

MODEL: RJNL-C Package Heat Pump

FORM NO. PSC-793

Sure Comfort[®] RJNL-C High Efficiency Package Heat Pump

RJNL-C High Efficiency

- With ClearControl™
- Nominal Sizes 7.5 & 10 Ton [26.4 & 35.2 kW]
- ASHRAE 90.1-2010 Compliant Models

"Proper sizing and installation of equipment is critical to achieve optimal performance. Ask your Contractor for details or visit www.energystar.gov."

Table of Contents

Unit Features & Benefits	
Model Number Identification	
Options	9
Selection Procedure	10
General Data	
RJNL-C Series	11-14
General Data Notes	15
Gross Systems Performance Data	
RJNL-C Series	16-17
Airflow Performance	
RJNL-C Series	
Units with Heater Kits	20-22
Electrical Data	
RJNL-C Series	23-24
Dimensional Data	25-28
Accessories	29-49
Mechanical Specifications	50-55
Wiring Diagrams	56-58
Limited Warranty	59

STANDARD FEATURES INCLUDE:

- R-410A HFC refrigerant.
- Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Convertible airflow.
- TXV refrigerant metering system.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.

- Forkable base rails for easy handling and lifting.
- Single point electrical connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils.
- Supplemental electric heat provides 100% efficient heating.
- Factory Installed ClearControl[™], a Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.

1

8

Sure Comfort Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Sure Comfort label (1) identifies the brand to the customer. The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The optional Sure Comfort hail guard (4) is its trademark, and sets the standard for coil protection in the industry. Every Sure Comfort package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

(Unit shown with optional hail guard)

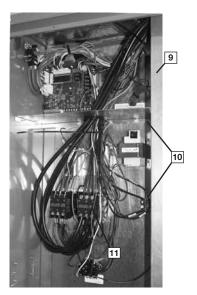
5

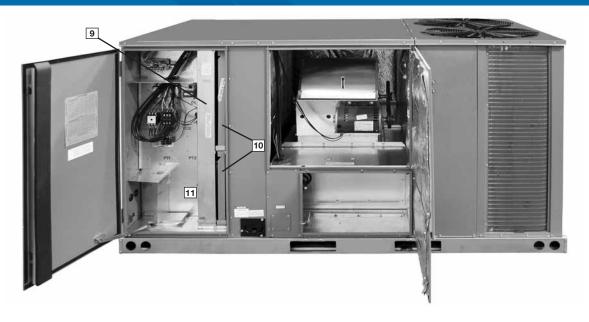
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, fullperimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return cover and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. The drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

During development, each unit was tested to U.L. 1995, AHRI 340-370 and other Sure Comfort-required reliability tests. Sure Comfort adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (a). Contractors can rest assured that when a Sure Comfort package unit arrives at the job, it is ready to go with a factory charge and quality checks.

4

(optional)

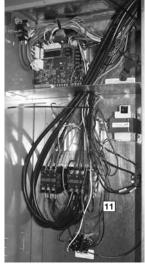

Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, heating section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Control/filter blower and electric heat compartment access are through large, hinged-access panels secured with 1/4 turn fasteners. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover.

which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location ([9]). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

2


Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

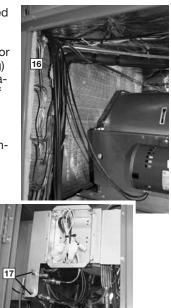
For added convenience in the field, a factory-installed convenience outlet (12) is available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip on the cooling control board. The high-voltage connection is terminated at the terminal block inside electric heat compartment. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

The externally mounted gauge ports, which are permanently identified by embossed wording that

clearly identifies the high pressure connection and the low pressure connection, extend through the compressor access panel (13). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

The blower compartment access door is hinged and secured with 1/4 turn fasteners to allow easy maintenance of the blower assembly, the entire assembly slides out by removing the 3/8" screws from the blower retention bracket. The adjustable

