

MODEL: RKNL-G Package Gas Electric Unit

FORM NO. RSC-861

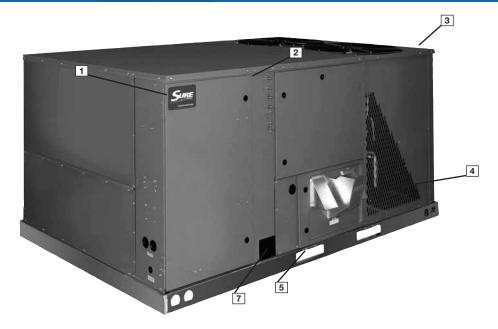
Sure Comfort® RKNL-G Package Gas Electric Unit featuring HumidiDry™ Technology

RKNL-G

- With ClearControl[™] and VFD Technology
- Nominal Sizes 7.5, 10 & 12.5 Tons [26.4, 35.2 & 44 kW]
- ASHRAE 90.1-2010 Compliant

Table of Contents

Unit Features & Benefits	3-10
Model Number Identification	11
Options	12
Selection Procedure	13
General Data	
RKNL-G	14-20
General Data Notes	21
Gross Systems Performance Data	
RKNL-G	22-24
Gross Systems Performance Data - Reheat	
RKNL-G	25-27
Indoor Airflow Performance	
RKNL-G	28-30
Electrical Data	
RKNL-G	32
Dimensional Data	33-36
Accessories	37-59
Mechanical Specifications	60-66
Wiring Diagrams	67-68
Limited Warranty	69



RKNL-G STANDARD FEATURES INCLUDE:

- R-410A HFC refrigerant.
- Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Two independent scroll compressors provide two stage operation.
- · Convertible airflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintained high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.
- Forkable base rails for easy handling and lifting.
- Single point electrical and gas connections.

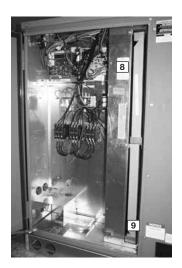
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve, direct spark ignition, and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils (12¹/₂ ton uses MicroChannel condenser).
- Molded compressor plug.
- Factory Installed ClearControl[™], a Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.
- Variable Frequency Drive (VFD)
- HumidiDry™ Dehumidification System

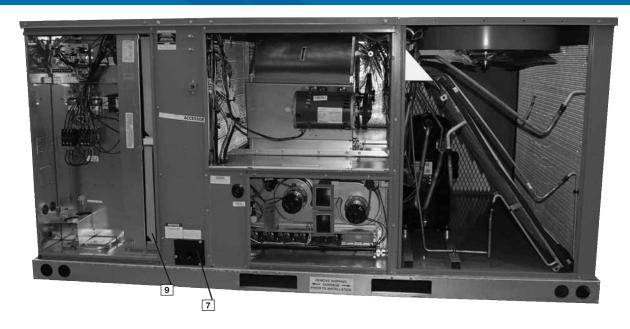
www.SureComfort.com ______ 3

Sure Comfort Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Sure Comfort label (1) identifies the brand to the customer.

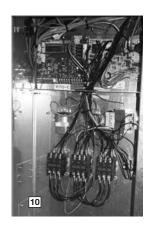
The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The Sure Comfort hail guard (4) (optional) is its trademark, and sets the standard for coil protection in the industry. Every Sure Comfort package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.




During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Sure Comfort-required reliability tests. Sure Comfort adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate. Contractors can rest assured that when a Sure Comfort package unit arrives at the job, it is ready to go with a factory charge and quality checks.

Access is granted with 1/4 turn fasteners and hinged access panels. Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large hinged-access panel. The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test

assurance label is also placed in this location (3). The two-inch throwaway filters (9) are easily removed on a tracked system for easy replacement.

Inside the control box (10), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and colorcoded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the

RKNL-G Package Gas Electric Unit has a Rooftop Unit Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/Integral control algorithms per-

form specific unit functions that govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system (11). New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-G Package Gas/Electric with the RTU-C is specifically designed to be applied in four distinct applications:

The RKNL-G is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RKNL-G is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKNL-G is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-G is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

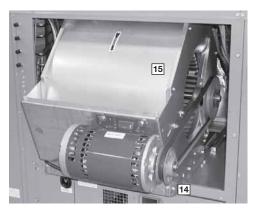
www.SureComfort.com _____ 5

Factory installed VFD (variable frequency drive) supply fan optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed

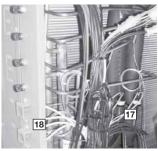
improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desired speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect ([12]) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the number 1 compressor contactor. The suggested

mounting for the field-installed disconnect is on the exterior side of the electrical control box.


To the right of the electrical and filter compartment are the externally mounted gauge ports, which are permanently identified by

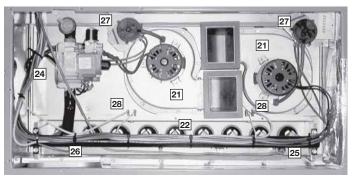
embossed wording that clearly identifies the compressor circuit, high pressure connection and low pressure connection (13). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily. Brass caps on the schrader fitting assure that the gauge parts are leak proof.



The blower compartment is to the right of the gauge ports and can be accessed by 1/4 turn fastener. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing two 3/8" screws from the blower retention bracket. The adjustable motor pulley (14) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static, Sure Comfort has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (15) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for

years of troublefree operation.
The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blowerpulley removal difficult.

Also inside the blower compartment is the low-ambient control (16), low-pressure switch (17), high-pressure switch (18) and freeze sensor (19). The lowambient control allows for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch will shut off the compressors if pressures in excess of 610 PSIG are detected, as may occur if the outdoor fan motor fails. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing)



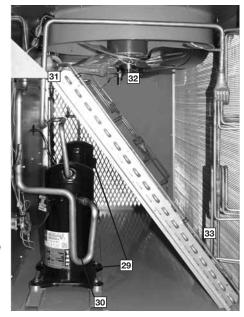
due to low airflow and allows monitoring of the suction line temperature on the controller display. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs and schrader fittings allow for easy field installation.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator. (Note: the single stage 6 ton utilizes an orifice).

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (20) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

The furnace compartment contains the latest furnace technology on the market. The draft inducers ([21]) draw the flame from the Sure Comfort exclusive in-shot burners ([22]) into the aluminized tubular heat exchanger ([23]) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipment with a two-stage gas valve ([24]), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.

The direct spark igniter (25) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (26) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.


Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (27) to assure adequate combustion airflow before ignition.
- Rollout switches (28) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.

www.SureComfort.com ______ 7

The compressor compartment houses the heartbeat of the unit. The scroll compressor (29) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (30) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and

each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage. (072 single stage)

Each unit comes standard with filter dryer ($\boxed{31}$). The condenser fan motor ($\boxed{32}$) can easily be accessed and maintained through the top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (33) for the most effective method of heat transfer. The outdoor coil is protected by optional* louvered panels, which allow unobstructed airflow while protecting the unit from both Mother Nature and vandalism.

Each unit is designed for both downflow or horizontal applications (34) for job configuration flexibility. The return air compartment can also contain an economizer (35).

Three models exist, two for downflow applications, and one for horizontal applications (a downflow economizer with factory installed smoke

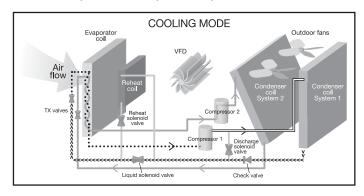
detector in the return section is available. Each unit is pre-wired for the economizer to allow quick plug-in installation. The economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The economizer control has a minimum position setpoint, an

outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. Power Exhaust (35) is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accom-

modations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.



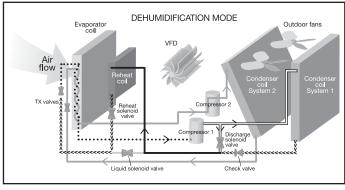
www.SureComfort.com

HUMIDIDRY™ SYSTEM FEATURES

HumidiDry™ is Sure Comfort's exclusive dehumidification package unit solution. It delivers maximum humidity control without compromising desired temperature set point for a high degree of comfort. HumidiDry maintains humidity levels at a desired set point when there's little or no demand for air conditioning. The HumidiDry rooftop unit is controlled by a thermostat and humidistat. The thermostat takes priority on single-stage system. When the thermostat is activated by temperatures that exceed it set point, HumidiDry operates like a standard rooftop unit. It can operate on first stage cooling when demand is low or at full capacity when air conditioning load is high. Unlike other rooftop or reheat units, HumidiDry is uniquely designed so the VFD (37) will operate at a low speed, increasing moisture removal during first-stage cooling operation. This provides initial defense for controlling humidity. When temperature is desirable but humidity exceeds the humidistat set point, the HumidiDry rooftop unit initiates a dehumidification cycle using a combination of hot gas and sub-cooled liquid reheat and the VFD operates at low speed. During this cycle, the HumidiDry rooftop unit delivers dry, neutral air. On a two-stage system, it is possible for both a thermostat and humidistat to register readings above set point. Under this condition, the first-stage system runs in the dehumidification cycle, the second-stage system runs in a cooling cycle and the VFD operates on high speed. This provides dry conditioned air.

Figure 1 shows the refrigerant path during the normal cooling mode. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The superheated refrigerant vapor next carries the heat to the outside coil where the heat is then rejected and the refrigerant condenses into a subcooled liquid where the process repeats itself.

HIGH TEMPERATURE VAPOR

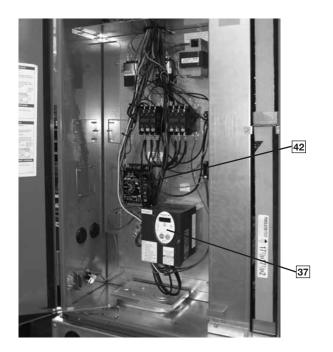

TWO PHASE (LIQUID VAPOR MIX)

••••••• LOW TEMPERATURE VAPOR

<<<< LIQUID

Figure 1

Figure 2 shows the refrigerant path during the reheat mode. When the reheat cycle is energized by the RTU-C, the reheat solenoid valve ([38]), downstream of the reheat coil ([39]), opens. The liquid solenoid valve (40), ahead of the TXV, closes. The discharge solenoid valve (41), in the compressor discharge line, opens. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The refrigerant next carries the heat to a parallel path between the outside condenser coil and a bypass circuit. Some of the heat is rejected outdoors. The ratio of heat rejected outdoors versus indoors is controlled by an outdoor fan motor controller (OFMC) (42) that monitors the two phase temperature (43) and varies the fan speed. This 2-phase refrigerant vapor is then sent to the reheat coil. As the refrigerant travels through the reheat coil it condenses into a subcooled liquid where the process repeats itself.


HIGH TEMPERATURE VAPOR

■ TWO PHASE (LIQUID VAPOR MIX)■ LOW TEMPERATURE VAPOR

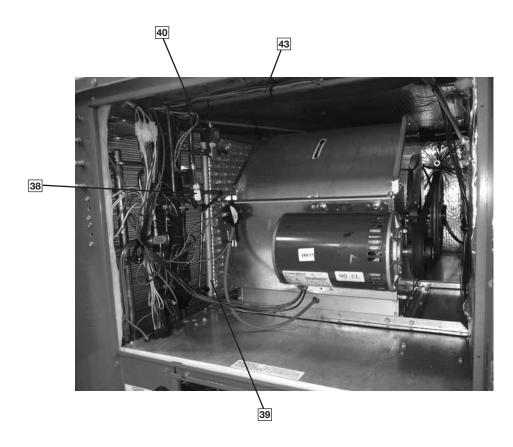
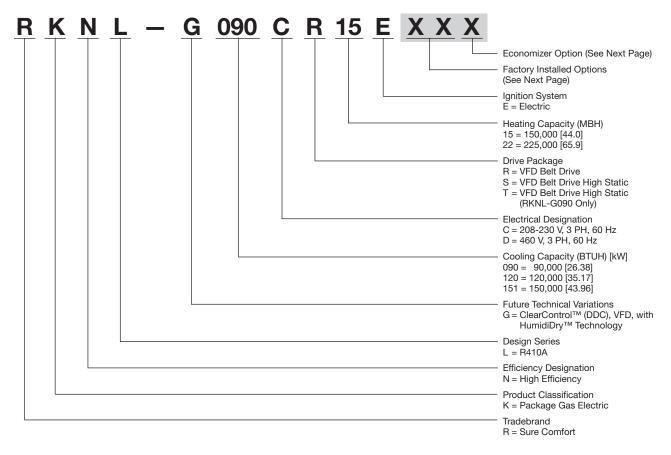

<<<< LIQUID

Figure 2


www.SureComfort.com ______ 9

10 _____ www.SureComfort.com

[] Designates Metric Conversions

www.SureComfort.com ________11

FACTORY INSTALLED OPTION CODES FOR KNL-G (7.5, 10 & 12.5 TON) [26.4, 35.2 & 43.96 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AD	Х			
AJ		X		
AH			x	
AR				X
BF	X		x	
BG	Х	x		
JD	Х			Х
JB		х	X	
DP	X	X	x	X
KA	Х	x		Х

NOTES: (1) High and low pressure is standard on all models. AH, BF, CY, JB, DP option not available on RKNL-G 300C models.

ECONOMIZER SELECTION FOR KNL-G (7.5, 10 & 12.5 TON) [26.4, 35.2 & 43.96 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer w/Barometric Relief	DDC Single Enthalpy Economizer w/Barometric Relief and Smoke Detector
A	Х		
Н		х	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

RKNL-G120CR22E	this unit has no factory installed options.
RKNL-G120CR22EBGA	this unit is equipped with hail guard and stainless steel heat exchanger.
RKNL-G120CR22EAHA	this unit is equipped with a <u>non-powered convenience outlet</u> and <u>unfused service disconnect.</u>
RKNL-G120CR22EAHD	this unit is equipped as above <i>and</i> includes an <u>Economizer</u> with single enthalpy sensor and with barometric relief.
RKNL-G120CR22E <u>AAD</u>	this unit is equipped with an <u>Economizer with single enthalpy sensor and</u> <u>Barometric Relief.</u>

[&]quot;x" indicates factory installed option.

To select an RKNL-G Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

*External Static Pressure -

Voltage— 208/240V—3 Phase 60 Hz
Total cooling capacity— 106,000 BTUH [31.0 kW]
Sensible Cooling Capacity — 82,000 BTUH [24.0 kW]
Heating Capacity — 150,000 BTUH [43.9 kW]
*Condenser Entering Air — 95°F [35.0 °C] DB
*Evaporator Mixed Air Entering — 65°F [18.3 °C] WB
78°F [25.6 °C] DB
*Indoor Air Flow (vertical) — 3600 CFM [1699 L/s]

0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 3750 CFM [1770 L/s] indoor air flow (table basis):

Total Cooling Capacity = 118,900 BTUH [34.82 kW] Sensible Cooling Capacity = 99,950 BTUH [29.27 kW] Power Input (Compressor and Cond. Fans) = 8,950 watts

Use formula in note (1) to determine sensible capacity at 78° F [25.6 $^{\circ}$ C] DB evaporator entering air:

99,950 + (1.10 x 3,600 x (1 – 0.03) x (78 – 80)) Sensible Cooling Capacity = 92,268 BTUH [27.02 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $118,900 \times 0.98 = 116,522$ BTUH [34.12 kW] Sensible Capacity = $92,268 \times 0.95 = 87,655$ BTUH [25.67 kW] Power Input = $8,950 \times 0.99 = 8,861$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.076 in. WG [.02 kPa] for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.476 (0.5) in. WG [.12 kPa], and determine:

RPM = 796 WATTS = 1,576 DRIVE = L (standard 2 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

 $1,576 \times 3.412 = 5,377 BTUH [1.57 kW]$

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 116,522 - 5,377 = 111,145 BTUH [32.54 kW]

Net Sensible Capacity = 87,655 - 5,377 = 82,278 BTUH [24.09 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 8,861 (step 3) + 1,576 (step 4) = 10,437 Watts

EER = $\frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{111,145}{10,437} = 10.65$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 182,250 BTUH [53.4 kW]

9. CHOOSE MODEL RKNL-G120CR22E

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

[] Designates Metric Conversions

www.SureComfort.com ______ 13

Model RKNL-	G090CR15E	G090CR22E	G090CS15E	G090CS22E
ooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]
EER/SEER2	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]
EER3	14.5	14.5	14.5	14.5
Net System Power kW	7.99	7.99	7.99	7.99
eating Performance (Gas)4				
Heating Input Btu [kW] (1st Stage / 2nd Stage)				
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range ºF [ºC] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] 25-55 [13.9-30.6]	40-70 [22.2-38.9] 40-70 [22.2-38.9]	25-55 [13.9-30.6] 25-55 [13.9-30.6]	40-70 [22.2-38.9] 40-70 [22.2-38.9]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
	0.5 [12.7]	0.73 [19]	0.5 [12.7]	0.73 [13]
mpressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
tdoor Sound Rating (dB) ⁵	88	88	88	88
tdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
loor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Гube Туре	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]				
	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
tdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Orive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
loor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
Vo. Motors	iviuitipie 1	พนเน ุมเ ธ 1	Multiple 1	Multiple 1
Notor HP	•	ا 0		
	2	2	3	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
ter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]
eights				
Net Weight lbs. [kg]	1067 [484]	1103 [500]	1075 [488]	1103 [500]
Ship Weight lbs. [kg]	1104 [501]	1140 [517]	1112 [504]	1140 [517]
	-	-		nates Metric Conversion

Model RKNL-	G090CT15E	G090CT22E	G090DR15E	G090DR22E	
Cooling Performance ¹				CONTINUED	
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	
EER/SEER ²	11.2/NA	11.2/NA	11.2/NA	11.2/NA	
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	
IEER3	14.5	14.5	14.5	14.5	
Net System Power kW	7.99	7.99	7.99	7.99	
Heating Performance (Gas) ⁴	1.99	1.33	1.99	1.55	
Heating I critimatice (das): Heating Input Btu [kW] (1st Stage / 2nd Stage)	75 000/150 000 [21 07/42 05]	112 500/225 000 [22 06/65 02]	75 000/150 000 [21 07/42 05]	110 500/005 000 [00 06/65	
0 1 1 1 0 0 ,	75,000/150,000 [21.97/43.95]				
Heating Output Btu [kW] (1st Stage / 2nd Stage)	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4	
Temperature Rise Range ^o F [^o C]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	
(1st Stage / 2nd Stage)	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	
No. Burners	6	9	6	9	
No. Stages	2	2	2	2	
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]	
Compressor					
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ⁵	88	88	88	88	
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]	
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	
ndoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Re-Heat Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]	
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]	
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	
Motor RPM	1075	1075	1075	1075	
ndoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds	Multiple	Multiple	Multiple	Multiple	
No. Motors	Multiple 1	Multiple 1	Multiple 1	1	
Motor HP	3	3	2	2	
Motor Frame Size	1725	1725	1725	1725	
Motor Frame Size	56	56	56	56	
Filter - Type	Disposable	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]	
Weights					
Net Weight lbs. [kg]	1075 [488]	1100 [499]	1075 [488]	1103 [500]	
oro.g.ir ibor [iig]					

See Page 21 for Notes.

