURB ADAPTER	NEW MODELS (All Share Common Footprint)
(-)RCF, (-)REF-075/076 (-)RGF-150075, (-)RGF-131076 (-)RGF-201076	RXRK-E50	RXRX-CDCE50	
(-)RGF-200075 (-)RGG, (-)REG, (-)RCG-075 (-)RGF, (-)REF, (-)RCF-085 (-)RGF, (-)REF, (-)RCF-100 (-)RGG, (-)REG, (-)RCG-100	RXRK-E54	RXRX-CFCE54	(-)JNL-C090 (-)JNL-C120
(-)RGF, (-)REF, (-)RCF-125	RXRK-E56	RXRX-CFCE56	
(-)PDC-075 (-)PDC-100/101	RXPK-C12	RXRX-CGCC12	

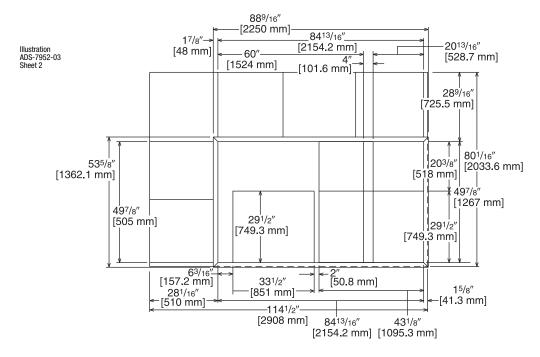
NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced.