13


on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the pulley is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Sure Comfort has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions. proper static pressure and CFM requirements can be dialed in. The scroll housing (15) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

motor pulley (14) can easily be adjusted by loosening the bolts

www.SureComfort.com

The freeze sensor (16) is attached to the suction line in the blower section. The freeze sensor protects the compressor if evaporator coil gets too cold (below freezing) due to low airflow or low evaporator load and allows monitoring of the suction line temperature on the controller display. The high and low pressure switches (17) and the optional low ambient control are mounted on the gauge port lines inside the compressor access panel. The high pressure switch will shut off the compressor if pressure exceeds 610 PSIG. The low pressure switch is used for loss of charge protection. The low ambient control allows for cooling operation down to 0 degrees ambient by cycling the outdoor fans. Enhanced feature demand defrost con-

trol has high and low pressure control inputs with unique pressure switch logic built into the rooftop unit controller (RTU-C) to provide compressor and system protection without nuisance lock-outs. LED's and a LCD display on the unit controller provide diagnostic information for service personnel. (18)

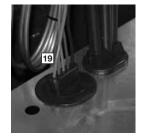
As part of the ClearControl[™] system which allows real time monitoring and communication between rooftop units, the RJNL-C Package Heat Pump has a Rooftop Unit Controller

(RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/Integral control algorithms perform specific unit functions that govern unit

operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RJNL-C Package Heat Pump with the RTU-C is specifically designed to be applied in four distinct applications:

The RJNL-C is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables. The RJNL-C is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RJNL-C is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

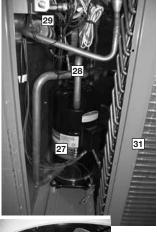

The RJNL-C is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert[®] module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network or connected to the "L-Terminal" of a thermostat for notification.

Inside the blower compartment the evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The thermal expansion valve and venturi distributor assure even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulk-

head or blower deck, a molded wire harness assembly (1) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.



The heating compartment contains the latest electric furnace technology on the market. The 100% efficient electric furnace can be factory-installed or easily field-installed. Built with ease-of-installation in mind, the electric furnace is completely wired for slide-in, plug-and-play installation in the field. With choices of 15 to 40 kilowatt offerings, the contractor is assured to get the correct amount of heating output to meet the designed heating load.

Power hook-up in the field is easy with single-point wiring to a terminal block (20) and a polarized plug for the low-voltage connection (21). The electric furnace comes with fuses for the unit (22) and for the electric furnace (23), and is UL certified (24). The electric heating elements are of a wound-wire construction (25) and isolated with ceramic bushings. The limit switch (26) protects the design from over-temperature conditions. Each electric furnace has the capability to be converted from singlestage operation to two-stage operation by removing a jumper on the low-voltage terminal strip.

The compressor compartment houses the heartbeat of the unit. The scroll compressor ([27]) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines ([28]) are designed to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle imposed on the refrigerant tubing.

A liquid line bi-flow filter drier (29) is conveniently located near the TXV in the outdoor section. The condenser fan motors (30) can easily be accessed and maintained through the unit top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the

latest enhanced fin design (31) for the most effective method of heat transfer. Optional louvered panels offer hail protection to outdoor coils without obstructing airflow.

Each unit is designed for both downflow or horizontal applications (32) for job configuration flexibility. The return air compartment can also contain an economizer (33).