Model RKNL-	G090DS15E	G090DS22E	G090DT15E	G090DT22E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]	93,000 [27.25]
EER/SEER ²	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]	3000/2775 [1416/1310]
AHRI Net Cooling Capacity Btu [kW]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]	90,000 [26.37]
Net Sensible Capacity Btu [kW]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]	63,100 [18.49]
Net Latent Capacity Btu [kW]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]	26,900 [7.88]
IEER3	14.5	14.5	14.5	14.5
Net System Power kW	7.99	7.99	7.99	7.99
eating Performance (Gas) ⁴				
• , ,	75 000/150 000 [21 97/43 95]	112,500/225,000 [32.96/65.92]	75 000/150 000 [21 97/43 95]	112 500/225 000 [32 96/65
Heating Output Btu [kW] (1st Stage / 2nd Stage)		91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]
(1st Stage / 2nd Stage)	25-55 [13.9-30.6] 25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]	40-70 [22.2-38.9]
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]				
' ' '	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
ompressor	0/0 !!	0.70	0/0 !!	0.40
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ⁵	88	88	88	88
utdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
door Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan - Type	Propeller	Propeller	Propeller	Propeller
	•	·		· ·
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
door Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Iter - Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]	146/112 [4139/3175]
/eights	170/112 [4103/0110]	170/112 [7100/0170]	170/112 [7100/0170]	170/112 [7100/01/0]
Net Weight lbs. [kg]	1067 [484]	1103 [500]	1075 [488]	1100 [400]
Ship Weight lbs. [kg]				1100 [499]
JIIID VVEIUIL IDS. IKUI	1104 [501]	1140 [517]	1112 [504]	1137 [516]

See Page 21 for Notes.

Model RKNL-	G120CR15E	G120CR22E	G120CS15E	G120CS22E
Cooling Performance ¹		<u> </u>		CONTINUED-
Gross Cooling Capacity Btu [kW]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]
EER/SEER ²	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]
AHRI Net Cooling Capacity Btu [kW]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]
Net Sensible Capacity Btu [kW]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]
Net Latent Capacity Btu [kW]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]
IEER3	14.4	14.4	14.4	14.4
Net System Power kW	10.49	10.49	10.49	10.49
leating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75.000/150.000 [21.97/43.95]	112.500/225.000 [32.96/65.92]	75.000/150.000 [21.97/43.95]	112.500/225.000 [32.96/65.
Heating Output Btu [kW] (1st Stage / 2nd Stage)		91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C]	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
(1st Stage / 2nd Stage)	5-45 [8.3-25]	25-55 [13.9-30.6]	5-45 [8.3-25]	25-55 [13.9-30.6]
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
ompressor	0.0 [12.7]	0.70 [10]	0.0 [12.7]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ⁵	88	88	88	88
utdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
				0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
ndoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan - Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
ilter - Type	 Disposable	Disposable	Disposable	 Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	221/176 [6265/4990]	221/176 [6265/4990]	221/176 [6265/4990]	221/176 [6265/4990]
Veights	4400 [507]	4400 [540]	4470 [504]	4405 (540)
Net Weight lbs. [kg]	1162 [527]	1198 [543]	1170 [531]	1195 [542]
Ship Weight lbs. [kg]	1199 [544]	1235 [560]	1207 [547]	1232 [559]

See Page 21 for Notes.

Model RKNL-	G120DR15E	G120DR22E	G120DS15E	G120DS22E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]	123,000 [36.04]
EER/SEER ²	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]	4000/3750 [1888/1770]
AHRI Net Cooling Capacity Btu [kW]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]	118,000 [34.57]
Net Sensible Capacity Btu [kW]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]	88,800 [26.02]
Net Latent Capacity Btu [kW]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]	29,200 [8.56]
IEER3	14.4	14.4	14.4	14.4
Net System Power kW	10.49	10.49	10.49	10.49
eating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	112,500/225,000 [32.96/65.92]	75.000/150.000 [21.97/43.95]	112,500/225,000 [32.96/65.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	-	91,125/182,250 [26.7/53.4]	60,750/121,500 [17.8/35.6]	91,125/182,250 [26.7/53.4
Temperature Rise Range °F [°C]	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
No. Burners	6	9	6	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]
ompressor	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.73 [18]
	2/Scroll	O/Coroll	0/Coroll	2/Caroll
No./Type	2/SCF011 88	2/Scroll 88	2/Scroll 88	2/Scroll 88
utdoor Sound Rating (dB) ⁵				
utdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
door Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]	5.9 [0.55]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan - Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	2/24 [009.0] Direct/1	2/24 [009.0] Direct/1	2/24 [003.0] Direct/1	2/24 [009.0] Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775] 2 at 1/3 HP
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	
Motor RPM	1075	1075	1075	1075
door Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	2	2	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Iter - Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	221/176 [6265/4990]	221/176 [6265/4990]	221/176 [6265/4990]	221/176 [6265/4990]
/eights	. [- [,]	. [. []
Net Weight Ibs. [kg]	1162 [527]	1198 [543]	1170 [531]	1195 [542]
Ship Weight lbs. [kg]	1199 [544]	1235 [560]	1207 [547]	1232 [559]
omp magni ibo. [ng]	ן דדטן טטוו	1200 [000]	1201 [071]	1202 [000]

See Page 21 for Notes.

Model RKNL-	G151CR15E	G151CR25E	G151CS15E	G151CS25E	
Cooling Performance ¹				CONTINUED	
Gross Cooling Capacity Btu [kW]	148,000 [43.36]	148,000 [43.36]	148,000 [43.36]	148,000 [43.36]	
EER/SEER ²	11/NA	11/NA	11/NA	11/NA	
Nominal CFM/AHRI Rated CFM [L/s]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	
AHRI Net Cooling Capacity Btu [kW]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	
Net Sensible Capacity Btu [kW]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	
Net Latent Capacity Btu [kW]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	
IEER ³	14	14	14	14	
Net System Power kW	13.29	13.29	13.29	13.29	
leating Performance (Gas) ⁴					
Heating Input Btu [kW] (1st Stage / 2nd Stage)	75,000/150,000 [21.97/43.95]	126,000/252,000 [36.92/73.84]	75,000/150,000 [21.97/43.95]	126,000/252,000 [36.92/73.	
Heating Output Btu [kW] (1st Stage / 2nd Stage)					
Temperature Rise Range ºF [ºC] (1st Stage / 2nd Stage)	15-45 [8.3-25] 15-45 [8.3-25]	25-55 [13.9-30.6] 25-55 [13.9-30.6]	15-45 [8.3-25] 15-45 [8.3-25]	25-55 [13.9-30.6] 25-55 [13.9-30.6]	
		•		-	
Steady State Efficiency (%)	81	81	81	81	
No. Burners	6	9	6	9	
No. Stages	2	2	2	2	
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]	
Compressor					
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ⁵	88	88	88	88	
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]	
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]	
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	
ndoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Re-Heat Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]	
Face Area sq. ft. [sq. m]	4.5 [0.42]	4.5 [0.42]	4.5 [0.42]	4.5 [0.42]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]	
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	
Motor RPM	1075	1075	1075	1075	
ndoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	
		•	•	•	
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds	Single	Single	Single	Single	
No. Motors	1	1	1	1	
Motor HP	5	5	5	5	
Motor RPM	1725	1725	1725	1725	
Motor Frame Size	184	184	184	184	
ilter - Type	Disposable	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	203/155 [5755/4394]	203/155 [5755/4394]	203/155 [5755/4394]	203/155 [5755/4394]	
<i>N</i> eights					
Net Weight lbs. [kg]	1278 [580]	1314 [596]	1283 [582]	1319 [598]	

See Page 21 for Notes.

Model RKNL-	G151DR15E	G151DR25E	G151DS15E	G151DS25E	
Cooling Performance ¹				CONTINUED -	
Gross Cooling Capacity Btu [kW]	148,000 [43.36]	148,000 [43.36]	148,000 [43.36]	148,000 [43.36]	
EER/SEER ²	11/NA	11/NA	11/NA	11/NA	
Nominal CFM/AHRI Rated CFM [L/s]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	5000/4250 [2360/2006]	
AHRI Net Cooling Capacity Btu [kW]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	140,000 [41.02]	
Net Sensible Capacity Btu [kW]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	99,500 [29.15]	
Net Latent Capacity Btu [kW]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	40,500 [11.87]	
IEER3	14	14	14	14	
Net System Power kW	13.29	13.29	13.29	13.29	
eating Performance (Gas) ⁴	10.20	10.20	10.20	10.20	
- · · · · · · · · · · · · · · · · · · ·	75 000/150 000 [21 07/43 05]	126,000/252,000 [36.92/73.84]	75 000/150 000 [21 07/43 05]	126 000/252 000 [36 02/73	
		102,000/204,000 [29.89/59.77]			
Heating Output Btu [kW] (1st Stage / 2nd Stage)					
Temperature Rise Range ^o F [oc] (1st Stage / 2nd Stage)	15-45 [8.3-25] 15-45 [8.3-25]	25-55 [13.9-30.6] 25-55 [13.9-30.6]	15-45 [8.3-25] 15-45 [8.3-25]	25-55 [13.9-30.6] 25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	81	81	
No. Burners	6	9	6	9	
No. Stages	2	2	2	2	
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.75 [19]	0.5 [12.7]	0.75 [19]	
ompressor					
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll	
utdoor Sound Rating (dB) ⁵	88	88	88	88	
				Louvered	
utdoor Coil - Fin Type	Louvered	Louvered	Louvered		
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]	
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]	
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9] Louvered	
door Coil - Fin Type	Louvered	Louvered	Louvered		
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
e-Heat Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]	
Face Area sq. ft. [sq. m]	4.5 [0.42]	4.5 [0.42]	4.5 [0.42]	4.5 [0.42]	
	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
Rows / FPI [FPcm]					
utdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]	
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	
Motor RPM	1075	1075	1075	1075	
door Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds	Single	Single	Single	Single	
No. Motors	1	1	1	1	
Motor HP	5	5	5	5	
Motor RPM	1725	1725	1725	1725	
Motor Frame Size	56	56	184	184	
	Disposable	Disposable	Disposable	Disposable	
Iter - Type	Yes	Ves	Yes	Yes	
Furnished					
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457	
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	203/155 [5755/4394]	203/155 [5755/4394]	203/155 [5755/4394]	203/155 [5755/4394]	
eights					
Net Weight lbs. [kg]	1278 [580]	1314 [596]	1283 [582]	1319 [598]	
Ship Weight lbs. [kg]	1315 [596]	1351 [613]	1320 [599]	1356 [615]	

See Page 21 for Notes.

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 340/360.
- 4. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

www.SureComfort.com ______ 21

GROSS SYSTEMS PERFORMANCE DATA-G090

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①											
		wbE		71°F [21.7°C]		67°F [19.4°C]				63°F [17.2°C]		
		FM [L/s]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]	
		DR ①	.17	.13	.11	.17	.13	.11	.17	.13	.11	
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	119.6 [35] 70.3 [20.6] 5.2	119.6 [35] 70.3 [20.6] 5.2	110.7 [32.4] 57.9 [17] 5.0	112.7 [33] 83.3 [24.4] 5.1	107 [31.3] 73.2 [21.4] 5.0	104.3 [30.6] 68.5 [20.1] 4.9	107.8 [31.6] 96 [28.1] 5.1	102.3 [30] 84.3 [24.7] 4.9	99.8 [29.2] 79 [23.2] 4.9	
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	116.1 [34] 68.4 [20.1] 5.6	116.1 [34] 68.4 [20.1] 5.6	107.4 [31.5] 56.3 [16.5] 5.4	109.2 [32] 81.4 [23.9] 5.5	103.6 [30.4] 71.5 [20.9] 5.4	101.1 [29.6] 67 [19.6] 5.3	104.3 [30.6] 94.1 [27.6] 5.5	99 [29] 82.7 [24.2] 5.3	96.5 [28.3] 77.4 [22.7] 5.3	
UTDOO	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	112.6 [33] 66.6 [19.5] 6.0	112.6 [33] 66.6 [19.5] 6.0	104.2 [30.5] 54.8 [16] 5.8	105.7 [31] 79.5 [23.3] 6.0	100.3 [29.4] 69.8 [20.5] 5.8	97.8 [28.7] 65.4 [19.2] 5.8	100.8 [29.5] 92.3 [27] 5.9	95.6 [28] 81 [23.7] 5.8	93.3 [27.3] 75.9 [22.2] 5.7	
R	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	109 [31.9] 64.7 [19] 6.6	109 [31.9] 64.7 [19] 6.6	100.9 [29.6] 53.2 [15.6] 6.3	102.1 [29.9] 77.7 [22.8] 6.5	96.9 [28.4] 68.2 [20] 6.4	94.5 [27.7] 63.9 [18.7] 6.3	97.2 [28.5] 90.4 [26.5] 6.5	92.2 [27] 79.4 [23.3] 6.3	90 [26.4] 74.4 [21.8] 6.2	
R Y B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	105.4 [30.9] 62.9 [18.4] 7.2	105.4 [30.9] 62.9 [18.4] 7.2	97.5 [28.6] 51.7 [15.2] 6.9	98.5 [28.9] 75.8 [22.2] 7.2	93.5 [27.4] 66.6 [19.5] 7.0	91.2 [26.7] 62.4 [18.3] 6.9	93.6 [27.4] 88.6 [26] 7.1	88.8 [26] 77.8 [22.8] 6.9	86.6 [25.4] 72.9 [21.4] 6.8	
U L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	101.7 [29.8] 61 [17.9] 7.9	101.7 [29.8] 61 [17.9] 7.9	94.2 [27.6] 50.2 [14.7] 7.6	94.9 [27.8] 74 [21.7] 7.9	90 [26.4] 65 [19] 7.7	87.8 [25.7] 60.9 [17.8] 7.6	90 [26.4] 86.7 [25.4] 7.8	85.4 [25] 76.2 [22.3] 7.6	83.3 [24.4] 71.4 [20.9] 7.5	
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	98.1 [28.7] 59.3 [17.4] 8.7	98.1 [28.7] 59.3 [17.4] 8.7	90.7 [26.6] 48.8 [14.3] 8.4	91.2 [26.7] 72.2 [21.2] 8.6	86.5 [25.4] 63.4 [18.6] 8.4	84.4 [24.7] 59.4 [17.4] 8.3	86.3 [25.3] 84.9 [24.9] 8.6	81.9 [24] 74.6 [21.9] 8.4	79.8 [23.4] 69.9 [20.5] 8.3	
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	94.3 [27.6] 57.5 [16.8] 9.5	94.3 [27.6] 57.5 [16.8] 9.5	87.3 [25.6] 47.3 [13.9] 9.2	87.5 [25.6] 70.4 [20.6] 9.5	83 [24.3] 61.9 [18.1] 9.2	81 [23.7] 57.9 [17] 9.1	82.6 [24.2] 82.6 [24.2] 9.4	78.3 [23] 73 [21.4] 9.2	76.4 [22.4] 68.4 [20.1] 9.1	
°F I°C1	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	90.6 [26.5] 55.7 [16.3] 10.5	90.6 [26.5] 55.7 [16.3] 10.5	83.8 [24.6] 45.8 [13.4] 10.1	83.7 [24.5] 68.7 [20.1] 10.4	79.4 [23.3] 60.3 [17.7] 10.2	77.5 [22.7] 56.5 [16.6] 10.0	78.8 [23.1] 78.8 [23.1] 10.4	74.8 [21.9] 71.5 [20.9] 10.1	72.9 [21.4] 67 [19.6] 10.0	
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	86.8 [25.4] 54 [15.8] 11.5	86.8 [25.4] 54 [15.8] 11.5	80.3 [23.5] 44.4 [13] 11.1	79.9 [23.4] 66.9 [19.6] 11.4	75.8 [22.2] 58.8 [17.2] 11.1	74 [21.7] 55.1 [16.1] 11	75 [22] 75 [22] 11.4	71.1 [20.8] 70 [20.5] 11.1	69.4 [20.3] 65.5 [19.2] 11	
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	82.9 [24.3] 52.3 [15.3] 12.6	82.9 [24.3] 52.3 [15.3] 12.6	76.8 [22.5] 43 [12.6] 12.1	76.1 [22.3] 65.2 [19.1] 12.5	72.2 [21.2] 57.3 [16.8] 12.2	70.4 [20.6] 53.7 [15.7] 12.1	71.2 [20.9] 71.2 [20.9] 12.5	67.5 [19.8] 67.5 [19.8] 12.1	65.8 [19.3] 64.1 [18.8] 12	

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G120

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]
<u> </u>		DR ①	.09	.03	0	.09	.03	0	.09	.03	0
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	155.3 [45.5] 97.3 [28.5] 7.5	147.8 [43.3] 86.1 [25.2] 7.3	143.8 [42.2] 80.2 [23.5] 7.2	147.8 [43.3] 115.8 [33.9] 7.4	140.7 [41.2] 102.4 [30] 7.2	136.9 [40.1] 95.4 [28] 7.1	142.8 [41.8] 132.9 [38.9] 7.3	135.8 [39.8] 117.5 [34.4] 7.1	132.2 [38.7] 109.5 [32.1] 7.0
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	150.6 [44.1] 94.9 [27.8] 7.9	143.4 [42] 84 [24.6] 7.7	139.5 [40.9] 78.2 [22.9] 7.6	143.2 [42] 113.5 [33.2] 7.8	136.2 [39.9] 100.3 [29.4] 7.6	132.6 [38.9] 93.5 [27.4] 7.5	138.1 [40.5] 130.5 [38.2] 7.7	131.4 [38.5] 115.4 [33.8] 7.5	127.9 [37.5] 107.5 [31.5] 7.4
UTDO	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	146 [42.8] 92.5 [27.1] 8.3	138.9 [40.7] 81.8 [24] 8.1	135.2 [39.6] 76.2 [22.3] 8.0	138.5 [40.6] 111 [32.5] 8.2	131.8 [38.6] 98.2 [28.8] 8.0	128.3 [37.6] 91.5 [26.8] 7.9	133.5 [39.1] 128.1 [37.5] 8.2	127 [37.2] 113.3 [33.2] 8.0	123.6 [36.2] 105.5 [30.9] 7.9
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	141.4 [41.4] 90.1 [26.4] 8.8	134.5 [39.4] 79.7 [23.3] 8.6	131 [38.4] 74.2 [21.7] 8.5	133.9 [39.2] 108.6 [31.8] 8.7	127.4 [37.3] 96 [28.1] 8.5	124 [36.3] 89.5 [26.2] 8.4	128.8 [37.8] 125.6 [36.8] 8.6	122.6 [35.9] 111.1 [32.6] 8.4	119.3 [35] 103.5 [30.3] 8.3
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	136.8 [40.1] 87.6 [25.7] 9.3	130.2 [38.1] 77.5 [22.7] 9.1	126.7 [37.1] 72.2 [21.1] 9.0	129.3 [37.9] 106.1 [31.1] 9.2	123 [36.1] 93.8 [27.5] 9.0	119.7 [35.1] 87.4 [25.6] 8.9	124.2 [36.4] 123.1 [36.1] 9.1	118.2 [34.6] 108.9 [31.9] 8.9	115.1 [33.7] 101.5 [29.7] 8.8
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	132.2 [38.7] 85.1 [24.9] 9.9	125.8 [36.9] 75.2 [22] 9.6	122.4 [35.9] 70.1 [20.5] 9.5	124.7 [36.5] 103.6 [30.3] 9.8	118.7 [34.8] 91.6 [26.8] 9.5	115.5 [33.8] 85.3 [25] 9.4	119.6 [35.1] 119.6 [35.1] 9.7	113.8 [33.4] 106.7 [31.3] 9.5	110.8 [32.5] 99.4 [29.1] 9.3
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	127.6 [37.4] 82.5 [24.2] 10.5	121.4 [35.6] 73 [21.4] 10.2	118.2 [34.6] 68 [19.9] 10.1	120.1 [35.2] 101 [29.6] 10.4	114.3 [33.5] 89.3 [26.2] 10.1	111.2 [32.6] 83.2 [24.4] 10.0	115.1 [33.7] 115.1 [33.7] 10.3	109.5 [32.1] 104.4 [30.6] 10.0	106.6 [31.2] 97.3 [28.5] 9.9
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	123 [36.1] 79.9 [23.4] 11.1	117.1 [34.3] 70.6 [20.7] 10.8	114 [33.4] 65.8 [19.3] 10.7	115.5 [33.9] 98.4 [28.8] 11.0	109.9 [32.2] 87 [25.5] 10.7	107 [31.4] 81.1 [23.8] 10.6	110.5 [32.4] 110.5 [32.4] 10.9	105.1 [30.8] 102.1 [29.9] 10.6	102.3 [30] 95.1 [27.9] 10.5
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	118.5 [34.7] 77.2 [22.6] 11.7	112.7 [33] 68.3 [20] 11.4	109.7 [32.2] 63.6 [18.6] 11.3	111 [32.5] 95.7 [28.1] 11.6	105.6 [31] 84.7 [24.8] 11.3	102.8 [30.1] 78.9 [23.1] 11.2	105.9 [31] 105.9 [31] 11.5	100.8 [29.5] 99.8 [29.2] 11.2	98.1 [28.8] 92.9 [27.2] 11.1
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	113.9 [33.4] 74.5 [21.8] 12.4	108.4 [31.8] 65.9 [19.3] 12.1	105.5 [30.9] 61.4 [18] 11.9	106.5 [31.2] 93 [27.3] 12.3	101.3 [29.7] 82.3 [24.1] 12	98.6 [28.9] 76.7 [22.5] 11.8	101.4 [29.7] 101.4 [29.7] 12.2	96.5 [28.3] 96.5 [28.3] 11.9	93.9 [27.5] 90.7 [26.6] 11.7
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	109.4 [32.1] 71.8 [21] 13.1	104.1 [30.5] 63.5 [18.6] 12.8	101.3 [29.7] 59.2 [17.3] 12.6	101.9 [29.9] 90.3 [26.5] 13.0	97 [28.4] 79.9 [23.4] 12.7	94.4 [27.7] 74.4 [21.8] 12.5	96.9 [28.4] 96.9 [28.4] 12.9	92.2 [27] 92.2 [27] 12.6	89.7 [26.3] 88.5 [25.9] 12.4