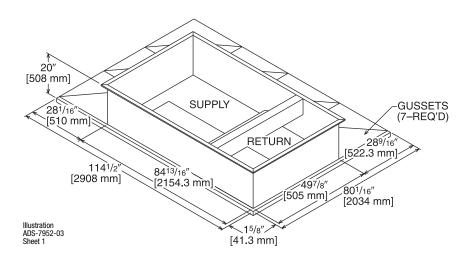
RXRX-CDCE50

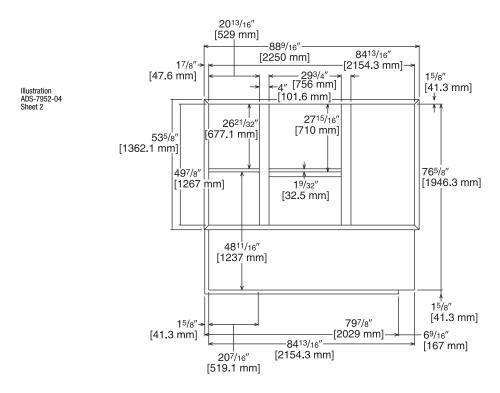


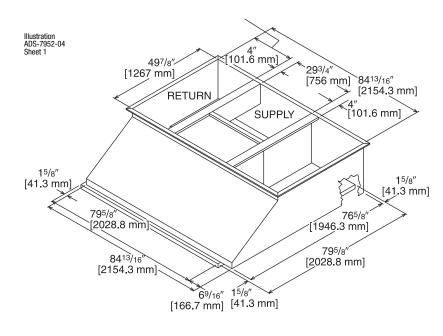
TOP VIEW

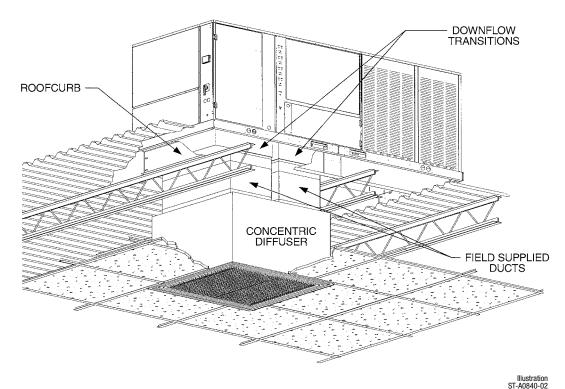



RXRX-CFCE54

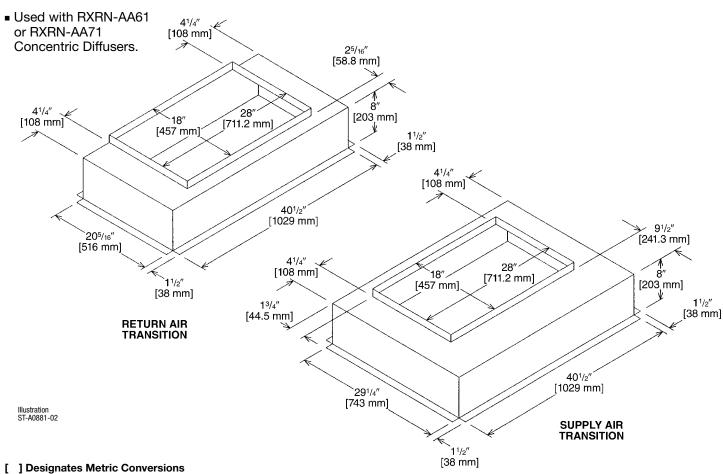

TOP VIEW


RXRX-CFCE56


TOP VIEW


RXRX-CGCC12

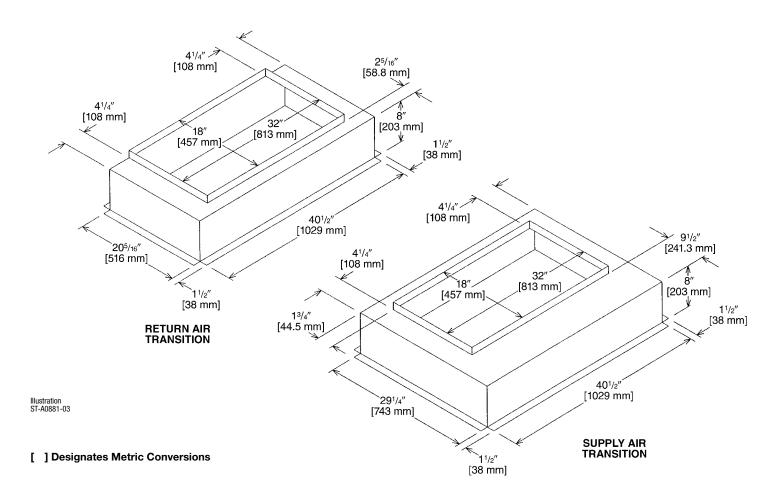
TOP VIEW



CONCENTRIC DIFFUSER APPLICATION

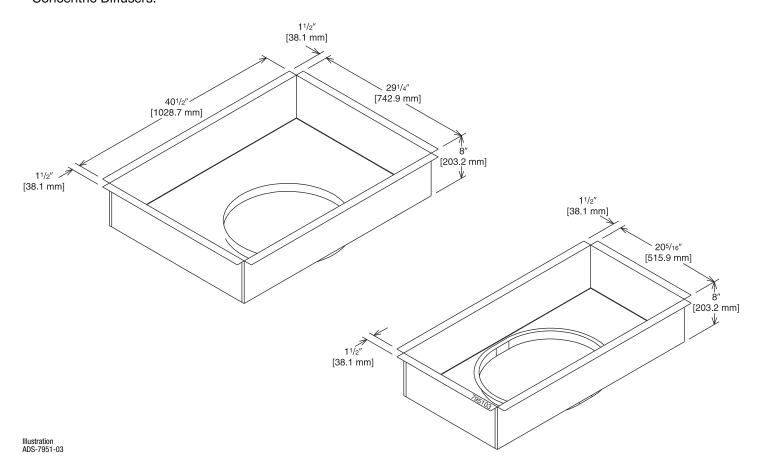
DOWNFLOW TRANSITION DRAWINGS

RXMC-CE05



DOWNFLOW TRANSITION DRAWINGS (Cont.)

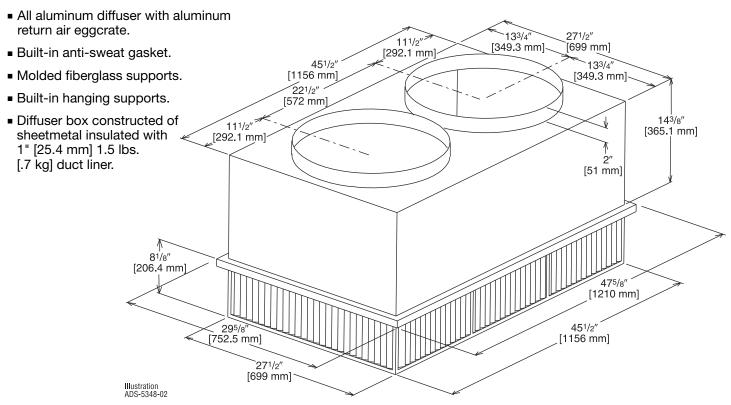
RXMC-CF06


 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CD04

 Used with RXRN-FA65 or RXRN-FA75 Concentric Diffusers.