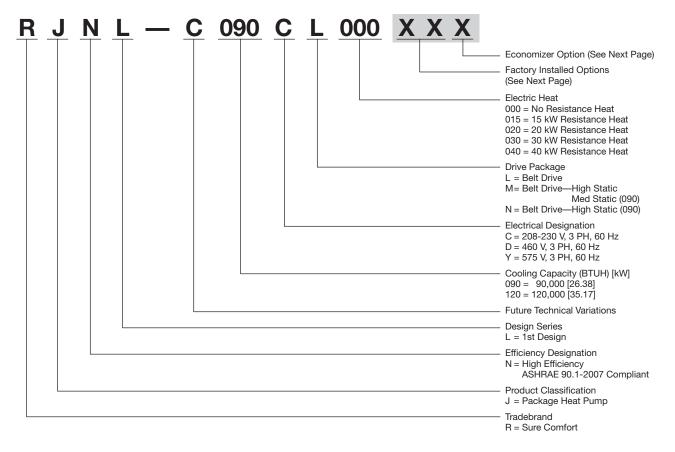
Three economizer models exist, two for downflow applications, and one for horizontal applications. (A downflow economizer with factory installed smoke detector in the return section is

available.) Each unit is pre-wired for the economizer to allow quick plug-in installation. The economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field.

The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. Power Exhaust (34) is easily field-installed. The power exhaust is housed in the barometric relief

32

opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a return air mounted smoke detector.


The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

The Sure Comfort roofcurb (35) is made for toolless assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent

in each corner of the adjacent curb sides (36), which makes the assembly process quick and easy.

36

FACTORY INSTALLED OPTION CODES FOR RJNL-C (7.5 & 10 TON) [26.4 & 35.2 kW]

Option Code	Hail Guard	Non-Powered Convenience Outlet	Low Ambient/ Comfort Alert
AD	X		
AG		х	
AR			Х
JD	X		Х
BJ	X	х	
CZ	X	х	Х
JE		X	X

ECONOMIZER SELECTION FOR RJNL-C (7.5 & 10 TON) [26.4 & 35.2 kW]

	No Economizer	DDC Single Enthalpy Economizer With Barometric Relief	DDC Single Enthalpy Economizer With Barometric Relief And Smoke Detector
A	х		
Н		Х	
J			Х

"x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

- **Note:** Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.
- **Step 1.** After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

RJNL-C090CL000XXX	(where XX is factory installed option)
RJNL-C090CL000	No options
RJNL-C090CL000AAH	No option with factory installed economizer
RJNL-C090CL000ADA	Hailguard with no factory installed economizer
RJNL-C090CL000ADH	Options same as above with factory installed economizer

SELECTION PROCEDURE

To select an RJNL-C Heat Pump unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

Voltage—	230V—3 Phase—60 Hz
Total Cooling Capacity—	106,000 BTUH [31.0 kW]
Sensible Cooling Capacity—	82,000 BTUH [24.0 kW]
Heating Capacity—	130,000 BTUH [38.1 kW]
*Condenser Entering Air—	95°F [35.0°C] DB
*Evaporator Mixed Air Entering-	
	78°F [25.6°C] DB
*Indoor Air Flow (vertical)—	3600 CFM [1699 L/s]
*External Static Pressure—	0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 4000 CFM [1888 L/s] indoor air flow (table basis):

Total Cooling Capacity = 121,950 BTUH [35.71 kW] Sensible Cooling Capacity = 102,750 BTUH [30.09 kW] Power Input (Compressor and Cond. Fans) = 9,400 watts

Use formula in note 1 to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

102,750 + (1.10 x 3,600 x (1 – 0.05) x (78 – 80)) Sensible Cooling Capacity = 95,226 BTUH [27.88 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $121,950 \times 0.99 = 120,731$ BTUH [35.35 kW] Sensible Capacity = $95,226 \times 0.97 = 92,369$ BTUH [27.05 kW] Power Input = $9,400 \times 0.99 = 9,306$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.08 in. WG [.02 kPa] for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.48 (0.5) in. WG [.12 kPa], and determine:

 $\label{eq:RPM} \begin{array}{l} \mathsf{RPM} = 755 \\ \mathsf{WATTS} = 1,488 \\ \mathsf{DRIVE} = \mathsf{L} \mbox{ (standard 2 H.P. motor)} \end{array}$

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

1,488 x 3.412 = 5,077 BTUH [1.49 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 120,731 – 5,077 = 115,654 BTUH [33.86 kW]

Net Sensible Capacity = 92,369 – 5,077 = 87,292 BTUH [25.56 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 9,306 (step 3) + 1,488 (step 4) = 10,794 Watts

 $\mathsf{EER} = \frac{\mathsf{Net Total BTUH [kW] (step 6)}}{\mathsf{Power Input, Watts (above)}} = \frac{115,654}{10,794} = 10.71$

8. SELECT UNIT HEATING CAPACITY.

From Heater Kit Table select kW to meet heating capacity requirement; multiply kW x 3412 to convert to BTUH.