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G151

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]
		DR ①	.14	.08	.07	.14	.08	.07	.14	.08	.07
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	190.2 [55.7] 115 [33.7] 9.5	177 [51.9] 96.5 [28.3] 9.1	175.1 [51.3] 93.8 [27.5] 9.1	179.1 [52.5] 136.8 [40.1] 9.3	166.6 [48.8] 114.7 [33.6] 9.0	164.8 [48.3] 111.6 [32.7] 9.0	170.2 [49.9] 157.1 [46.0] 9.2	158.3 [46.4] 131.8 [38.6] 8.9	156.6 [45.9] 128.1 [37.6] 8.8
0	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	184.9 [54.2] 112.8 [33.1] 10.0	172 [50.4] 94.7 [27.7] 9.6	170.2 [49.9] 92.1 [27.0] 9.6	173.7 [50.9] 134.6 [39.4] 9.8	161.6 [47.4] 112.9 [33.1] 9.5	159.9 [46.9] 109.8 [32.2] 9.4	164.8 [48.3] 154.9 [45.4] 9.7	153.3 [44.9] 129.9 [38.1] 9.4	151.7 [44.5] 126.4 [37.0] 9.3
U T D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	179.6 [52.6] 110.5 [32.4] 10.5	167.1 [49] 92.7 [27.2] 10.1	165.3 [48.4] 90.2 [26.4] 10.1	168.5 [49.4] 132.3 [38.8] 10.4	156.8 [45.9] 111 [32.5] 10.0	155.1 [45.4] 107.9 [31.6] 10.0	159.6 [46.8] 152.6 [44.7] 10.2	148.5 [43.5] 128 [37.5] 9.9	146.9 [43.0] 124.5 [36.5] 9.8
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	174.5 [51.1] 108.1 [31.7] 11.1	162.3 [47.6] 90.7 [26.6] 10.7	160.6 [47.1] 88.2 [25.8] 10.6	163.4 [47.9] 129.9 [38.1] 10.9	152 [44.5] 108.9 [31.9] 10.6	150.4 [44.1] 106 [31.1] 10.5	154.4 [45.3] 150.2 [44.0] 10.8	143.7 [42.1] 126 [36.9] 10.4	142.2 [41.7] 122.5 [35.9] 10.4
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	169.5 [49.7] 105.6 [30.9] 11.7	157.7 [46.2] 88.5 [25.9] 11.3	156 [45.7] 86.1 [25.2] 11.2	158.3 [46.4] 127.3 [37.3] 11.6	147.3 [43.2] 106.8 [31.3] 11.2	145.7 [42.7] 103.9 [30.4] 11.1	149.4 [43.8] 147.6 [43.3] 11.4	139 [40.7] 123.8 [36.3] 11	137.5 [40.3] 120.4 [35.3] 11
L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	164.5 [48.2] 102.9 [30.1] 12.3	153.1 [44.9] 86.3 [25.3] 11.9	151.4 [44.4] 83.9 [24.6] 11.8	153.4 [45.0] 124.6 [36.5] 12.2	142.7 [41.8] 104.5 [30.6] 11.8	141.2 [41.4] 101.7 [29.8] 11.7	144.5 [42.3] 144.5 [42.3] 12.1	134.4 [39.4] 121.6 [35.6] 11.6	133 [39.0] 118.2 [34.6] 11.6
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	159.7 [46.8] 100.1 [29.3] 13.0	148.6 [43.5] 83.9 [24.6] 12.6	147 [43.1] 81.6 [23.9] 12.5	148.6 [43.5] 121.8 [35.7] 12.9	138.2 [40.5] 102.2 [29.9] 12.4	136.8 [40.1] 99.4 [29.1] 12.4	139.7 [40.9] 139.7 [40.9] 12.7	130 [38.1] 119.2 [34.9] 12.3	128.6 [37.7] 115.9 [34.0] 12.2
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	155 [45.4] 97.1 [28.5] 13.7	144.2 [42.3] 81.5 [23.9] 13.2	142.7 [41.8] 79.2 [23.2] 13.2	143.9 [42.2] 118.9 [34.8] 13.6	133.9 [39.2] 99.7 [29.2] 13.1	132.4 [38.8] 97 [28.4] 13.0	135 [39.6] 135 [39.6] 13.5	125.6 [36.8] 116.7 [34.2] 13	124.2 [36.4] 113.5 [33.3] 12.9
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	150.4 [44.1] 94 [27.6] 14.5	139.9 [41.0] 78.9 [23.1] 14.0	138.4 [40.6] 76.7 [22.5] 13.9	139.3 [40.8] 115.8 [33.9] 14.3	129.6 [38] 97.2 [28.5] 13.8	128.2 [37.6] 94.5 [27.7] 13.8	130.4 [38.2] 130.4 [38.2] 14.2	121.3 [35.5] 114.2 [33.5] 13.7	120 [35.2] 111 [32.5] 13.6
١٠٠	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	145.9 [42.8] 90.8 [26.6] 15.2	135.8 [39.8] 76.2 [22.3] 14.7	134.3 [39.4] 74.1 [21.7] 14.6	134.8 [39.5] 112.6 [33.0] 15.1	125.4 [36.8] 94.5 [27.7] 14.6	124.1 [36.4] 91.9 [26.9] 14.5	125.9 [36.9] 125.9 [36.9] 15.0	117.1 [34.3] 111.5 [32.7] 14.5	115.9 [34.0] 108.4 [31.8] 14.4
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	141.5 [41.5] 87.5 [25.6] 16.1	131.7 [38.6] 73.4 [21.5] 15.5	130.3 [38.2] 71.4 [20.9] 15.4	130.4 [38.2] 109.3 [32.0] 15.9	121.3 [35.6] 91.7 [26.9] 15.4	120 [35.2] 89.2 [26.1] 15.3	121.5 [35.6] 121.5 [35.6] 15.8	113 [33.1] 108.7 [31.9] 15.2	111.8 [32.8] 105.7 [31.0] 15.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) — G090

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	1800 [850]	1388 [655]	1200 [566]	1800 [850]	1388 [655]	1200 [566]	1800 [850]	1388 [655]	1200 [566]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	28.0 [8.2] 6.3 [1.8] 2.8	26.5 [7.8] 5.5 [1.6] 2.7	25.9 [7.6] 5.2 [1.5] 2.7	26.6 [7.8] 8.6 [2.5] 2.8	25.3 [7.4] 7.5 [2.2] 2.7	24.6 [7.2] 7.0 [2.1] 2.7	26.0 [7.6] 11.6 [3.4] 2.8	24.6 [7.2] 10.2 [3.0] 2.7	24.0 [7.0] 9.6 [2.8] 2.7
O O R	65 [18.3]	Power	26.7 [7.8] 5.0 [1.5] 2.8	25.3 [7.4] 4.4 [1.3] 2.8	24.7 [7.2] 4.1 [1.2] 2.7	25.3 [7.4] 7.3 [2.1] 2.9	24.0 [7.0] 6.4 [1.9] 2.8	23.4 [6.9] 6.0 [1.8] 2.7	24.7 [7.2] 10.4 [3.0] 2.8	23.4 [6.9] 9.1 [2.7] 2.8	22.8 [6.7] 8.5 [2.5] 2.7
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power		24.0 [7.0] 3.3 [1.0] 2.8	23.4 [6.9] 3.1 [0.9] 2.8	24.0 [7.0] 6.0 [1.8] 2.9	22.7 [6.7] 5.3 [1.5] 2.9	22.2 [6.5] 5.0 [1.5] 2.8	23.3 [6.8] 9.1 [2.7] 2.9	22.1 [6.5] 8.0 [2.3] 2.8	21.6 [6.3] 7.5 [2.2] 2.8
U L B	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	23.9 [7.0] 2.4 [0.7] 3.0	22.7 [6.6] 2.1 [0.6] 2.9	22.1 [6.5] 2.0 [0.6] 2.9	22.5 [6.6] 4.7 [1.4] 3.0	21.4 [6.3] 4.1 [1.2] 2.9	20.9 [6.1] 3.8 [1.1] 2.9	21.9 [6.4] 7.7 [2.3] 3.0	20.8 [6.1] 6.8 [2.0] 2.9	20.3 [5.9] 6.4 [1.9] 2.9
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power		21.3 [6.2] 0.9 [0.3] 3.0	20.7 [6.1] 0.8 [0.2] 3.0	21.1 [6.2] 3.2 [1.0] 3.1	20.0 [5.9] 2.9 [0.8] 3.0	19.5 [5.7] 2.7 [0.8] 3.0	20.4 [6.0] 6.3 [1.8] 3.1	19.4 [5.7] 5.5 [1.6] 3.0	18.9 [5.5] 5.2 [1.5] 3.0
A T U R	85 [29.4]	LOMEI	20.9 [6.1] -0.5 [-0.1] 3.2	19.8 [5.8] -0.4 [-0.1] 3.2	19.3 [5.7] -0.4 [-0.1] 3.1	19.5 [5.7] 1.8 [0.5] 3.2	18.5 [5.4] 1.6 [0.5] 3.2	18.1 [5.3] 1.5 [0.4] 3.1	18.9 [5.5] 4.8 [1.4] 3.2	17.9 [5.3] 4.2 [1.2] 3.1	17.5 [5.1] 4.0 [1.2] 3.1
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	19.3 [5.7] -2.0 [-0.6] 3.4	18.3 [5.4] -1.8 [-0.5] 3.3	17.9 [5.2] -1.7 [-0.5] 3.2	18.0 [5.3] 0.2 [0.1] 3.4	17.0 [5.0] 0.2 [0.1] 3.3	16.6 [4.9] 0.2 [0.1] 3.2	17.3 [5.1] 3.3 [1.0] 3.4	16.4 [4.8] 2.9 [0.9] 3.3	16.0 [4.7] 2.7 [0.8] 3.2

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE)—G090

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]	3600 [1699]	2775 [1310]	2400 [1133]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	91.0 [26.7] 49.7 [14.6] 4.8	86.3 [25.3] 43.7 [12.8] 4.7	84.2 [24.7] 40.9 [12.0] 4.6	89.8 [26.3] 55.7 [16.3] 4.8	85.2 [25.0] 49.0 [14.3] 4.7	83.1 [24.4] 45.9 [13.4] 4.6	88.0 [25.8] 61.5 [18.0] 4.8	83.5 [24.5] 54.0 [15.8] 4.6	81.4 [23.9] 50.6 [14.8] 4.6
O O R	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	84.2 [24.7] 43.4 [12.7] 5.3	79.9 [23.4] 38.1 [11.2] 5.2	77.9 [22.8] 35.7 [10.5] 5.1	83.0 [24.3] 49.5 [14.5] 5.3	78.8 [23.1] 43.4 [12.7] 5.2	76.8 [22.5] 40.7 [11.9] 5.1	81.2 [23.8] 55.2 [16.2] 5.3	77.0 [22.6] 48.5 [14.2] 5.2	75.1 [22.0] 45.4 [13.3] 5.1
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	76.6 [22.5] 37.2 [10.9] 5.9	72.7 [21.3] 32.7 [9.6] 5.8	70.9 [20.8] 30.6 [9.0] 5.7	75.5 [22.1] 43.3 [12.7] 5.9	71.6 [21.0] 38.0 [11.1] 5.8	69.8 [20.5] 35.6 [10.4] 5.7	73.6 [21.6] 49.0 [14.4] 5.9	69.9 [20.5] 43.0 [12.6] 5.8	68.1 [20.0] 40.3 [11.8] 5.7
B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	68.3 [20.0] 31.1 [9.1] 6.6	64.8 [19.0] 27.3 [8.0] 6.5	63.2 [18.5] 25.6 [7.5] 6.4	67.1 [19.7] 37.1 [10.9] 6.6	63.7 [18.7] 32.6 [9.6] 6.5	62.1 [18.2] 30.5 [9.0] 6.4	65.3 [19.1] 42.9 [12.6] 6.6	61.9 [18.1] 37.6 [11.0] 6.4	60.4 [17.7] 35.3 [10.3] 6.4
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	59.1 [17.3] 25.0 [7.3] 7.4	56.1 [16.4] 22.0 [6.4] 7.2	54.7 [16.0] 20.6 [6.0] 7.1	58.0 [17.0] 31.1 [9.1] 7.4	55.0 [16.1] 27.3 [8.0] 7.2	53.6 [15.7] 25.6 [7.5] 7.1	56.1 [16.4] 36.8 [10.8] 7.4	53.3 [15.6] 32.3 [9.5] 7.2	51.9 [15.2] 30.3 [8.9] 7.1
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	49.2 [14.4] 19.1 [5.6] 8.3	46.7 [13.7] 16.7 [4.9] 8.1	45.5 [13.3] 15.7 [4.6] 8.0	48.0 [14.1] 25.1 [7.4] 8.3	45.6 [13.4] 22.0 [6.5] 8.1	44.5 [13.0] 20.7 [6.1] 8.0	46.2 [13.5] 30.8 [9.0] 8.3	43.8 [12.8] 27.1 [7.9] 8.0	42.8 [12.5] 25.4 [7.4] 8.0
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	38.5 [11.3] 13.2 [3.9] 9.2	36.5 [10.7] 11.6 [3.4] 9.0	35.6 [10.4] 10.8 [3.2] 8.9	37.3 [10.9] 19.2 [5.6] 9.2	35.4 [10.4] 16.9 [4.9] 9.0	34.5 [10.1] 15.8 [4.6] 8.9	35.5 [10.4] 24.9 [7.3] 9.2	33.7 [9.9] 21.9 [6.4] 9.0	32.8 [9.6] 20.5 [6.0] 8.9

www.SureComfort.com _____ 25

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)—G120

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	2400 [1133]	1875 [885]	1600 [755]	2400 [1133]	1875 [885]	1600 [755]	2400 [1133]	1875 [885]	1600 [755]
O UT D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	30.2 [8.9] 3.8 [1.1] 3.8	28.7 [8.4] 3.4 [1.0] 3.7	28.0 [8.2] 3.2 [0.9] 3.6	27.6 [8.1] 6.2 [1.8] 3.7	26.3 [7.7] 5.5 [1.6] 3.7	25.6 [7.5] 5.1 [1.5] 3.6	24.8 [7.3] 9.1 [2.7] 3.8	23.6 [6.9] 8.0 [2.3] 3.7	23.0 [6.7] 7.5 [2.2] 3.6
O O R	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	28.7 [8.4] 2.6 [0.8] 3.8	27.3 [8.0] 2.3 [0.7] 3.7	26.6 [7.8] 2.1 [0.6] 3.7	26.1 [7.7] 5.0 [1.5] 3.8	24.9 [7.3] 4.4 [1.3] 3.7	24.2 [7.1] 4.1 [1.2] 3.7	23.3 [6.8] 7.8 [2.3] 3.8	22.2 [6.5] 6.9 [2.0] 3.7	21.6 [6.3] 6.4 [1.9] 3.7
D R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	27.2 [8.0] 1.4 [0.4] 3.9	25.9 [7.6] 1.2 [0.4] 3.8	25.2 [7.4] 1.1 [0.3] 3.8	24.6 [7.2] 3.7 [1.1] 3.9	23.4 [6.9] 3.3 [1.0] 3.8	22.8 [6.7] 3.1 [0.9] 3.7	21.8 [6.4] 6.6 [1.9] 3.9	20.8 [6.1] 5.8 [1.7] 3.8	20.2 [5.9] 5.4 [1.6] 3.8
U L B	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	25.7 [7.5] 0.1 [0.0] 4.0	24.5 [7.2] 0.1 [0.0] 3.9	23.8 [7.0] 0.1 [0.0] 3.8	23.2 [6.8] 2.5 [0.7] 4.0	22.0 [6.5] 2.2 [0.7] 3.9	21.5 [6.3] 2.1 [0.6] 3.8	20.4 [6.0] 5.4 [1.6] 4.0	19.4 [5.7] 4.7 [1.4] 3.9	18.9 [5.5] 4.4 [1.3] 3.8
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	24.3 [7.1] -1.1 [-0.3] 4.1	23.1 [6.8] -0.9 [-0.3] 4.0	22.5 [6.6] -0.9 [-0.3] 3.9	21.7 [6.4] 1.3 [0.4] 4.0	20.7 [6.1] 1.2 [0.3] 3.9	20.1 [5.9] 1.1 [0.3] 3.9	18.9 [5.6] 4.2 [1.2] 4.1	18.0 [5.3] 3.7 [1.1] 4.0	17.5 [5.1] 3.4 [1.0] 3.9
A T U R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	22.9 [6.7] -2.2 [-0.7] 4.2	21.8 [6.4] -2.0 [-0.6] 4.1	21.2 [6.2] -1.8 [-0.5] 4.0	20.4 [6.0] 0.2 [0.0] 4.1	19.4 [5.7] 0.1 [0.0] 4.0	18.9 [5.5] 0.1 [0.0] 4.0	17.6 [5.1] 3.0 [0.9] 4.1	16.7 [4.9] 2.7 [0.8] 4.0	16.3 [4.8] 2.5 [0.7] 4.0
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	21.6 [6.3] -3.4 [-1.0] 4.3	20.5 [6.0] -3.0 [-0.9] 4.2	20.0 [5.9] -2.8 [-0.8] 4.1	19.0 [5.6] -1.0 [-0.3] 4.2	18.1 [5.3] -0.9 [-0.3] 4.1	17.6 [5.2] -0.8 [-0.2] 4.1	16.2 [4.7] 1.8 [0.5] 4.2	15.4 [4.5] 1.6 [0.5] 4.1	15.0 [4.4] 1.5 [0.4] 4.1