CONCENTRIC DIFFUSER—STEP DOWN

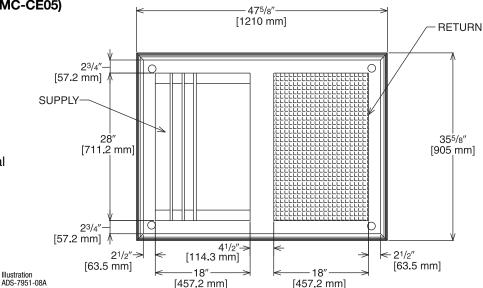
RXRN-FA65 (7.5 Ton [29.9 kW] Model)

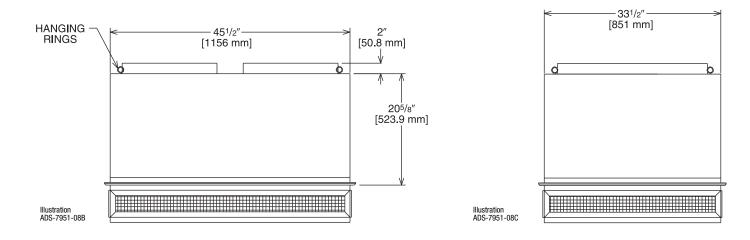
For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: ① All data is based on the air diffusion council guidelines.


- $\ensuremath{@}$ Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (10 Ton [35.2 kW] Model)

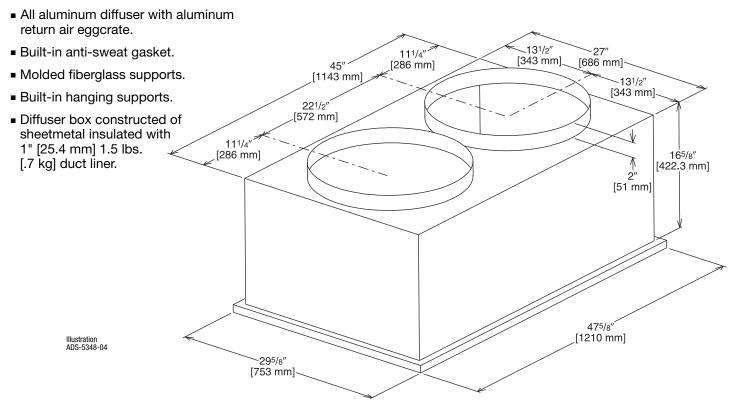
For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: $\ensuremath{\mathfrak{D}}$ All data is based on the air diffusion council guidelines.


- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

FLUSH MOUNT CONCENTRIC DIFFUSER—FLUSH

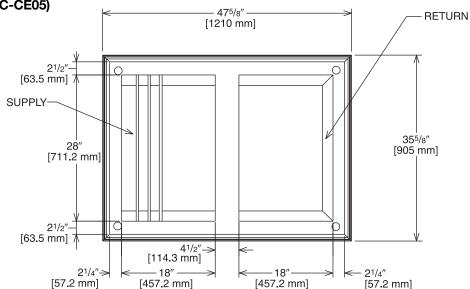
RXRN-FA75 (7.5 Ton [26.4 kW] Models)

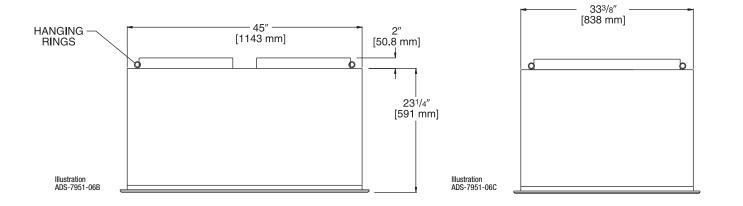
For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

ENGINEERING DATA¹

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-FA75	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council guidelines.


- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- ④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (10 Ton [35.2 kW] Model)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
RXRN-AA71	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

Illustration ADS-7951-06A

Guide Specifications - RJNL-C090 thru C120

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

ROOFTOP PACKAGED HEAT PUMP

HVAC Guide Specifications

Size Range: 7.5 to 10 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

a. have capability to energize 2 different stages of cooling, and 2 different stages of heating and a reversing valve output.

b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust/ reversing valve/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.
- 23 09 23.13.B. Open protocol, direct digital controller:
 - 1. Shall be ASHRAE 62-2001 compliant.
 - 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
 - 4. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
 - 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
 - The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
 - 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
 - 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
 - Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
 - 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust/ reversing valve.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 4. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.
- Shall include integrated defrost system to prevent excessive frost accumulation during heating duty, and shall be controlled as follows:
 - a. Defrost shall be initiated on the basis of Demand Defrost.
 - b. The need for a defrost cycle is determined by one of two factors: Time or Frost Detection.
 - c. Should six hours of compressor run time elapse without a defrost cycle and the coil temperature is below the frost accumulation temperature, a defrost cycle will be initiated.
 - d. The control shall be capable of detecting frost accumulation on the outdoor coil and initiate a defrost cycle when the Dry Coil Delta T + the Coil Temperature Dependant Variable (10 degrees of degradation) is sensed.
 - e. As the ambient temperature changes, the ambient change will be used to adjust the detection of frost accumulation.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Filters shall be accessible through an access panel as described in the unit cabinet section of this specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally sound R-410a refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210/240 and 340/360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 340/360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation from 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall be capable of simultaneous heating duty and defrost cycle operation when using accessory electric heaters.
- 4. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 5. Unit shall be factory configured for vertical supply & return configurations.
- 6. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210/240 or 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb density, flexible fiberglass insulation, aluminum foil-faced on the air side.
- 4. Base of unit shall have locations for thru-the-base electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" -11 1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
- 7. Top panel:
 - a. Indoor section shall be a single piece top panel.
- 8. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
 - b. Thru-the-base capability
 - (1.) Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - (2.) No basepan penetration, other than those authorized by the manufacturer, is permitted.

- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor, and electric or gas heater components (where applicable), shall have 1/4 turn latches.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils: on all models.
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and Condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psig.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valve (TXV) with venturi type distributor.
 - b. Refrigerant filter drier.
 - c. External service gauge connections to unit suction and discharge lines.
- 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - d. Compressors shall be internally protected from high discharge temperature conditions.
 - e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - f. Compressor shall be factory mounted on rubber grommets.
 - g. Compressor motors shall have internal line break thermal, current overload and high pressure differential protection.
 - h. Crankcase heaters shall be utilized on all models to protect compressor with specific refrigerant charge.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by a sliding filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filters shall be standard, commercially available sizes.
- 5. Filter face velocity shall not exceed 365 fpm at nominal airflows.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection or circuit breaker.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

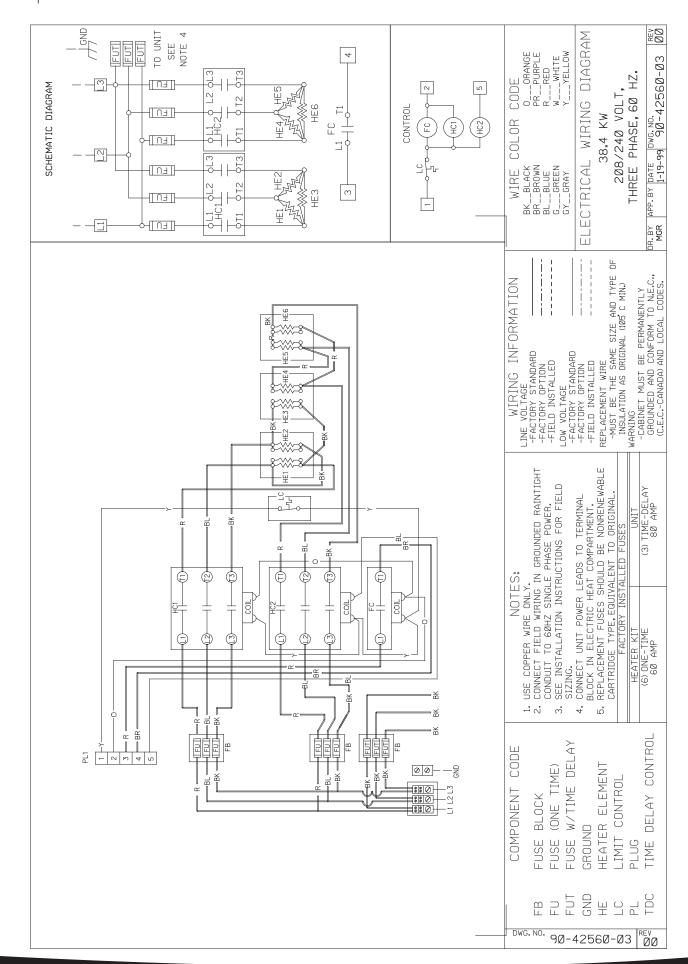
23 81 19.13.N. Condenser Fans and Motors