Use 40 kW Heater Kit Heater Kit Model: RXJJ-CC40C

Heater Kit Capacity: 131,021 BTUH [38.4 kW]

RJNL-C120CL040

Add indoor blower heat effect (step 5) to Heater Kit Capacity to get total heating capacity:

131,021 + 5,077 =	136,098 BTUH [39.9 kW]

9. CHOOSE MODEL

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RJNL-C	C090CL	C090CM	C090CN	C090DL
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]
AHRI Net Cooling Capacity Btu [kW]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]
Net Sensible Capacity Btu [kW]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]
Net Latent Capacity Btu [kW]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]
IEER ³	11.9	11.9	11.9	11.9
Net System Power kW	8.47	8.47	8.47	8.47
Heating Performance (Heat Pumps)				
High Temp. Btuh [kW] Rating	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]
System Power KW/COP	7.5/3.4	7.5/3.4	7.5/3.4	7.5/3.4
Low Temp. Btuh [kW] Rating	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]
System Power KW/COP	6.62/2.3	6.62/2.3	6.62/2.3	6.62/2.3
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	2	2	3	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
(No.) Size Recommended in. [mm x mm x mm] Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]				350 [9922]
Weights	350 [9922]	350 [9922]	350 [9922]	220 [2227]
-	1000 [450]	1000 [450]	1017 [/61]	1000 [150]
Net Weight Ibs. [kg]	1009 [458]	1009 [458]	1017 [461]	1009 [458]
Ship Weight Ibs. [kg] See Page 15 for Notes.	1089 [494]	1089 [494]	1097 [498]	1089 [494]

Model RJNL-C	C090DM	C090DN	C090YL	C090YM
Cooling Performance ¹				CONTINUED>
Gross Cooling Capacity Btu [kW]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]	98,000 [28.71]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]	3000/2925 [1416/1380]
AHRI Net Cooling Capacity Btu [kW]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]	94,000 [27.54]
Net Sensible Capacity Btu [kW]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]	70,800 [20.74]
Net Latent Capacity Btu [kW]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]
IEER ³	11.9	11.9	11.9	11.9
Net System Power kW	8.47	8.47	8.47	8.47
Heating Performance (Heat Pumps)				
High Temp. Btuh [kW] Rating	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]	87,000 [25.49]
System Power KW/COP	7.5/3.4	7.5/3.4	7.5/3.4	7.5/3.4
Low Temp. Btuh [kW] Rating	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]	52,000 [15.24]
System Power KW/COP	6.62/2.3	6.62/2.3	6.62/2.3	6.62/2.3
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]	24.88 [2.31]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	2/24 [003.0] Direct/1	Direct/1	2/24 [003.0] Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
Indoor Fan—Type No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1		1	1
Motor HP	2	3	2	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56 Dianaaabla	56 Dianaaabla	56 Dianaaabla	56 Diapasabla
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished				
(No.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	350 [9922]	350 [9922]	350 [9922]	350 [9922]
Weights				1000 11501
Net Weight Ibs. [kg]	1009 [458]	1017 [461]	1009 [458]	1009 [458]
Ship Weight Ibs. [kg]	1089 [494]	1097 [498]	1089 [494]	1089 [494]