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE)—G120

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]	4800 [2265]	3750 [1770]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	114.4 [33.5] 56.8 [16.7] 6.0	108.8 [31.9] 50.3 [14.7] 5.9	105.9 [31.0] 46.8 [13.7] 5.8	111.5 [32.7] 62.8 [18.4] 6.0	106.1 [31.1] 55.5 [16.3] 5.9	103.3 [30.3] 51.7 [15.2] 5.8	108.5 [31.8] 70.8 [20.8] 5.9	103.2 [30.3] 62.7 [18.4] 5.8	100.5 [29.4] 58.4 [17.1] 5.7
O O R	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	106.3 [31.2] 49.4 [14.5] 6.7	101.2 [29.6] 43.7 [12.8] 6.5	98.5 [28.9] 40.7 [11.9] 6.4	103.5 [30.3] 55.3 [16.2] 6.6	98.5 [28.9] 48.9 [14.3] 6.5	95.8 [28.1] 45.6 [13.4] 6.4	100.4 [29.4] 63.4 [18.6] 6.6	95.6 [28.0] 56.1 [16.4] 6.4	93.0 [27.3] 52.2 [15.3] 6.3
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	97.5 [28.6] 42.2 [12.4] 7.4	92.8 [27.2] 37.3 [10.9] 7.2	90.3 [26.5] 34.7 [10.2] 7.1	94.7 [27.7] 48.1 [14.1] 7.4	90.1 [26.4] 42.5 [12.5] 7.2	87.7 [25.7] 39.6 [11.6] 7.1	91.6 [26.9] 56.2 [16.5] 7.3	87.2 [25.6] 49.7 [14.6] 7.2	84.9 [24.9] 46.3 [13.6] 7.1
B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	87.9 [25.8] 35.2 [10.3] 8.3	83.7 [24.5] 31.1 [9.1] 8.1	81.4 [23.9] 29.0 [8.5] 8.0	85.1 [24.9] 41.1 [12.0] 8.3	81.0 [23.7] 36.4 [10.7] 8.1	78.8 [23.1] 33.9 [9.9] 8.0	82.0 [24.0] 49.2 [14.4] 8.2	78.1 [22.9] 43.5 [12.7] 8.0	76.0 [22.3] 40.5 [11.9] 7.9
M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	77.6 [22.7] 28.4 [8.3] 9.3	73.8 [21.6] 25.1 [7.4] 9.1	71.8 [21.1] 23.4 [6.9] 8.9	74.7 [21.9] 34.4 [10.1] 9.2	71.1 [20.8] 30.4 [8.9] 9.0	69.2 [20.3] 28.3 [8.3] 8.9	71.7 [21.0] 42.4 [12.4] 9.2	68.2 [20.0] 37.5 [11.0] 9.0	66.4 [19.5] 35.0 [10.2] 8.9
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	66.4 [19.5] 21.9 [6.4] 10.4	63.2 [18.5] 19.4 [5.7] 10.1	61.5 [18.0] 18.0 [5.3] 10.0	63.6 [18.6] 27.8 [8.2] 10.4	60.5 [17.7] 24.6 [7.2] 10.1	58.9 [17.3] 22.9 [6.7] 10.0	60.6 [17.8] 35.9 [10.5] 10.3	57.6 [16.9] 31.8 [9.3] 10.1	56.1 [16.4] 29.6 [8.7] 9.9
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	54.6 [16.0] 15.6 [4.6] 11.6	51.9 [15.2] 13.8 [4.0] 11.3	50.5 [14.8] 12.9 [3.8] 11.2	51.7 [15.2] 21.6 [6.3] 11.6	49.2 [14.4] 19.1 [5.6] 11.3	47.9 [14.0] 17.8 [5.2] 11.2	48.7 [14.3] 29.6 [8.7] 11.5	46.3 [13.6] 26.2 [7.7] 11.3	45.1 [13.2] 24.4 [7.2] 11.1

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)—G151

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	3000 [1416]	2125 [1003]	2000 [944]	3000 [1416]	2125 [1003]	2000 [944]	3000 [1416]	2125 [1003]	1600 [755]
O U T D	60 [15.6]	rowei	40.1 [11.7] 9.4 [2.8] 4.5	37.3 [10.9] 7.9 [2.3] 4.3	36.9 [10.8] 7.7 [2.2] 4.3	38.5 [11.3] 12.5 [3.7] 4.5	35.8 [10.5] 10.5 [3.1] 4.4	35.4 [10.4] 10.2 [3.0] 4.3	36.9 [10.8] 16.6 [4.9] 4.5	34.3 [10.0] 13.9 [4.1] 4.3	33.9 [9.9] 13.6 [4.0] 4.3
O O R	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	38.3 [11.2] 7.5 [2.2] 4.6	35.6 [10.4] 6.3 [1.8] 4.4	35.2 [10.3] 6.1 [1.8] 4.4	36.7 [10.7] 10.6 [3.1] 4.6	34.1 [10.0] 8.9 [2.6] 4.4	33.7 [9.9] 8.7 [2.5] 4.4	35.0 [10.3] 14.7 [4.3] 4.6	32.6 [9.6] 12.3 [3.6] 4.4	32.3 [9.5] 12.0 [3.5] 4.4
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	36.5 [10.7] 5.7 [1.7] 4.6	33.9 [9.9] 4.8 [1.4] 4.5	33.6 [9.8] 4.7 [1.4] 4.5	34.9 [10.2] 8.8 [2.6] 4.6	32.5 [9.5] 7.4 [2.2] 4.5	32.1 [9.4] 7.2 [2.1] 4.5	33.3 [9.7] 12.9 [3.8] 4.6	30.9 [9.1] 10.8 [3.2] 4.5	30.6 [9.0] 10.5 [3.1] 4.5
U L B	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	34.7 [10.2] 4.0 [1.2] 4.7	32.3 [9.5] 3.4 [1.0] 4.6	32.0 [9.4] 3.3 [1.0] 4.5	33.1 [9.7] 7.2 [2.1] 4.7	30.8 [9.0] 6.0 [1.8] 4.6	30.5 [8.9] 5.8 [1.7] 4.5	31.5 [9.2] 11.3 [3.3] 4.7	29.3 [8.6] 9.5 [2.8] 4.6	29.0 [8.5] 9.2 [2.7] 4.5
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	33.0 [9.7] 2.5 [0.7] 4.8	30.7 [9.0] 2.1 [0.6] 4.7	30.4 [8.9] 2.0 [0.6] 4.7	31.4 [9.2] 5.6 [1.6] 4.8	29.2 [8.6] 4.7 [1.4] 4.7	28.9 [8.5] 4.6 [1.3] 4.7	29.8 [8.7] 9.7 [2.8] 4.8	27.7 [8.1] 8.2 [2.4] 4.7	27.4 [8.0] 7.9 [2.3] 4.7
A T U R	85 [29.4]	Power	1.1 [0.3] 5.0	29.2 [8.6] 0.9 [0.3] 4.8	28.9 [8.5] 0.9 [0.3] 4.8	29.8 [8.7] 4.2 [1.2] 5.0	27.7 [8.1] 3.5 [1.0] 4.8	27.4 [8.0] 3.4 [1.0] 4.8	28.2 [8.3] 8.3 [2.4] 5.0	26.2 [7.7] 7.0 [2.0] 4.8	25.9 [7.6] 6.8 [2.0] 4.8
°F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	29.7 [8.7] -0.2 [-0.1] 5.1	27.7 [8.1] -0.2 [-0.1] 4.9	27.4 [8.0] -0.2 [-0.1] 4.9	28.2 [8.2] 2.9 [0.9] 5.1	26.2 [7.7] 2.4 [0.7] 5.0	25.9 [7.6] 2.4 [0.7] 4.9	26.5 [7.8] 7.0 [2.1] 5.1	24.7 [7.2] 5.9 [1.7] 4.9	24.4 [7.2] 5.7 [1.7] 4.9

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE)—G151

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]	6000 [2832]	4250 [2006]	4000 [1888]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	136.4 [40.0] 71.7 [21.0] 7.2	126.9 [37.2] 60.2 [17.6] 7.0	125.6 [36.8] 58.5 [17.1] 7.0	133.7 [39.2] 79.7 [23.3] 7.2	124.4 [36.5] 66.8 [19.6] 6.9	123.1 [36.1] 65.0 [19.0] 6.9	130.6 [38.3] 89.5 [26.2] 7.1	121.5 [35.6] 75.0 [22.0] 6.9	120.2 [35.2] 73.0 [21.4] 6.9
O R D	70 [21.1]	Power	8 ,	117.5 [34.4] 52.1 [15.3] 7.7	116.2 [34.1] 50.7 [14.9] 7.7	123.6 [36.2] 70.1 [20.5] 7.9	115.0 [33.7] 58.8 [17.2] 7.7	113.7 [33.3] 57.2 [16.8] 7.6	120.4 [35.3] 79.9 [23.4] 7.9	112.0 [32.8] 67.0 [19.6] 7.6	110.8 [32.5] 65.2 [19.1] 7.6
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	115.9 [34.0] 53.0 [15.5] 8.9	107.8 [31.6] 44.5 [13.0] 8.6	106.6 [31.3] 43.3 [12.7] 8.5	113.2 [33.2] 61.0 [17.9] 8.8	105.3 [30.9] 51.1 [15.0] 8.5	104.2 [30.5] 49.7 [14.6] 8.5	110.0 [32.2] 70.8 [20.7] 8.8	102.3 [30.0] 59.4 [17.4] 8.5	101.2 [29.7] 57.7 [16.9] 8.4
L B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	105.3 [30.8] 44.4 [13.0] 9.9	97.9 [28.7] 37.2 [10.9] 9.6	96.9 [28.4] 36.2 [10.6] 9.5	102.6 [30.1] 52.3 [15.3] 9.8	95.4 [28.0] 43.9 [12.9] 9.5	94.4 [27.7] 42.7 [12.5] 9.5	99.4 [29.1] 62.1 [18.2] 9.8	92.4 [27.1] 52.1 [15.3] 9.5	91.5 [26.8] 50.7 [14.8] 9.4
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	94.4 [27.7] 36.1 [10.6] 11.1	87.9 [25.7] 30.3 [8.9] 10.7	86.9 [25.5] 29.5 [8.6] 10.6	91.7 [26.9] 44.1 [12.9] 11	85.3 [25.0] 37.0 [10.8] 10.6	84.4 [24.7] 36.0 [10.5] 10.6	88.5 [25.9] 53.9 [15.8] 11.0	82.4 [24.1] 45.2 [13.2] 10.6	81.5 [23.9] 44.0 [12.9] 10.5
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	83.4 [24.4] 28.4 [8.3] 12.4	77.6 [22.7] 23.8 [7.0] 11.9	76.8 [22.5] 23.2 [6.8] 11.9	80.7 [23.6] 36.3 [10.6] 12.3	75.1 [22.0] 30.5 [8.9] 11.9	74.3 [21.8] 29.6 [8.7] 11.8	77.5 [22.7] 46.1 [13.5] 12.3	72.1 [21.1] 38.7 [11.3] 11.8	71.3 [20.9] 37.6 [11.0] 11.8
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	72.1 [21.1] 21.1 [6.2] 13.8	67.1 [19.7] 17.7 [5.2] 13.3	66.4 [19.5] 17.2 [5.0] 13.2	69.4 [20.3] 29.0 [8.5] 13.7	64.6 [18.9] 24.4 [7.1] 13.3	63.9 [18.7] 23.7 [6.9] 13.2	66.3 [19.4] 38.8 [11.4] 13.7	61.6 [18.1] 32.6 [9.5] 13.2	61.0 [17.9] 31.7 [9.3] 13.2

www.SureComfort.com _____ 27

AIRFLOW PERFORMANCE—7.5 TON [26.4 kW] — 60 Hz — SIDEFLOW

	ٽ	Capacity 7.5 Tons [26.4 kW]		7.5 Tc	ns [2	6.4 K∿	5																																	
A P																Ext	ernal	Static	Pres	sure-	External Static Pressure—Inches of Water [kPa]	es of	Water	[kPa	_															
FIUW CEM [1 61 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	0	[70]	0.2	[.05]	0.3	[.07]	0.4	[.10]	0.5	[.12]	9.0	[.15]	0.7	[11]	0.8	0.8 [.20] 0.9 [.22]	0.9	.22]	1.0	.25]	1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32]	.27]	1.2 [.30]	1.3		1.4 [.35]		1.5 [.37]		1.6 [.40]	40]	1.7 [.4	42] 1	1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	15] 1.	9 [.4.	7] 2.(0.50	=
	RPM	RPM W RPM W RPM W RPM W RPM W RPM W	RPIN	N	RPIN	8	RPM	>	RPM	8	RPM	8	RPM	Μ	RPM	Μ	RPM	Μ	RPM W		RPM	RPM W RPM W RPM W	RPM	٨	RPM	8	RPM W		RPM	W	3PM	RPM W RPM W RPM W	3PM	W	RPM	WRP	RPM W	/ RP	M	_
2400 [1133]	<u> </u>	1	1	1	574	520	612	592	574 520 612 592 650	999	289	682 289 299	723	815	757	893	791	971	824	1051	857	1133	888	1216	918	1300	948	1386	926	1473	1004	1561	1031	1651	1057 17	742 10	1742 1082 1834 1106	34 110	6 1928	8:
2500 [1180]		1	545	490	584	584 560	622	632	632 659 705	705	695	695 780	730	856	292	933	262	1012	831	1092	863	1174	894	1257	924	1341	953	1427	981	1514	1008	1603 1	1035 1	1693 1060	-	784 10	1784 1085 1877 1108 197	77 110	8 197	7
2600 [1227]		1	555	537	594	809	632	680	899	753	704	828	739	904	773	982	806	1061	838	1141	870	1223	900	1306	930	1390	928	1476	986	1563	1013	1652 1	1039 1	1742	1064 18	1833 10	1088 1926	26 111	1111 2020	0:
2700 [1274]	1	I	267	593	605	663	642	735	8/9	808	714	884	748	096	782	1038	814	1117	846	1197	877	1279	206	1362	936	1447	964	1533	992	1620	1018	1709 1	1043 1	1799 1	1068 18	891 10	1092 1983	33 1115	5 2078	8
2800 [1321]		1	218	655	616	726	653	799	689	872	724	947	758	1024	791	1101	823	1181	854	1261	885	1343	914	1426	943	1511	971	1597	1 866	1685 1	1024	1773 1	1049 1	1864 1	1073 19	1955 10	1096 2048	11119	9 2143	13
2900 [1368]	1 225	929		591 726		628 797	664	869	200	943	734	1018	292	1095	800	1173	832	1252	863	1332	893	1415	922	1498	951	1583	826	1669	1004	1757	1030	1846 1055		1936 1	1936 1078 2028 1101 2121 1123	028 11	01 212	21 112	3 2215	2
3000 [1416]	999	566 734	603		640	804 640 875	9/9	947	676 947 711 1021 745 1097 778	1021	745	1097	778	1173	811	1251	842	1331	872	1411	905	1494	931	1577	929	1662	985	1748	1012	1836 1037	1037	1925 1061	1061	2016 1	2016 1084 2108 1107 2201 1128 2295	108 11	107 22(1112	8 229	35
3100 [1463] 579 820 617 890 653 961 688 1033 723 1107 757 1183 789	6/9	820	617	890	653	961	889	1033	723	1107	757	1183	789	1259	821	1338	852	1417	882	1498	912	1580	940	1664	296	1749	994	1835 1019	1019	1923	1044	2012	1 068 2	2103 1	1923 1044 2012 1068 2103 1091 2195 1113 2288 1134 2383	195 11	13 22	38 113	4 238	33
3200 [1510] 594	J 594	913		983	999	1054	701	1127	631 983 666 1054 701 1127 736 1201 769	1201	269	1276 8	801	1353	833	1432	863	1511	893	1592	921	1675	949	1758	926	1844	1002	1930 1027	1027	2018 1052	1052 2	2107 1	1075 2	2198 1	2107 1075 2198 1098 2290 1119 2384 1140 2478	290 11	19 23	34 114	0 247	8
3300 [1557] 608 1014 645 1084 680 1155 715 1228 749 1302 781 1378 813	.] 608	1014	645	1084	089	1155	715	1228	749	1302	781	1378	813	1455	844	1533	874	1613	904	1694	932	1776	626	1860	986	1946	1946 1012	2032	1036	2120	1090	2210	1083 2	2301 1	2032 1036 2120 1060 2210 1083 2301 1105 2393 1126 2486 1146	393 11	26 24	36 114	6 2581	Ξ.
3400 [1604] 624 1122 660 1192 695 1264 729 1337 762 1411 795 1487 826	.] 624	1122	099	1192	692	1264	729	1337	762	1411	795	1487	826	1564	857	1642	988	1722	915	1803	943	1886	970	1970	966	2055 1021	1021	2145	1046 2230 1069	2230	1069	2320 1	1001	2411 1	2320 1091 2411 1113 2503 1134 2597 1154 2692	503 11	34 25	37 115	4 269	25
3500 [1652] 640 1238 675 1308 710 1380 744 1453 776 1527 808] 640	1238	675	1308	710	1380	744	1453	1776	1527	808	1603	839	1680	870	1759	899	1839	927	1920	922	2003	981	2087	1007	2173	1032	2259	1055	2348	1078	2437 1	1100 2	2528 1	2259 1055 2348 1078 2437 1100 2528 1122 2621	621 11	1142 2715 1161	15 116	1 2810	0
3600 [1699] 656 1361	J 656	1361	691	1432	725	1503	759	1577	691 1432 725 1503 759 1577 791 1651 823	1651	823	1727	1727 853	1804	883	1883	912	1963	940	2045		967 2128	993	2212	1018	2297	1042	2384	1066	2473	1088 ;	2563 1	1110 2	2654 1	1018 2297 1042 2384 1066 2473 1088 2563 1110 2654 1131 2746 1151	746 11	51 28	2840 1169	9 2936	9
NOTE: B. Drive left of the 1st hold line C. Drive hetween hold lines T. Drive right of the	rivo lo	# 04 #	tot ac	hold	line C	- Drive	hohm	y uoo.	ail blo	T oor	Drive	rioht,	of the	and hold line	old lin	g																								İ

NOTE: R-Drive left of the 1st bold line, S-Drive between bold lines, T-Drive right of the 2nd bold line.