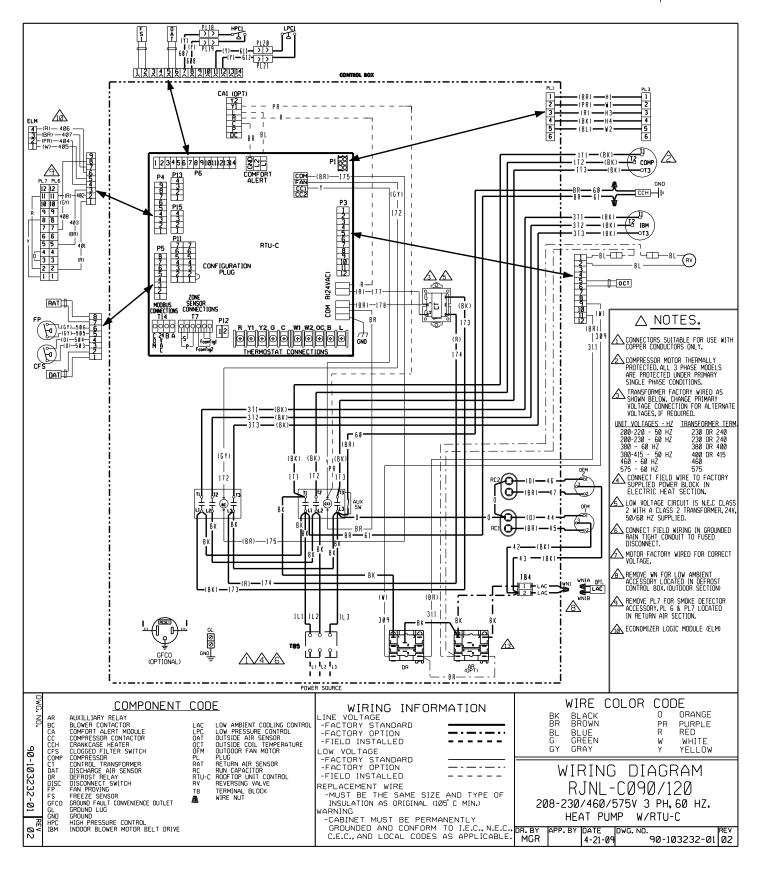
- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

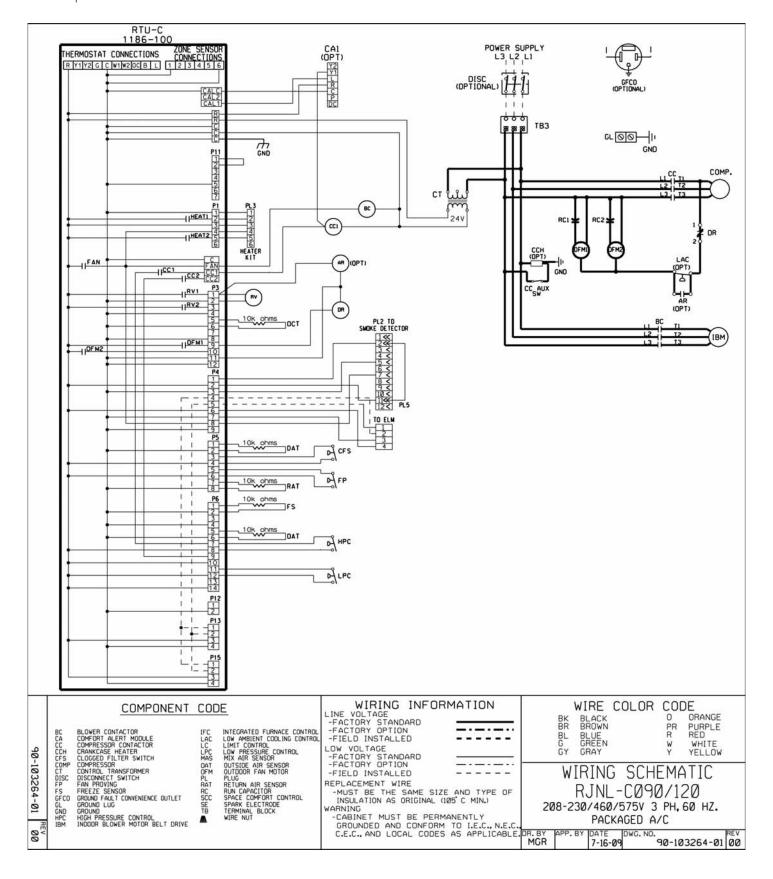
23 81 19.13.O. Special Features, Options and Accessories