Model RJNL-C	C090YN	C120CL	C120CM	C120DL
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	98,000 [28.71]	125,000 [36.62]	125,000 [36.62]	125,000 [36.62]
EER/SEER ²	11.1/NA	11/NA	11/NA	11/NA
Nominal CFM/AHRI Rated CFM [L/s]	3000/2925 [1416/1380]	4000/4000 [1888/1888]	4000/4000 [1888/1888]	4000/4000 [1888/1888]
AHRI Net Cooling Capacity Btu [kW]	94,000 [27.54]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	70,800 [20.74]	91,600 [26.84]	91,600 [26.84]	91,600 [26.84]
Net Latent Capacity Btu [kW]	23,200 [6.8]	28,400 [8.32]	28,400 [8.32]	28,400 [8.32]
IEER3	11.9	11.6	11.6	11.6
Net System Power kW	8.47	10.91	10.91	10.91
Heating Performance (Heat Pumps)	0.47	10.91	10.91	10.91
	97 000 [05 40]	100 000 [21 04]	100 000 [21 04]	100 000 [21 04]
High Temp. Btuh [kW] Rating	87,000 [25.49]	109,000 [31.94]	109,000 [31.94]	109,000 [31.94]
System Power KW/COP	7.5/3.4	9.39/3.4	9.39/3.4	9.39/3.4
Low Temp. Btuh [kW] Rating	52,000 [15.24]	69,000 [20.22]	69,000 [20.22]	69,000 [20.22]
System Power KW/COP	6.62/2.3	8.79/2.3	8.79/2.3	8.79/2.3
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Dutdoor Sound Rating (dB)4	88	88	88	88
Dutdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	28.8 [2.68]	28.8 [2.68]	28.8 [2.68]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]
Rows / FPI [FPcm]	3 / 18 [7]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	-	•		-
	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	3	2	3	2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]
	() <u></u>	(3)2x18x24 [51x457x610]	(3)2x18x24 [51x457x610]	(3)2x18x24 [51x457x610]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	350 [9922]	496 [14062]	496 [14062]	496 [14062]
Weights	000 [0022]			
Net Weight Ibs. [kg]	1017 [461]	1185 [538]	1193 [541]	1185 [538]
	1097 [498]			
Ship Weight Ibs. [kg] See Page 15 for Notes.	1037 [430]	1265 [574]	1273 [577]	1265 [574]

See Page 15 for Notes.

Model RJNL-C	C120DM	C120YL	C120YM
Cooling Performance ¹			
Gross Cooling Capacity Btu [kW]	125,000 [36.62]	125,000 [36.62]	125,000 [36.62]
EER/SEER ²	11/NA	11/NA	11/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/4000 [1888/1888]	4000/4000 [1888/1888]	4000/4000 [1888/1888]
AHRI Net Cooling Capacity Btu [kW]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	91,600 [26.84]	91,600 [26.84]	91,600 [26.84]
Net Latent Capacity Btu [kW]	28,400 [8.32]	28,400 [8.32]	28,400 [8.32]
IEER3	11.6	11.6	11.6
Net System Power kW	10.91	10.91	10.91
Heating Performance (Heat Pumps)	10.01	10.01	10.01
High Temp. Btuh [kW] Rating	109,000 [31.94]	109,000 [31.94]	109,000 [31.94]
System Power KW/COP	9.39/3.4	9.39/3.4	9.39/3.4
Low Temp. Btuh [kW] Rating	69,000 [20.22]	69,000 [20.22]	69,000 [20.22]
System Power KW/COP	8.79/2.3	8.79/2.3	8.79/2.3
Compressor	0.73/2.5	0.73/2.0	0.75/2.5
No./Type	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB)4	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled
Tube Type Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m] Rows / FPI [FPcm]	28.8 [2.68] 2 / 22 [9]	28.8 [2.68] 2 / 22 [9]	28.8 [2.68] 2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves
Indoor Coil—Fin Type	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
	2/24 [009.0] Direct/1	Direct/1	Direct/1
Drive Type/No. Speeds			
CFM [L/s] No. Motors/HP	8000 [3775] 2 at 1/2 HP	8000 [3775] 2 at 1/2 HP	8000 [3775] 2 at 1/2 HP
Motor RPM	2 at 1/2 HP 1075	2 at 1/2 HP 1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors			1
Motor HP	3	2	3
Motor RPM	1725	1725	3 1725
Motor Frame Size	56	56	56
	Disposable		
Filter—Type Furnished	Yes	Disposable Yes	Disposable Yes
		res (3)2x18x18 [51x457x457]	
(No.) Size Recommended in. [mm x mm x mm]	(3)2x18x18 [51x457x457]	.,	(3)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	(3)2x18x24 [51x457x610] 496 [14062]	(3)2x18x24 [51x457x610] 496 [14062]	(3)2x18x24 [51x457x610] 496 [14062]
Weights	ן 200 נייטטד	ן 14002	ן 14002
	1103 [5/1]	1185 [529]	1103 [5/1]
Net Weight Ibs. [kg]	1193 [541]	1185 [538]	1193 [541]
Ship Weight lbs. [kg] See Page 15 for Notes.	1273 [577]	1265 [574]	1273 [577]