Drive Package Fractor Package Fractor Package S T		_	_			_
Table Tabl					9	933
T T T T T T T T T T					2	987
National Sanish Sanis		37.1.4]	65	-44	4	1040
National Part	3.0 [22	BK	1VF	3	1092	
National Part				2		
R R R R R R R R R R					-	1179
R R R R R R R R R R					9	673
National Part				9	711	
R 2.0 [1491.4] BK110 1 2 3 4 5 6 74 640 608 576 544 865 830		1.4]	0	14	4	750
R 2.0 [1491.4] BK110 1 2 3 4 5 6 1 1 705 674 640 608 576 544 865	S	2.0 [149	BK9(1VP-4	3	789
R 2.0 [1491.4] RK110 1 2 3 4 5 6 705 674 640 608 576 544					2	830
R 2.0 [1491.4]					-	865
R 2.0 [1491.4] BK110 1 2 3 4 705 674 640 608					9	544
2.0 [1491] 8K110 1 2 3 10P-44 705 674 640					2	276
1 2 705 674 (~	491.4]	110	-44	4	809
1 705	_	2.0 [1	BK.	1VP	3	640
					2	674
Drive Package Motor H.P. [W] Blower Sheave Motor Sheave Turns Open RPM					-	202
	Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
 Do not operate above blower RPM shown as motor overloading will occur.
 Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 7.5 TON [26.4 kW] (C090)

ACTUAL—CFM	2600	2800	3000	3200	3400	3600	3800
[F/s]	[1227]	[1321]	[1416]	[1510]	[1605]	[1699]	[1793]
TOTAL MBH	0.97	86'0	66.0	1.00	1.01	1.02	1.03
SENSIBLE MBH	0.91	0.94	0.97	1.00	1.02	1.05	1.08
POWER KW	0.99	66.0	0.99	1.00	1.00	1.01	1.02

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 7.5 TON [26.4 kW] (C090)

			Standard In	Standard Indoor Airflow—CFM [L/s]	—CFM [L/s]		
Component	2400	2600	2800	3000	3200	3400	3600
	[1133]	[1227]	[1321]	[1416]	[1510]	[1604]	[1699]
			Resistano	Resistance—Inches Water [kPa]	/ater [kPa]		
Wet Coil	0.047	0.051	0.055	090'0	0.065	0.071	9/0.0
Wet con	[0.012]	[0.013]	[0.014]	[0.015]	[0.016]	[0.018]	[0.019]
Concentric Diffuser RXRN-FA65 or	VIVO	.017	.020	.025	.031	.037	VIVO
FA75 & Transition RXMC-CD04	לאום	[0.042]	[0.050]	[0.062]	[0.077]	[0.092]	לאוס
Concentric Diffuser RXRN-AA61 or	DMA	ANG	DNA	ANG	ANG	DNA	.017
AA71 & Transition RXMC-CE05	Circ						[0.042]
Economizer	0.05	90'0	0.07	80'0	0.09	0.10	0.11
100% R.A. Damper Open	[0.012]	[0.015]	[0.017]	[0.020]	[0.022]	[0.025]	[0.027]
Horizontal Economizer	0.03	0.04	0.04	90.0	0.02	90.0	90.0
100% R.A. Damper Open	[0.007]	[0.00]	[0.010]	[0.011]	[0.012]	[0.014]	[0.015]
Horizontal Economizer	0.08	80.0	0.08	0.10	0.11	0.12	0.13
100% O.A. Damper Open	[0.020]	[0.020]	[0.020]	[0.024]	[0.027]	[0:030]	[0.032]

NOTE: Add component resistance to duct resistance to determine total external static pressure. DNA = Data not Available.

AIRFLOW PERFORMANCE—10 TON [35.2 kW] — 60 Hz — SIDEFLOW

		0.8[.20] 0.9[.22] 1.0[.25] 1.1[.27] 1.2[.37] 1.2[.30] 1.3[.32] 1.4[.35] 1.5[.37] 1.6[.40] 1.7[.42] 1.8[.45] 1.9[.45] 1.9[.47]		981 1861 1009 1955 1037 2053 1064 2154 1091 2258 1117 2365 1143 2476 1168 2590	1175 2705	I	1	 	1	1	 	1	 	1	1	 	I	1	1	1
		.45] 1		2476 1	2588 1	5706	2829	7367	3091	1	1	1	1	-	1	1	1	1	1	1
		1.8		1143	1150	1157	1165	1172		ı	Ι	ı	ı	1	I	Ι	ı	ı	1	ı
		.42]	>	2365	2474	1132 2588 1157	2707	2832	2962 1180	3098	3240	3386	Ι	_	I	_	I	I	Ι	I
		1.7 [RPM	1117	1125	1132	1140	1148	1156	1164	1172	1181	1	_	I	-	I	1	1	ı
		[.40]	RPM W	2258	1018 2049 1046 2151 1072 2255 1099 2363 1125 2474 1150 2588	1948 1000 2047 1027 2149 1054 2254 1081 2362 1107 2473	2046 1010 2148 1037 2253 1063 2362 1089 2474 1115 2589 1140 2707 1165 2829	2149 1019 2255 1046 2364 1072 2476 1098 2592 1123 2710 1148 2832 1172 2957	2837	986 2261 1013 2371 1039 2484 1065 2601 1090 2720 1115 2843 1140 2969	3107	3250	3398	3552	١	1	I	I	1	1
		1.6	RPM	1091	1099	1107	1115	1123	1055 2480 1081 2596 1107 2715 1131	1140	997 2377 1023 2491 1049 2608 1075 2728 1100 2851 1125 2977 1149	2384 1008 2498 1034 2616 1060 2736 1085 2860 1110 2987 1134 3117 1158	1167	2518 1005 2636 1031 2757 1056 2882 1081 3009 1105 3140 1129 3275 1153 3412 1176	I	Ι	I	1	1	١
		[.37]	>	2154	2255	2362	2474	2592	2715	2843	2977	3117	3261	3412	991 2648 1017 2770 1042 2895 1067 3023 1092 3154 1116 3289 1139 3427 1162 3568	3729	1	1	1	I
		1.5	RPM	1064	1072	1081	1089	1098	1107	1115	1125	1134	2507 1019 2625 1045 2746 1070 2870 1095 2997 1119 3128 1143	1153	1162	3584 1172	1	1	1	I
		[32]	>	2053	2151	2254	2362	2476	2596	2720	2851	2987	3128	3275	3427	3584	3747	3916	1	I
		1.4	RPM	1037	1046	1054	1063	1072	1081	1090	1100	1110	1119	1129	1139	1029 2909 1054 3038 1079 3170 1103 3305 1126 3443 1150	1160	1170	1	ı
		[.32]	>	1955	2049	2149	2253	2364	2480	2601	2728	2860	2997	3140	3289	3443	1137 3602	1004 2942 1029 3072 1054 3204 1078 3340 1102 3479 1125 3622 1148 3767	3938	1170 4113
		1.3	RPM	1009	1018	1027	1037	1046	1055	1065	1075	1085	1095	1105	1116	1126	1137	1148	1159	1170
	_	[.30]	≥	1861	991 1951	2047	2148	2255	1029 2367	2484	2608	2736	2870	3009	3154	3305	3461	3622	3789	3961
	r [kPa	1.2	RPM			1000	1010	1019	1029	1039	1049	1060	1070	1081	1092	1103	1114	1125	1137	1148
	Wate	[.27]	≥	1769	1856	1948		2149	2151 1003 2257	2371	2491	2616	2746	2882	3023	3170	3322	3479	3643	3811
	es of	1.	RPM	953	362	972	982	2046 992	1003	1013	1023	1034	1045	1056	1067	1079	1090	1102	1114	1126
	투	[.25]	≥	924 1681 953	1764	1853	954 1947 982	2046	2151	2261	2377	2498	2625	2757	2895	3038	3186	3340	3500	3665
	ssure-	1.0	RPM	924	934	944		962	975	986		1008	1019	1031	1042	1054	1066	1078	1090	1103
	External Static Pressure—Inches of Water [kPa]	[.22]	≥	1596	1675	1760	1851	1946	2048	2154	2267	2384		2636	2770	2909	1041 3054 1066 3186 1090 3322 1114 3461	3204	1017 3091 1042 3224 1066 3360 1090 3500 1114 3643 1137 3789 1159	1079 3522 1103 3665 1126 3811 1148 3961
	Stat	0.0	_	895	902	915	926	937	948	929	026	982	993	1005	1017	1029	1041	1054	1066	1079
	cterna	[.20]	RPM W RPM W	1514	1590	1671	1758	1850	1948	2051	2159	2273	2393	2518	2648	2784	2925	3072	3224	1055 3382
	ω		RPM	865	875	988	897	806	920	931	943	922	296	626		1004	1016	1029	1042	
		0.7 [.17]	≥	1436	1508	1585	1668	1757	1851	903 1950	2055	2166	2281	952 2403	2529	2662	991 2799	2942	3091	1031 3245
		0.7	RPM	834	845	857	898	880	891		915	927	940	952	962	826			1017	_
		[15]	≥	1360	815 1429	1503	838 1582	1667	1757	1853	887 1954	2061	2173	925 2291	938 2414	2542	2676	978 2816	992 2961	3111
		9.0	RPM	804		827		820	862	875		006	912			951	965			2981 1006 3111
		[.12]	>	1288	1353	1423	1499	1580	1667	1759	1857	1960	2068	2182	911 2302	2427	2557	2693	2834	
		0.5	RPIN	772	784	962	808	821	833	846	828	871	884	868	911	925	938	952	996	981
		[.10]	>	1219	1280	765 1347	1419	790 1496 821	1580	816 1668 846	829 1762 858	843 1862	1966	2077	884 2193	897 2314	912 2441	2573	940 2710 966	2853
		0.4	RPIN	741	1210 753 1280 784	765	778		803		829		928	870	884			926	940	955
1 kW]		[.07]	RPM W RPM W RPM W RPM W RPM W RPM	676 1090 709 1153 741 1219 772 1288	1210	1274	1342	1416	742 1415 773 1495	1580	1671	1767	1868	1975	2087	2204	2327	2456	2590	9779
s [35.		0.3	RPM	709	1144 721	734	747	2097	773	786	800	814	827	841	856	2098 870	884	899	914	626
O Tons		[.05]	≥	1090	1144	702 1204	1268	1339	1415	1496	1583	1675	1772	1875	1984	2098	857 2217	2342	2473	9609
_		0.2	RPM	9/9	689		715	729		756	220	784	86/	813	827	842		872	887	902
Capacity 10 Tons [35.1 kW]		[.02]	≥	I	1	1137	1198	1265	1337	1415	1498	1586	1680	1780	1884	1995	2111	2232	2359	2491
ပီ		0.1	RPIN	I	1	670	683	269	711	725	740	754	292	783	798	813	828	844	829	875
	¥	FIUW CEM II 61 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	[6/3]	3200 [1510]	3300 [1557]	3400 [1604] 670 1137	3500 [1652] 683 1198 715 1268 747 1342 778 1419 808 1499	3600 [1699] 697 1265 729 1339 760	3700 [1746] 711 1337	3800 [1793] 725 1415 756 1496 786 1580	3900 [1840] 740 1498 770 1583	4000 [1888] 754 1586 784 1675	4100 [1935] 768 1680	4200 [1982] 783 1780 813 1875 841 1975 870 2077 898	4300 [2029] 798 1884 827 1984	4400 [2076] 813 1995 842	4500 [2123] 828 2111	4600 [2171] 844 2232 872 2342 899 2456 926 2573 952	4700 [2218] 859 2359 887 2473 914	4800 [2265] 875 [2491

NOTE: R-Drive left of bold line, S-Drive right of bold line.

				9	606
				5	956
	3.0 [2237.1.4]	BK65	IVP-44	4	1015
0,	3.0 [22	BK	1VP	3	1063
				2	1114
				1	1169 1
				9	670
				2	709
~~	191.4]	BK90	1VP-44	4	747
<u>.</u>	2.0 [1491.4]	BK	1VP	3	785
				2	825
				-	860
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.
2. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P.
3. Do not operate above blower RPM shown as motor overloading will occur.
4. Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 10 TON [35.2 kW]

		•							
ACTUAL—CFM	3200	3400	3600	3800	4000	4200	4400	4600	4800
[L/s]	[1510]	[1605]	[1699]	[1793]	[1888]	[1982]	[2077]	[2171]	[2265]
TOTAL MBH	96.0	0.97	0.98	0.99	1.00	1.01	1.02	1.03	1.04
SENSIBLE MBH	0.91	0.93	0.95	0.97	1.00	1.02	1.05	1.07	1.09
POWER KW	0.98	0.98	0.99	0.99	1.00	1.00	1.01	1.01	1.01
CLI] -		ı		-				

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 10 TON [35.2 kW]

			Sta	ndard Indo	Standard Indoor Airflow—CFM [L/s]	/—CFM [!	[S/]		
Component	3200	3400	3600	3800	4000	4200	4400	4600	4800
	[ULGL]	[1004]	[1099]	[1/93]	[1888]	[1982]	[20/02]	[1/12]	[cqzz]
			Resist	ance—Inc	Resistance—Inches Water [kPa]	r [kPa]			
Wet Coil	0.065	0.071	9/0.0	0.082	0.087	0.093	660'0	0.105	0.110
100	[0.016]	[0.018]	[0.019]	[0.020]	[0.022]	[0.023]	[0.025]	[0.026]	[0.027]
Concentric Diffuser RXRN-FA65 or FA75 & Transition RXMC-CD04	0.31	0.37 [0.092]	DNA	DNA	DNA	DNA	DNA	DNA	DNA
Concentric Diffuser RXRN-AA61 or AA71 & Transition RXMC-CE05	DNA	DNA	0.17 [0.042]	0.18 [0.045]	0.21 [0.052]	0.24 [0.060]	0.27 [0.067]	DNA	DNA
Concentric Diffuser RXRN-AA66 or AA76 & Transition RXMC-CF06	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.31 [0.077]	0.32 [0.080]
Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17
100% R.A. Damper Open	[0.022]	[0.025]	[0.027]	[0.030]	[0.032]	[0.035]	[0.037]	[0.040]	[0.042]
Horizontal Economizer	0.05	90.0	90.0	20.0	0.08	0.09	60'0	0.10	0.10
100% R.A. Damper Open	[0.012]	[0.014]	[0.015]	[0.017]	[0.020]	[0.021]	[0.022]	[0.024]	[0.025]
Horizontal Economizer	0.11	0.12	0.13	0.15	0.16	0.18	0.19	0.20	0.21
100% O.A. Damper Open	[0.027]	[0.030]	[0.032]	[0.0.36]	[0.040]	[0.044]	[0.047]	[0.50]	[0.052]

NOTE: Add component resistance to duct resistance to determine total external static pressure. DNA = Data not Available.

AIRFLOW PERFORMANCE—12.5 TON [44.0 kW] — SIDEFLOW

_	_		_	_	_	_	_	_	_	_		_				
			.50	٨	1235 3166	3444	3749	4083	I	1	1	1	1	I	1	
			2.0	RPM	1235	1253	1271	1290	-	_	1	_	1	1		
			[74]	Μ	3057	3328	3628	3955	4311	1	I	Ι	Ī	Ι	I	
			1.9	RPM	1214 3057	1233	1252	1271	1291	1	I	1	1	I	1	
			45]	W	- 026	212	208	830	4179	4556	1	1	1	1	I	
			8.	PM	193 2	212 3	232 3	252 3	272 4	293 4	_	-	1	_	ı	
			[2]	W	846 1	104	391 1	706 1	4048 1272	419 1	4818	1	1	1	ī	
			7 [.4	М	72 2	91 3	12 3	32 3	1254 4	75 4	1298 4		1	_	İ	
			_	V R	43 11	2995 1191 3104 1212 3215 1233 3328	76 12	84 12	3920 12	4285 1275 4419 1293	77 12	_	<u>.</u> 1	_	İ	
			6[.40	M	50 27	70 29	э1 32	12 35	34 39	57 42	30 46		_		\dashv	
			=	RP	3 11	9 117	2 119	4 12-	4 1234	2 125	8 128	2 —	1	1	1	
			[.37	۱	3 264	1149 2889 1170	316	346	379	3 415	2 453	4952	-	-	1	
			1.5	RPN	1128	1149	1170	1192	3670 1215 3794	1238	1262	1286	1	I		
			.35	8	2544	2784	3051	3347		4022	4401	4809	5245	_	1	
			1.4	RPM	1105	1127	1149	1172	1195	1219	1243	1268	1294	I	I	
			32]	M	2448	2681	2942	3231	3548	3893	1267	1668	2097	5555	Ι	
			.3	PM	082	105	127	151	175	200	225	250	276	303	1	
		kPa]	<u>-</u>	W	354 1	1082 2580 1105 2681 1127 2784	835 1	118	3428 1175 3548 1195	767 1	134 1	529 1	4952 1276 5097	403 1	1	
		ater [.2 [.3	М	159 2	182 2	06 2	30 3	54 3	80 3	205 4	32 4	59 4	386 5	ı	
		External Static Pressure—Inches of Water [kPa	- 1	N R	2084 1011 2172 1035 2262 1059 2354 1082 2448 1105 2544 1128 2643 1150 2743 1172 2846 1193 2950	82 10	2428 1038 2526 1061 2627 1083 2730 1106 2835 1127 2942 1149 3051 1170 3162 1191 3276 1212 3391 1232 3508 1252 3628 1271 3749	06 1.	3195 1134 3311 1154	43 1-	03 12	3993 1174 4124 1194 4257 1213 4392 1232 4529 1250 4668 1268	4808 1259	4959 1251 5105 1268 5253 1286 5403 1303		
		ches	1[.2	M	35 22	2385 1059 2482	83 27)8 J3C	34 33	so 3e	86 40	13 43	40 48	88 52	97 57	
		Į	-	RP	72 10	10 10	7 10	11 11	11	11	11	7 12	12	12 12	1 12	
		ssur	[.25	~	1 217	6 238	1 262	6 289	2 319	9 352	987	4 425	2 466	1 510	0 557	
		c Pre	-	RPI	1 101	1036	3 106	108	1112	113	3 116	1 119	4527 1222 4667 1240) 125	128	
		Stati	[.22]	٨	708	1012 2291	252	2790	3081	340	3748	412		495	541	
		ernal	0.9	RPIV	286	1012	1038	1064	2970 1091	1118	1146	1174	4390 1203	4815 1233	1263	
		꿆	.20]	>	1998	2199	2428	2685	2970	3283	3624	3993	4390	4815	5269	
			0.8	RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W	362	886	1015	1041	1069	1097	1125	1155	1184	1214	1245	
			17]		860 1675 886 1752 912 1832 937 1914	2108	2331	2581	2860	3167	3501	3864	4255	4674	5121	
			0.7 [3PM	937	964	991 2331	1019	1047	1075	1105	1134	1165	1195	1227	
			55	M	832	2020	236	480	. 222	053	381	137	122	534	975	
			.6[PM	312	336 5	967	395	024 2	053	083	114	145	176	208	
			2]	W	752	934 (144	381	347 1	941 1	263 1	313 1	991	397 1	331	
	Z		.5	М	86 1.	14 1	43 2	72 2	101	131 2	162 3	93 3	25 33	57 4:	89	
	60 H		<u> </u>	N R	75 8	889 1850 914 1934 939	53 9	84 9	44 10	31 10	47 10	90 10	62 11	61 11	89 11	
	hase		4 [.1	M	0 16	9 18	8 20	8 22	.8 25	09 28	40 31	72 34	04 38	37 42	70 46	
Š	–3 F		<u>.</u>	RP		88 88	5 91	0 94	3 97	4 10	3 10	0 10	5 11	8 11:	9 11	
43.9	575 -		[.07	M	-	1768	196	218	244	272	3 303	337	3 373	7 412	1 454	
Lons	460,		0.3	RPI	-	863	893	923	954	986	101	1050	108	111	115	
12.5	230,		[.05]	>	1	I	868 1878 893 1965 918 2053 943 2144 967 2236	2097	2343	2618	2921	3251	3610	3997	4412	
_	208/		0.2	RPM	-	-	898	899	930	962	962	1028	1062	1096	1131	1
Capacity 12.5 Tons [43.9 kW]	Voltage 208/230, 460, 575 — 3 Phase 60 Hz		.02]	×	-	-		2006	2246	2514	2811	3135	3487	3868	4276	1
යි	Vo		0.1	RPM W RPM W RPM W RPM W RPM W RPM W RPM W	I	ı	-	874	906	939	972	1006	1040	1075	1111	ľ
	_	>	CFM [L/s] 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7 [.17] 0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	_	[262]	[888]		4400 [2076] 874 2006 899 2097 923 2190 948 2284 972 2381 995 2480 1019 2581 1041 2685 1064 2790 1084 2006 1108 3006 1130 3118 1151 3231 1172 3347 1192 3484 1212 3584 1232 3706 1252 3830 1271 3955 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 1271 3955 127	4600 [2171] 906 2246 930 2343 954 2443 978 2544 1001 2647 1024 2753 1047 2860 <mark>.</mark>	4800 (2265) 939 2514 962 2618 986 2724 1009 2831 1031 2941 1053 3055 1075 3167 1097 3283 1118 3401 118 3401 118 3401 1160 3643 1180 3767 1200 3893 1219 4022 1238 4152 1257	0000 [2359] 972 [2811] 995 [2921] 1018 [3033 1040 3147 1062 3263 1083 3381 1105 3501 1105 3501 1105 3501 1105 3601 1146 3748 1166 3875 1186 4003 1205 4134 1225 4267 1243 4401 1262 4538 1280 4677	5200 [2454] 1006 3135 1028 3251 1050 3370 <u> 1072 3490</u> 1093 3613 1114 3737 1134 3864 1155	5400 [2548] 1040 3487 1062 3610 1083 3735 1104 3862 1125 3991 1145 4122 1165 4255 1184	5600 [2643] 1075 3868 1096 3997 1117 4128 1137 4261 1157 4397 1176 4534 1195 4674 1214	5800 [2737] 1111 4276 1131 4412 1151 4549 1170 4689 1189 4831 1208 4975 1227 5121 1245 5269 1263 5419 1280 5571 1297 5725	
	Air	Flow	J MH		3800 [1793]	.000 [1888]	4200 [1982]	400 [2	600 [2	800 [2	000 [2	200 [2	400 [2	600 [2	800 [2	
					က်	4	4	4	4	4	Ñ	5	က်	Ñ	က်	1