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.

___ Air


- e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
- f. Shall be capable of introducing up to 100% outdoor air.
- g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
- h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
- i. An outdoor single enthalpy sensor shall be provided as standard. Outdoor air sensor setpoint shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
- j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
- k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper setpoint.
- I. Dampers shall be completely closed when the unit is in the unoccupied mode.
- m. Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
- n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
- o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- p. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
- q. Economizer wire harness will have provision for smoke detector.
- 2. Two-Position Motorized Damper
 - a. Damper shall be a Two-Position Motorized Damper. Damper travel shall be from the full closed position to the field adjustable %-open setpoint.
 - b. Damper shall include adjustable damper travel from 25% to 100% (full open).
 - c. Damper shall include single or dual blade, gear driven dampers and actuator motor.
 - d. Actuator shall be direct coupled to damper gear. No linkage arms or control rods shall be acceptable.
 - e. Damper will admit up to 100% outdoor air for applicable rooftop units.
 - f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
 - g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
 - h. Outside air hood shall include aluminum water entrainment filter
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered design.
- 6. Convenience Outlet:
 - a. Non-Powered convenience outlet.
 - (1.) Outlet shall be powered from a separate 115-120v power source.
 - (2.) A transformer shall not be included.
 - (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - (4.) Outlet shall include 15 amp GFI receptacles.
 - (5.) Outlet shall be accessible from outside the unit.
- 7. Fan/Filter Status Switch:
 - a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
 - b. Status shall be displayed either over communication bus (when used with direct digital controls) or through the controller LCD display inside the unit control box.
- 8. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust is shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- 9. Roof Curbs (Vertical):
 - a. Full perimeter roof curb with exhaust capability providing separate air streams for energy recovery from the exhaust air without supply air contamination.
 - b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.




- 10. High-Static Indoor Fan Motor(s) and Drive(s):
 - a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.
- 11. Outdoor Air Enthalpy Sensor:
 - a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.
- 13. Return Air Enthalpy Sensor:
 - a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
- 14. Indoor Air Quality (CO₂) Sensor:
 - a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - b. The IAQ sensor shall be available in wall mount with LED display. The setpoint shall have adjustment capability.
- 15. Smoke detectors:
 - a. Shall be a Four-Wire Controller and Detector.
 - b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
 - c. Shall use magnet-activated test/reset sensor switches.
 - d. Shall have a recessed momentary switch for testing and resetting the detector.
 - e. Controller shall include:
 - (1.) One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
 - (2.) Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - (3.) One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - (4.) Capable of direct connection to two individual detector modules.
 - (5.) Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

16. Electric Heat:

- a. Heating Section
 - (1.) Heater element open coil resistance wire, nickel-chrome alloy, strung through ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.
 - (2.) Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24 v coil) and terminal block all mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Rheem will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Conditional Parts (Registration Required) 1 Phase, Residential ApplicationsTen (10) Years
Compressor
1 Phase, Residential ApplicationsTen (10) Years
1 & 3 Phase, Commercial ApplicationsFive (5) Years
Parts
1 & 3 Phase, Commercial ApplicationsOne (1) Year

In keeping with its policy of continuous progress and product improvement, Rheem reserves the right to make changes without notice.

Rheem Heating, Cooling & Water Heating • P.O. Box 17010 Fort Smith, Arkansas 72917 • www.rheem.com Rheem Canada Ltd./Ltée • 125 Edgeware Road, Unit 1 Brampton, Ontario • L6Y 0P5