NOTE: R-Drive left of bold line, S-Drive right of bold line.

Dive Package Hower Sheave S.O [3728.5] S.O [3728.5]<						
National Part Part					9	1095
S.0 [3728.5] S.0					2	
S.0 [3728.5] S.0		728.5]	15H	-65	4	1178
S.0 [3728.5] BK72H 1VP-44 5 6 1 1 1075 1032 995 995 947 899 849 1292	0,	5.0 [3.	BK8	1VP	8	1216
S.0 [3728.5] BK72H 1VP-44 5 6 1 1 1075 1032 995 995 947 899 849 1292					2	1253
BK72H 1 2 3 4 5 1 1075 1032 995 947 899					Į.	
8 5.0 [3728.5] BK72H 1VP-44 1075 1032 995 947					9	849
8K72H 8K72H 1 2 3 1075 1032 995					2	899
1 2 1075 1032 (9	~	728.5]	72H	-44	7	246
	_	5.0 [3.	BK7	1VP	3	
					2	1032
Drive Package Motor H.P. [W] Blower Sheave Motor Sheave Turns Open RPM					-	1075
	ve Package	otor H.P. [W]	ower Sheave	otor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print.

- Do not set motor sheave below minimum or maximum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

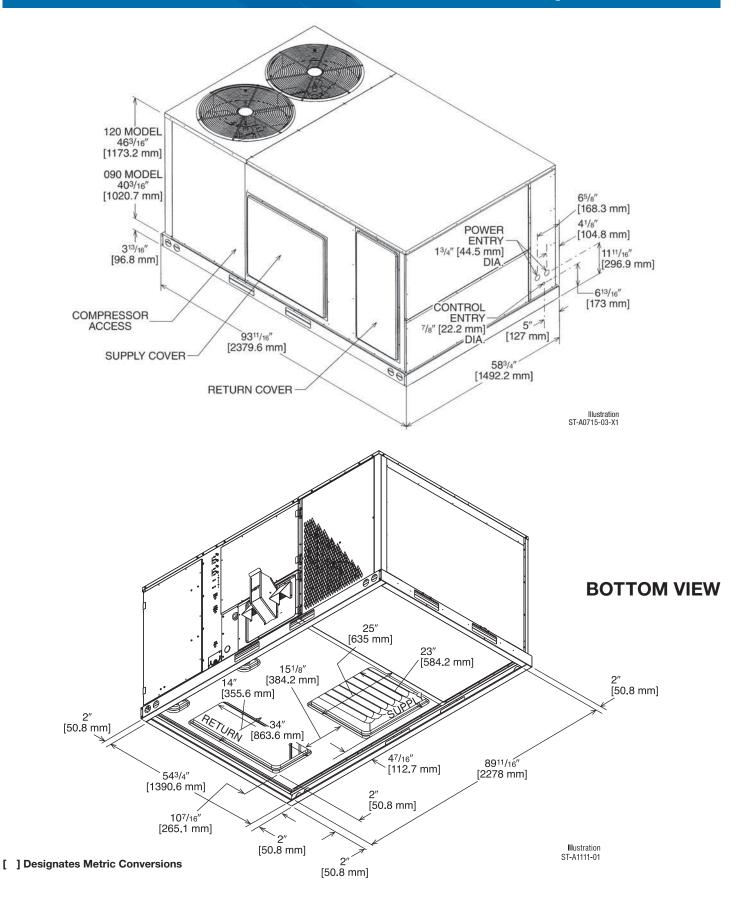
AIRFLOW CORRECTION FACTORS 12.5 TON [44.0 kW]

ACTUAL—CFM 3800 4000 4200 4400 4600 4800 5000	3800	4000	4200	4400	4600	4800	2000	5200	400	2600	5800
[F/8]	[1793] [1888]	[1888]	[1982]	[2077]	[2077] [2171] [2265]	[2265]	[2360]	[2454] [2	549	[2643]	[2737]
TOTAL MBH	0.98	0.98 0.99	1.00	1.01	1.02	1.02	1.02 1.03	1.04 1.05	1.05	1.06	1.07
SENSIBLE MBH 0.93 0.96	0.93	96.0	1.00 1.04 1.07	1.04	1.07	1.1	1.11 1.14 1.18	1.18	1.21 1.25	1.25	1.28
POWER KW	0.99	0.99 1.00 1.00 1.00 1.01 1.01 1.02	1.00	1.00	1.01	1.01	1.02	1.02	03	1.03 1.	1.03

NOTES: 1. Multiply correction factor times gross performance data.

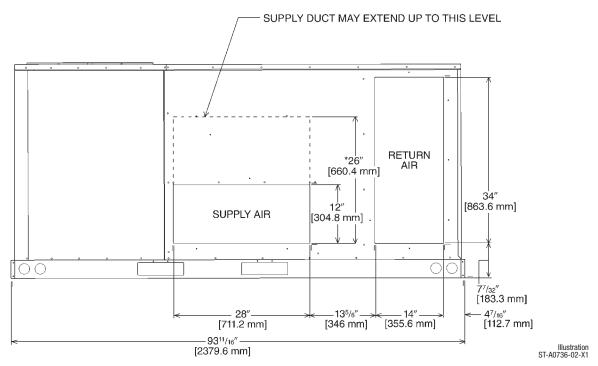
2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

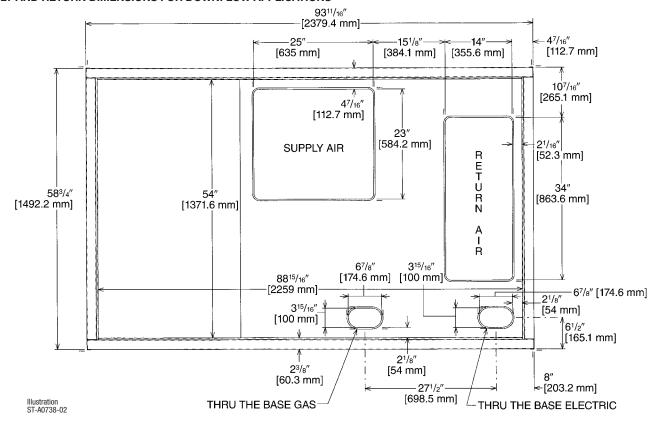

COMPONENT AIR RESISTANCE, IWC 12.5 TON [44.0 kW]

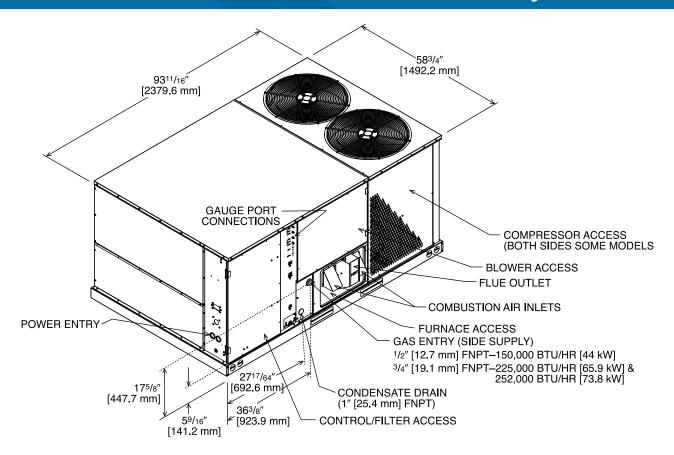
					Stand	Standard Indoor Airflow—CFM [L/s]	or Airflo	w—CFI	[F/S] N			
[] _	Component	3800 [1793]	4000 [1888]	4200 [1982]	4400 [2076]	4400 4600 4800 5000 5200 [2076] [2171] [2265] [2359] [2454]	4800 [2265]	5000 [2359]	5200 [2454]	5400 5600 [2548] [2643]		5800 [2737]
					Resi	Resistance—Inches Water [kPa]	-Inches	Water [kPa]			
_	M/c+ Coil	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.13	0.14
	Wel coll	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[:03]	[:03]	[.03]
	Downflow Economizer	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22
	RA Damper Open	[:03]	[.03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]	[:05]	[.05]	[.05]
	Horizontal Economizer	0.07	0.07	0.08	0.08	60'0	0.10	0.10	0.11	0.11	0.12	0.13
	RA Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[:03]	[.03]
	Concentric Grill RXRN-AA61 or	0.19	0.21	0.24	0.27	08'0	0.33	98.0	0.40	0.44	0.48	0.52
	RXRN-AA71 & Transition RXMC-CE05	[.05]	[.05]	[.05]	[.07]	[.07]	[.08]	[.09]	[.10]	[11]	[.12]	[.13]
	Concentric Grill RXRN-AA66 or	0.23	0.25	0.27	0.29	08.0	0.32	0.34	0.36	0.38	0.40	0.43
	RXRN-AA76 & Transition RXMC-CF06	[9.0]	[9.0]	[0.7]	[0.7]	[0.7]	[0.8]	[0.8]	[0.8]	[0.9]	[.10]	Ξ
	NOTE: Add component resistance to duct resistance to determine total external static pressure.	ct resista	ince to c	letermir	ne total e	xternal	static pr	essure.				

				ELECTRI	CAL DAT	A – RKN	L-				
		G090CR	G090CS	G090CT	G090DR	G090DS	G090DT	G120CR	G120CS	G120DR	G120DS
_	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506	187-253	187-253	414-506	414-506
atio	Volts	208/230	208/230	208/230	460	460	460	208/230	208/230	460	460
l Ë	Minimum Circuit Ampacity	43/43	43/43	48/48	21	21	24	49/49	54/54	25	28
Unit Information	Minimum Overcurrent Protection Device Size	45/45	45/45	50/50	25	25	25	50/50	55/55	25	30
_	Maximum Overcurrent Protection Device Size	50/50	50/50	60/60	25	25	30	60/60	60/60	30	35
	No.	2	2	2	2	2	2	2	2	2	2
	Volts	200/240	200/240	200/240	480	480	480	200/240	200/240	480	480
=	Phase	3	3	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450	3450
Compressor Motor	HP, Compressor 1	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	4 1/4	4 1/4	4 1/4	4 1/4
ress	Amps (RLA), Comp. 1	13.1/13.1	13.1/13.1	13.1/13.1	6.1	6.1	6.1	16/16	16/16	7.8	7.8
E	Amps (LRA), Comp. 1	83.1/83.1	83.1/83.1	83.1/83.1	41	41	41	110/110	110/110	52	52
ၓ	HP, Compressor 2	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	3 1/4	4 1/4	4 1/4	4 1/4	4 1/4
	Amps (RLA), Comp. 2	13.1/13.1	13.1/13.1	13.1/13.1	6.1	6.1	6.1	16/16	16/16	7.8	7.8
	Amps (LRA), Comp. 2	83.1/83.1	83.1/83.1	83.1/83.1	41	41	41	110/110	110/110	52	52
	No.	2	2	2	2	2	2	2	2	2	2
월	Volts	208/230	208/230	208/230	460	460	460	208/230	208/230	460	460
<u>~</u>	Phase	1	1	1	1	1	1	1	1	1	1
Condenser Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
E	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4	2.4/2.4	2.4/2.4	1.4	1.4
၂ ၁	Amps (LRA, each)	4.7/4.7	4.7/4.7	4.7/4.7	2.4	2.4	2.4	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1	1	1	1	1	1	1
Evaporator Fan	Volts	208/230	208/230	208/230	460	460	460	208/230	208/230	460	460
ļ ģ	Phase	3	3	3	3	3	3	3	3	3	3
) or a	HP	2	2	3	2	2	3	2	3	2	3
Eval	Amps (FLA, each)	8/8	8/8	13/13	4	4	7	8/8	13/13	4	7
_	Amps (LRA, each)	56/56	56/56	74.5/74.5	28	28	38.1	56/56	74.5/74.5	28	38.1


www.SureComfort.com _____ 3

		ELECTRICAL DATA	– RKNL-		
		G151CR	G151CS	G151DR	G151DS
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
atio	Volts	208/230	208/230	460	460
Ë	Minimum Circuit Ampacity	68/68	68/68	30	32
Unit Information	Minimum Overcurrent Protection Device Size	80/80	80/80	35	35
-	Maximum Overcurrent Protection Device Size	80/80	80/80	40	40
	No.	2	2	2	2
	Volts	208/230	208/230	460	460
-	Phase	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450
20r	HP, Compressor 1	5	5	5	5
res	Amps (RLA), Comp. 1	19.6/19.6	19.6/19.6	8.2	8.2
d _	Amps (LRA), Comp. 1	136/136	136/136	66.1	66.1
ర 🗀	HP, Compressor 2	5	5	5	5
	Amps (RLA), Comp. 2	19.6/19.6	19.6/19.6	8.2	8.2
	Amps (LRA), Comp. 2	136/136	136/136	66.1	66.1
_	No.	2	2	2	2
10to	Volts	208/230	208/230	460	460
Condenser Motor	Phase	1	1	1	1
ens	НР	1/2	1/2	1/2	1/2
pu —	Amps (FLA, each)	2.3/2.3	2.3/2.3	1.5	1.5
ت 🗀	Amps (LRA, each)	5.6/5.6	5.6/5.6	3.1	3.1
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
tor	Phase	3	3	3	3
ora	HP	5	5	5	5
Evaporator Fan	Amps (FLA, each)	18.8/18.8	18.8/18.8	10	10
	Amps (LRA, each)	82.6/82.6	82.6/82.6	41.3	41.3


www.SureComfort.com ______ 33

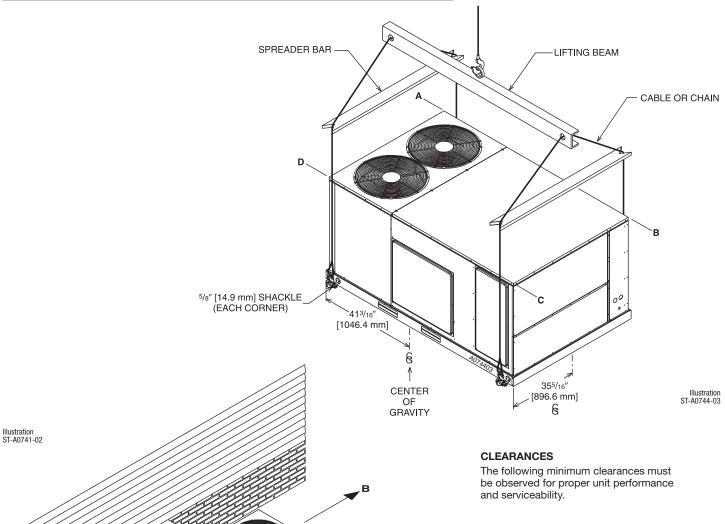

SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

*RECOMMENDED DUCT DIMENSIONS ARE 26"

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

[] Designates Metric Conversions

Illustration ST-A1111-03


www.SureComfort.com ______ 35

WEIGHTS

Accessory	Shipping—Ibs [kg]	Operating—lbs [kg]
Economizer w/Single Enthalpy	139 [63.04]	110 [49.89]
Economizer w/Single Enthalpy and Smoke Detector	142 [64.41]	113 [51.25]
Horizontal Economizer w/Single Enthalpy	166 [75.29]	133 [60.32]
Power Exhaust	44 [19.96]	42 [19.05]
Fresh Air Damper (Manual)	26 [11.79]	21 [9.53]
Fresh Air Damper (Motorized)	43 [19.50]	38 [17.24]
Roof Curb 14"	90 [40.82]	85 [38.60]
Roof Curb 24"	140 [63.50]	135 [61.23]

VERTICAL CLEARANCE

Capacity Tons [kW]	Corner	Weights	by Perd	entage
	Α	В	С	D
6-12.5 [21.1-44.0]	33%	27%	17%	23%

Recommended Clearance In. [mm]	Location
48 [1219]	A - Front
18 [457]	B - Condenser Coil
18 [457]	C - Duct Side
18 [457]	*D - Evaporator End
60 [1524]	E - Above
*Without Economizer. 48" [1219 mm] With Economizer	

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Economizer w/Single Enthalpy (Downflow)	AXRD-01RJDCM3	139 [63.0]	110 [49.8]	Yes
Economizer w/Single Enthalpy and Smoke Detector (Downflow)	AXRD-01RJDDM3	142 [64.4]	113 [51.2]	Yes
Dual Enthalpy Kit	RXRX-AV03	1 [.5]	1 [.5]	No
Horizontal Economizer w/Single Enthalpy	AXRD-01RJHCM3	166 [75.2]	133 [60.3]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No
Manual Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDA1	26 [11.8]	21 [9.5]	No
Manual Fresh Air Damper (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.1]	No
Motor Kit for RXRF-KDA1 (Left Panel Mounted)	RXRX-AW02	35 [15.9]	27 [12.2]	No
Modulating Motor Kit w/position feedback for RXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No
Motorized Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDB1	43 [19.5]	38 [17.2]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
Desfaurh Adenteur	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to 20" Round)	RXMC-CD04 ①	15 [6.8]	13 [5.9]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 ②	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 ③	20 [9.1]	18 [8.2]	No
Low-Ambient Control Kit	RXRZ-A06	4 [1.8]	3 [1.4]	Yes
Outdoor Coil Louver Kit	AXRX-AAD01C (6-10 Ton)	29 [11.3]	26 [11.8]	Yes
Outdoor Coil Louver Kit	AXRX-AAD02A (12.5 Ton)	29 [11.3]	26 [11.8]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [.7]	Yes
Unfused Service Disconnect	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 Per Compressor)	RXRX-AZ01	3 [1.5]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]	1 [0.5]	No
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]	1 [0.5]	No

NOTES: ① Used with RXRN-FA65 and RXRN-FA75 concentric diffusers.

NOTICE: Please refer to conversion kit index provided with the unit for LP conversion kit.

[] Designates Metric Conversions

www.SureComfort.com _____ 37

② Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

③ Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

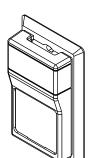
FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR **NETWORKED DDC APPLICATIONS**

ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON

RHC-ZNS1

10kΩ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a

ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON and STATUS INDICATOR


RHC-ZNS2

10kΩ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

10kΩ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM HUMIDITY SENSOR

RHC-ZNS4

Transmits room relative humidity to DDC System.

ROOM TEMPERATURE AND RELATIVE HUMIDITY SENSOR **RHC-ZNS5**

Transmits room temperature and relative humidity to DDC System.

COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

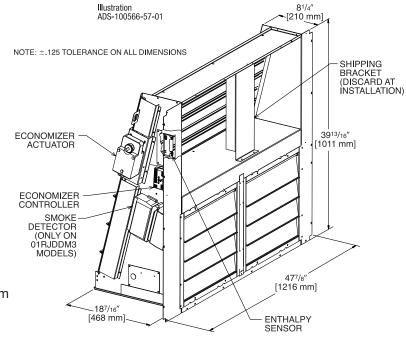
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

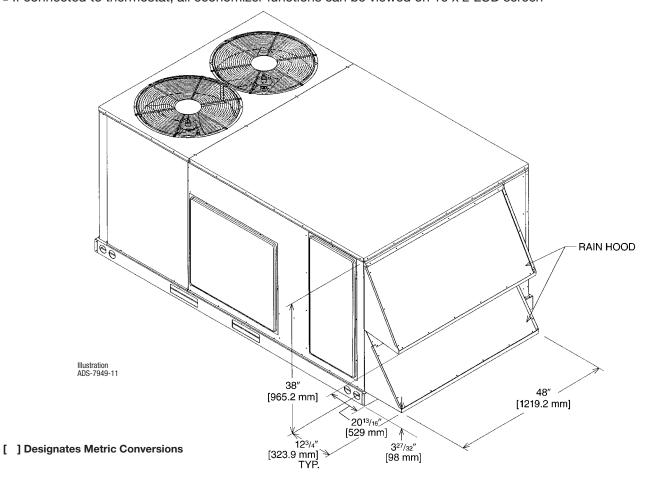
LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

www.SureComfort.com _____ 3

ECONOMIZER FOR DOWNFLOW DUCT INSTALLATION


Use to Select Field Installed Options Only

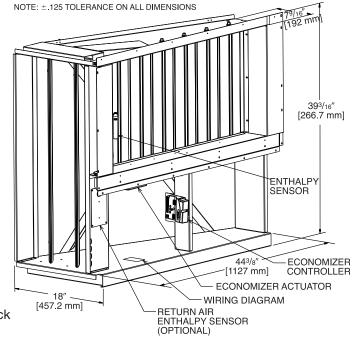

AXRD-01RJDCM3-Single Enthalpy (Outdoor) and AXRD-01RJDDM3 Single Enthalpy with Smoke Detector

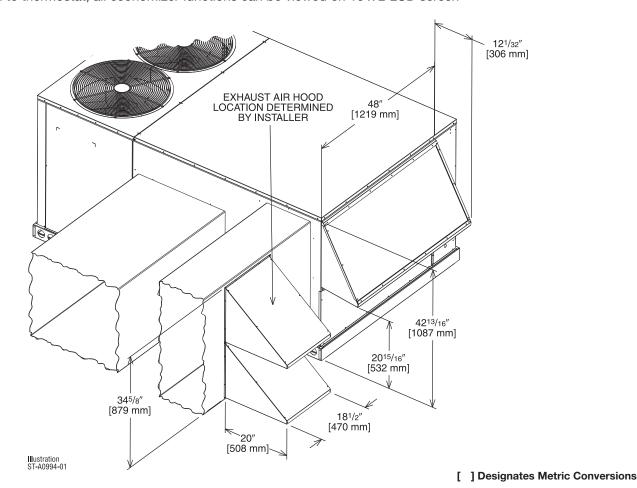
RXRX-AV03—Dual Enthalpy Upgrade Kit

RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Ultra Low Leak Dampers meet California Title 24 requirements
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen

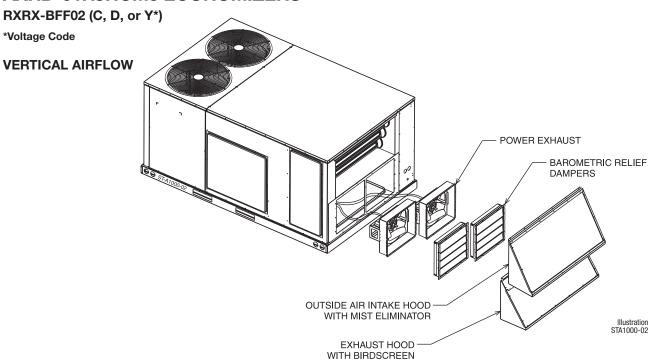
40

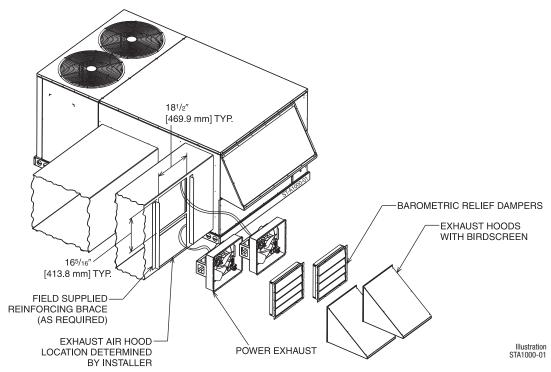

Illustration ADS-100566-59-01


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION

Field Installed Only

AXRD-01RJHCM3—Single Enthalpy (Outdoor) RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor


- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Ultra Low Leak Dampers meet California Title 24 requirements
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen

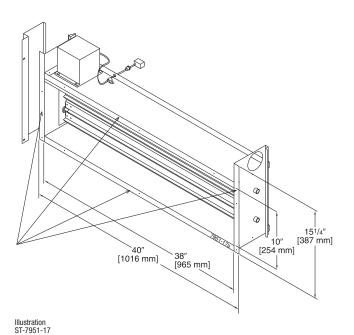


www.SureComfort.com ______ 4

POWER EXHAUST KIT FOR AXRD-01RJDCM3, AXRD-01RJDDM3, AXRD-01RJHCM3 ECONOMIZERS

HORIZONTAL AIRFLOW

Model No.	No.	No. Volts F		HP	Low Spec	ed	High Spee	d ①	FLA	LRA
Model No.	of Fans	VUIIS	Phase	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8

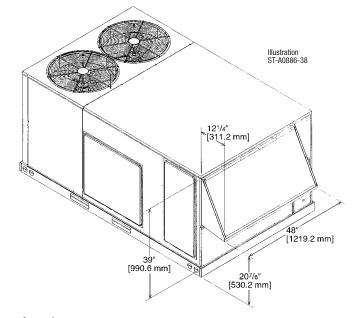

NOTES: $\ensuremath{\textcircled{1}}$ Power exhaust is factory set on high speed motor tap.

[] Designates Metric Conversions

② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for AXRF-KDA1)

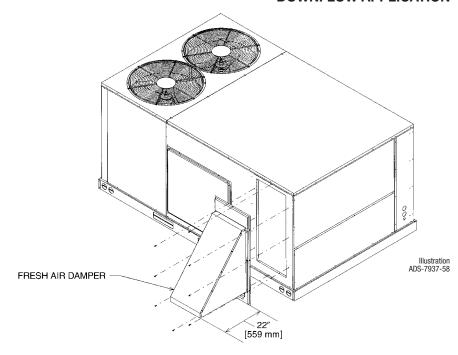

AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

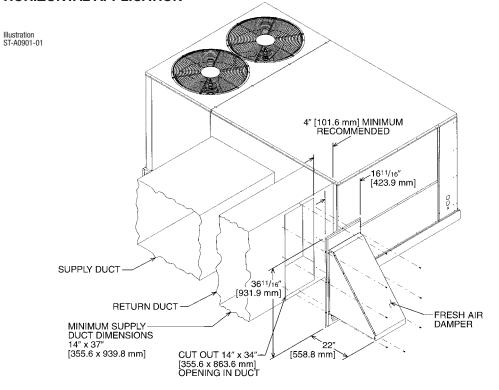
[] Designates Metric Conversions

MOTORIZED DAMPER KIT RXRX-AW04 (Modulating Motor Kit with position feedback for AXRF-KDA1)

- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen



www.SureComfort.com


FRESH AIR DAMPER (Cont.)

AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)

DOWNFLOW APPLICATION

HORIZONTAL APPLICATION

[] Designates Metric Conversions

TYPICAL INSTALLATION

ROOFCURBS (Full Perimeter)

- Sure Comfort's roofcurb design can be utilized on all 6-12.5 ton [21.1-44.0 kW] RKNL- models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 1" [25 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (40' [12.2 m]) provided with Roofcurb.
- Packaged for easy field assembly.

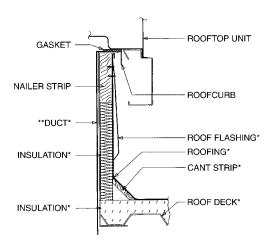

Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]

Illustration ST-A0743-02 SUPPLY RETURN INSTALL GASKET UNIT ROOFCURB SUPPLY NAILING STRIP DUCT FLANGE NOT TO EXCEED 1" [25.4 mm]

ROOFCURB INSTALLATION

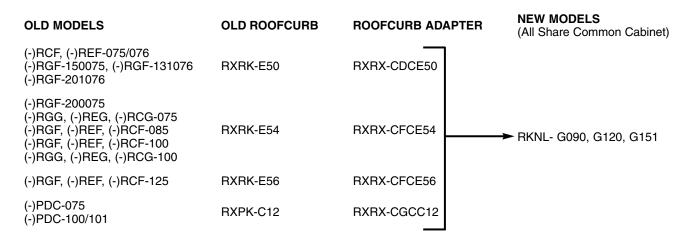
[] Designates Metric Conversions

HINGED

CAULK ALL JOINTS WATERTIGHT

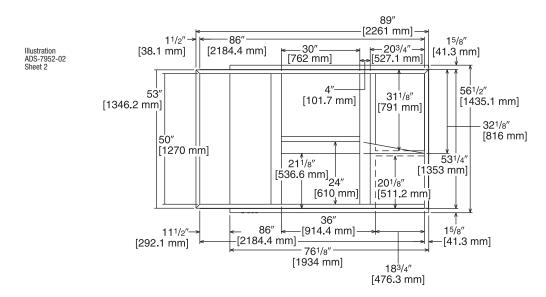
*BY CONTRACTOR

SUPPLY DUCT

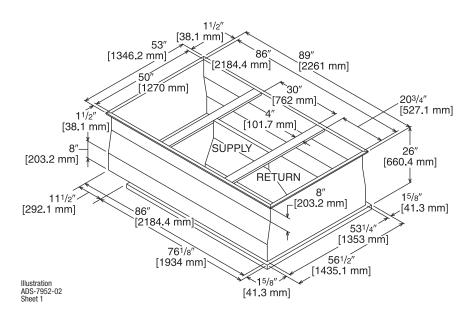

RETURN DUCT

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

Illustration ST-A0743-02

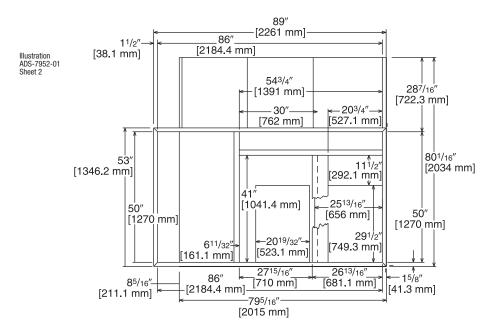

www.SureComfort.com 45

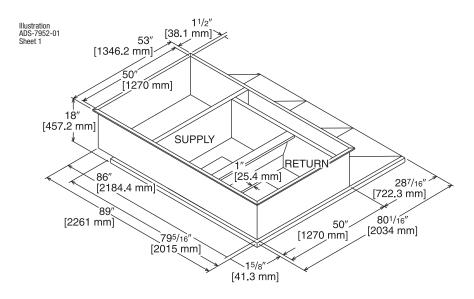
ROOFCURB ADAPTERS



NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced. RKNL, -G090, -G120 fit on the same curb as the RKKB-A090, A120, RKMB- A090, A120, RKNB- A090, A120

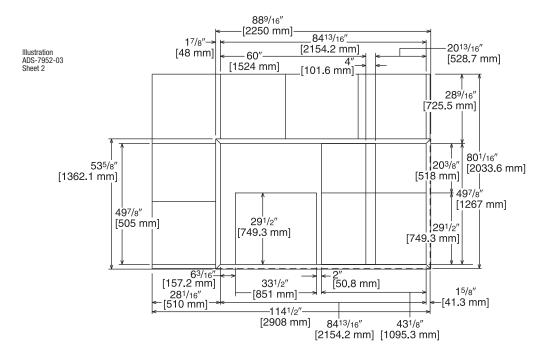
RXRX-CDCE50

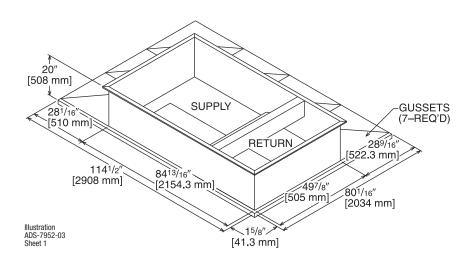

TOP VIEW


[] Designates Metric Conversions

www.SureComfort.com 47

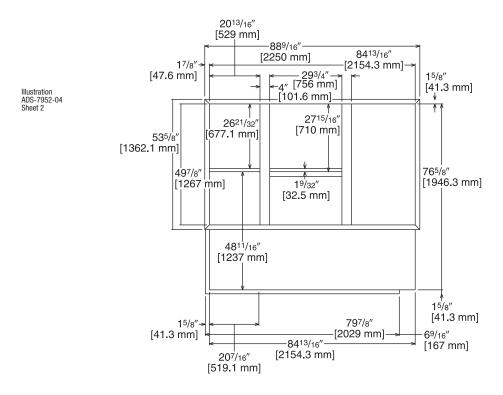
RXRX-CFCE54

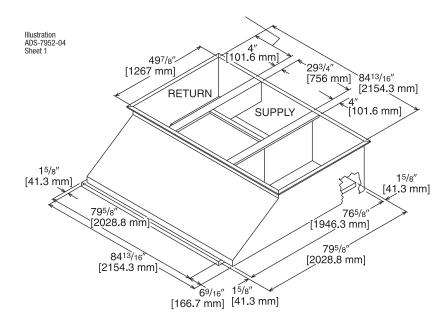

TOP VIEW


[] Designates Metric Conversions

48

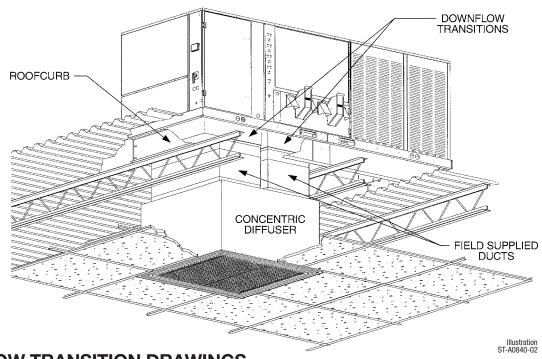
RXRX-CFCE56


TOP VIEW

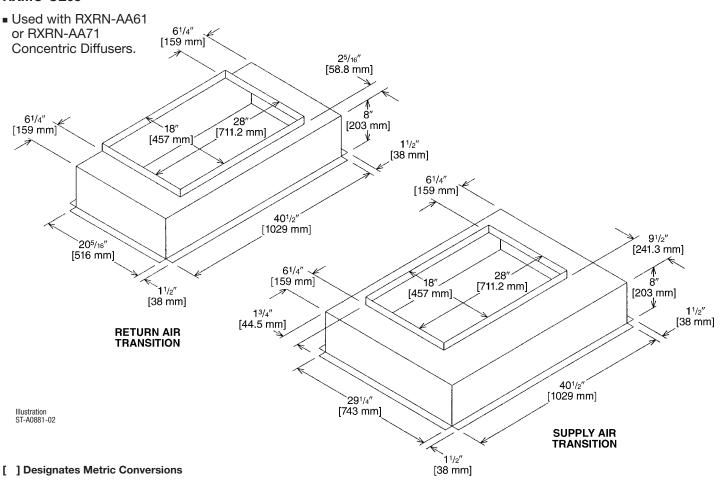

[] Designates Metric Conversions

www.SureComfort.com 49

RXRX-CGCC12


TOP VIEW

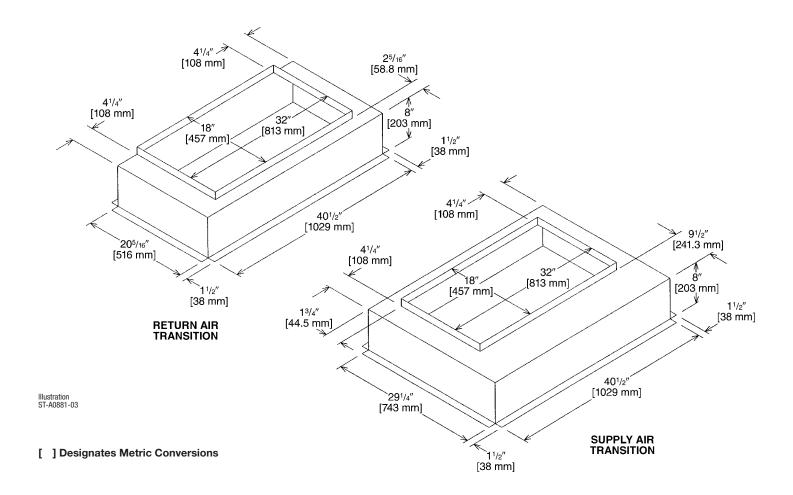
[] Designates Metric Conversions


50 _____ www.SureComfort.com

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

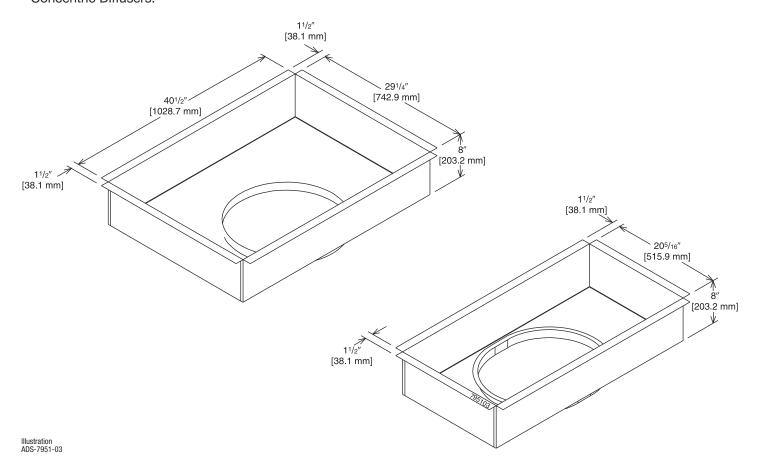
RXMC-CE05



www.SureComfort.com ______ 5

DOWNFLOW TRANSITION DRAWINGS

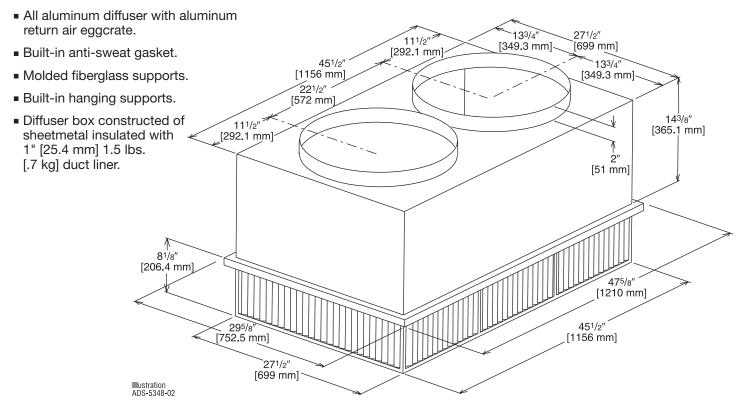
RXMC-CF06


 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

DOWNFLOW TRANSITION DRAWINGS

RXMC-CD04

 Used with RXRN-FA65 or RXRN-FA75 Concentric Diffusers.


[] Designates Metric Conversions

www.SureComfort.com _____ 53

CONCENTRIC DIFFUSER—STEP DOWN

RXRN-FA65 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

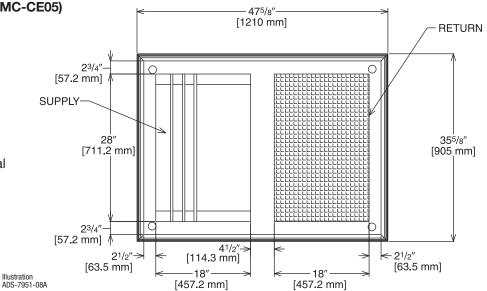
ENGINEERING DATA®

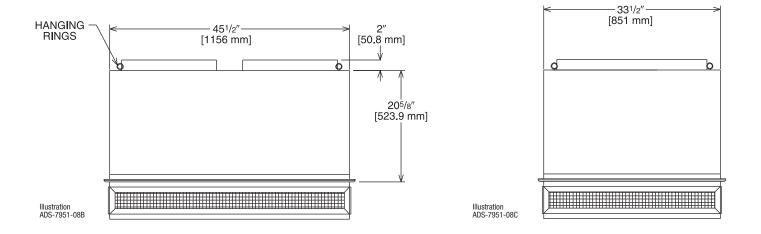
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- ④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

[] Designates Metric Conversions


54


CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (8.5 & 10 Ton [29.9 kW & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA®

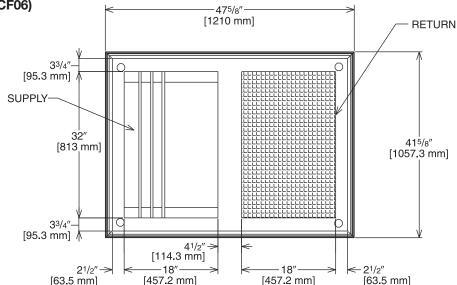
Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

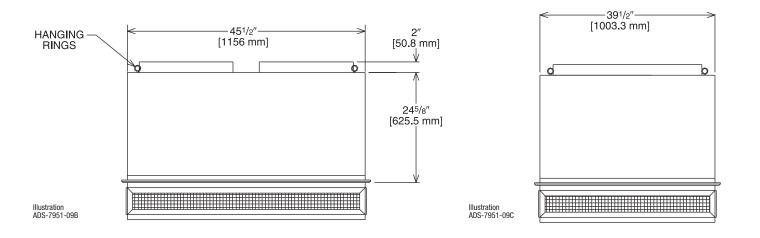
NOTES: 1 All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

[] Designates Metric Conversions

www.SureComfort.com ______ 55


Illustration ADS-7951-09A


CONCENTRIC DIFFUSER—STEP DOWN 18" x 32" [457.2 x 813 mm]

RXRN-AA66 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

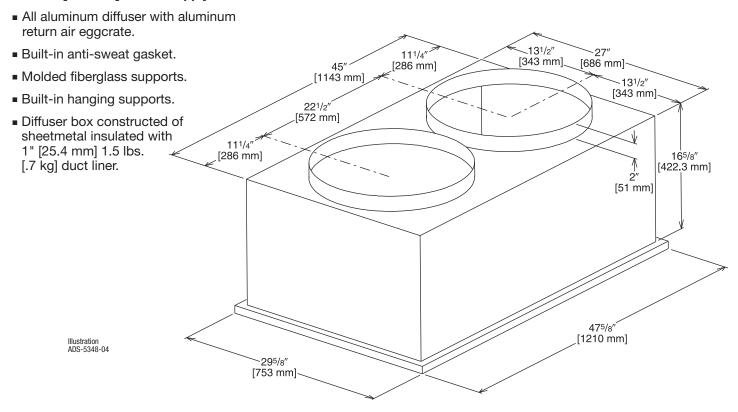
For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	26-31 [7.9-9.4]	841 [4.3]	30
	4800 [2265]	0.32 [0.080]	27-32 [8.2-9.8]	878 [4.5]	30
RXRN-AA66	5000 [2359]	0.34 [0.085]	28-33 [8.5-10.1]	915 [4.6]	30
	5200 [2454]	0.36 [0.090]	28-34 [8.5-10.4]	951 [4.8]	30
	5400 [2548]	0.39 [0.097]	29-35 [8.8-10.7]	988 [6.0]	30

NOTES: ① All data is based on the air diffusion council guidelines.


- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

[] Designates Metric Conversions

FLUSH MOUNT CONCENTRIC DIFFUSER-FLUSH

RXRN-FA75 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
RXRN-FA75	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council quidelines.

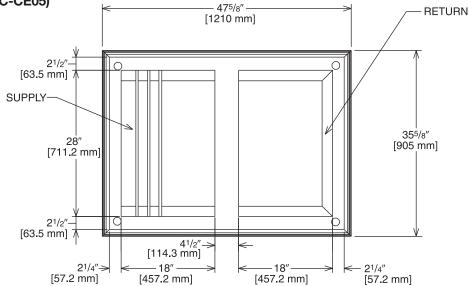
[] Designates Metric Conversions

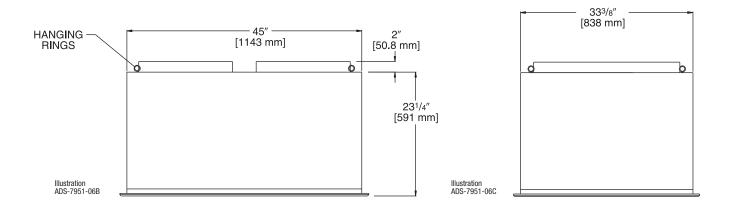
www.SureComfort.com _____ 57

② Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


Illustration ADS-7951-06A


CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (8.5 & 10 Ton [29.9 & 35.2] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm]
Supply and Return Ducts

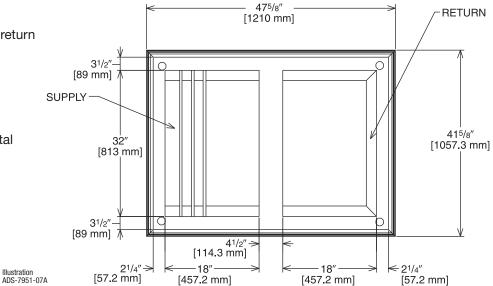
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

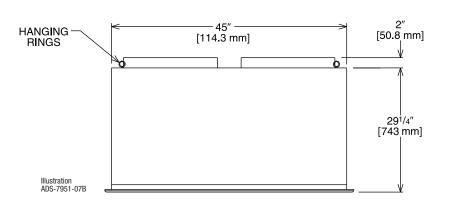
ENGINEERING DATA®

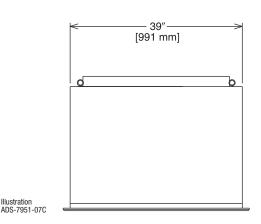
Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
RXRN-AA71	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: 1 All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- $\ensuremath{\mathfrak{G}}$ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.


[] Designates Metric Conversions


CONCENTRIC DIFFUSER—FLUSH 18" x 32" [457.2 x 813 mm]


RXRN-AA76 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	25-34 [7.6-10.4]	922 [4.7]	40
	4800 [2265]	0.32 [0.080]	26-35 [7.9-10.7]	962 [4.9]	40
RXRN-AA76	5000 [2359]	0.34 [0.085]	27-36 [8.2-11.0]	1002 [5.1]	40
	5200 [2454]	0.36 [0.090]	30-39 [9.1-11.9]	1043 [5.3]	45
	5400 [2548]	0.39 [0.097]	32-41 [9.8-12.5]	1083 [5.5]	45

NOTES: ① All data is based on the air diffusion council guidelines.

- $\ensuremath{@}$ Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- 3 Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

[] Designates Metric Conversions

www.SureComfort.com _______59

Guide Specifications RKNL-G090 & G120

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification institute. <u>www.csinet.org.</u>

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 6 to 121/2 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

23 07 16.13.A. Evaporator fan compartment:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with foil face on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 07 16.13.B. Gas heat compartment:

- 1. Aluminum foil-faced fiberglass insulation shall be used.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters:

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2/ exhaust/occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.
- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 13.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side (C072-C151 units have a resettable circuit breaker).
- 2. Shall utilize color-coded wiring.
- 3. Unit shall be include self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side with a resettable circuit breaker.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 6. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections:
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

www.SureComfort.com ______6

23 09 33 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 (6-12.5 Ton) Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2010 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 50°F (10°C), ambient outdoor temperatures. Low ambient accessory kit is necessary if mechanically cooling at ambient temperatures to 0°F (-17.7°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel.
- 2. Unit cabinet exterior paint shall be: powder coat paint.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1-1/2 lb density, flexible fiberglass insulation, foil faced on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
- 4. Base of unit shall have a location for thru-the-base gas and electrical connections standard.
- 5. Base Rail
 - a. Unit shall have base rails on a minimum of 4 sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop for fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material and be removable for cleaning.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - d. Shall be able to be easily removed.
- 7. Top panel:
 - a. Shall be a single piece top panel over indoor section.
- 8. Gas Connections:
 - a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a continuous raised, flange around opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet a a single, factory-prepared, continuous raised flange opening in the basepan.
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, continuous raised flange opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 10. Component access panels (standard)
 - a. Cabinet panels shall be easily opened for servicing.
 - b. Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and filters shall have hinges with 1/4 turn fasteners.
 - c. 1/4 fasteners shall be permanently attached.

23 81 19.13.I. Gas Heat

- 1. General
 - a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
 - b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
 - c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
 - d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microcompressor.
 - a. IFC board shall notify users of fault using a LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
 - d. Each heat exchanger tube shall contain tubulators for increased heating effectiveness.

www.SureComfort.com _____ 63

- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motor and blower
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.
 - b. Shall be made from steel with a corrosion-resistant finish.
 - c. Shall be permanently lubricated sealed bearings.
 - d. Shall have inherent thermal overload protection.
 - e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall be aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed. (Note: 12-1/2 ton utilizes MicroChannel condensing coil).
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 400 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. TXV metering system shall prevent mal-distribution of two-phase refrigerant. C072 shall use orifice refrigerant control.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. External pressure gauge ports access shall be located in front exterior of cabinet.
- 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - c. Compressors shall be internally protected from high discharge temperature conditions.
 - d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - e. Compressor shall be factory mounted on rubber grommets.
 - f. Compressor motors shall have internal line break thermal and current overload protection.
 - g. Crankcase heaters shall not be required for normal operating range.
 - h. Compressor shall have molded electrical plug.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 320 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. Enthalpy sensor shall be provided as standard. Outdoor air sensor set point shall be adjustable and shall range from 40 to 100°F / 4 to 38°C. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Dampers shall be completely closed when the unit is in the unoccupied mode.
 - m. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
 - o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - p. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
 - q. Economizer wire harness will have provision for smoke detector.
- 2. Manual damper
 - Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 3. Liquid Propane (LP) Conversion Kit
 - Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 4. Flue Shield
 - a. Flue shield shall provide protection from the hot sides of the gas flue hood.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered style.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.

www.SureComfort.com _____ 65

7. Convenience Outlet:

- a. Non-Powered convenience outlet.
- b. Outlet shall be powered from a separate 115-120v power source.
- c. A transformer shall not be included.
- d. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.
- e. Outlet shall include 15 amp GFI receptacle with independent fuse protection.
- f. Outlet shall be accessible from outside the unit.

8. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.

9. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- a. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- b. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.

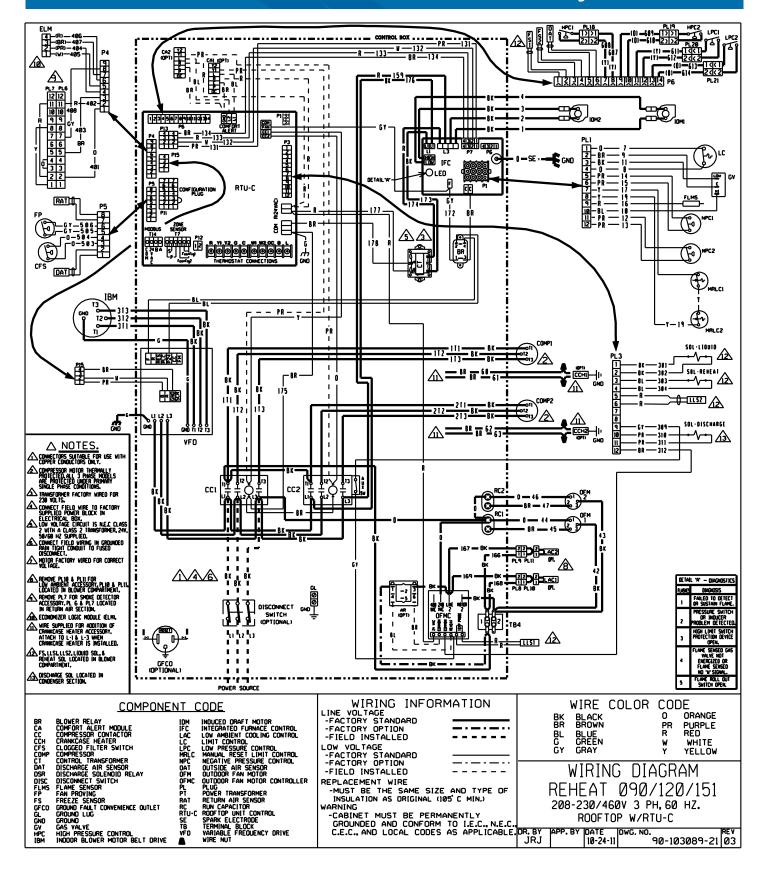
12. Return Air Enthalpy Sensor:

 a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

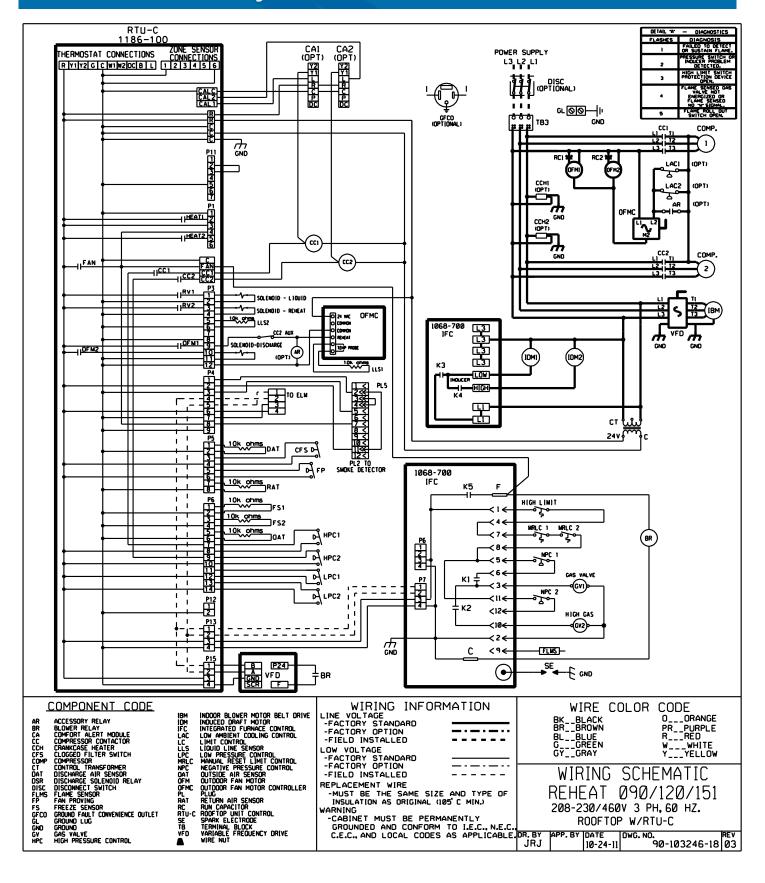
13. Indoor Air Quality (CO2) Sensor:

- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display. The set point shall have adjustment capability.

14. Smoke detectors:


- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

15. Barometric relief


- a. Shall include damper, seals, hard-ware, and hoods to relieve excess building pressure.
- b. Damper shall gravity-close upon shutdown.

26 29 23.12 Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

www.SureComfort.com ______ 67

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Sure Comfort® will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Compressor
3 Phase, Commercial ApplicationsFive (5) Years
Parts
3 Phase, Commercial ApplicationsOne (1) Year
Factory Standard Heat Exchanger
3 Phase, Commercial ApplicationsTen (10) Years
Stainless Steel Heat Exchanger
3 Phase, Commercial ApplicationsTwenty (20) Years

www.SureComfort.com ______6

70 ______ www.SureComfort.com

www.SureComfort.com _______7

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.