See Page 15 for Notes.

NOTES:

- Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 210/240 or 360.
- 4. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

COOLING PERFORMANCE DATA—C090

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①										
		wbE		71°F [21.7°C]			67°F [19.4°C]	,		63°F [17.2°C]	
	CF	FM [L/s]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]
	DR ①		.0	.02	.05	.0	.02	.05	.0	.02	.05
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	120.0 [35.2] 95.7 [28.1] 6.4	113.6 [33.3] 77.1 [22.6] 6.2	111.0 [32.5] 70.2 [20.6] 6.2	114.9 [33.7] 111.0 [32.5] 6.3	108.7 [31.9] 90.7 [26.6] 6.1	106.2 [31.1] 83.1 [24.4] 6.0	110.7 [32.4] 110.7 [32.5] 6.1	104.8 [30.7] 100.6 [29.5] 6.0	102.4 [30.0] 92.5 [27.1] 5.9
U T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	117.6 [34.5] 90.2 [26.4] 6.7	111.2 [32.6] 72.3 [21.2] 6.5	108.7 [31.9] 65.7 [19.3] 6.5	112.4 [32.9] 105.4 [30.9] 6.6	106.4 [31.2] 86.0 [25.2] 6.4	104.0 [30.5] 78.7 [23.1] 6.3	108.3 [31.7] 108.3 [31.7] 6.4	102.4 [30.0] 95.8 [28.1] 6.3	100.1 [29.3] 88.1 [25.8] 6.2
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	114.8 [33.6] 85.0 [24.9] 7.1	108.6 [31.8] 68.0 [19.9] 6.9	106.1 [31.1] 61.7 [18.1] 6.8	109.6 [32.1] 100.3 [29.4] 6.9	103.7 [30.4] 81.6 [23.9] 6.7	101.4 [29.7] 74.7 [21.9] 6.6	105.5 [30.9] 105.5 [30.9] 6.8	99.8 [29.2] 91.5 [26.8] 6.6	97.5 [28.6] 84.0 [24.6] 6.5
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power		105.7 [31.0] 64.2 [18.8] 7.2	103.3 [30.3] 58.2 [17.1] 7.1	106.6 [31.2] 95.8 [28.1] 7.3	100.8 [29.5] 77.8 [22.8] 7.1	98.5 [28.9] 71.1 [20.8] 7.0	102.4 [30.0] 102.4 [30.0] 7.1	96.9 [28.4] 87.7 [25.7] 6.9	94.7 [27.8] 80.5 [23.6] 6.9
L B T	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	108.3 [31.7] 76.3 [22.4] 7.8	102.5 [30.0] 60.8 [17.8] 7.6	100.2 [29.4] 55.1 [16.2] 7.5	103.2 [30.2] 91.7 [26.9] 7.7	97.6 [28.6] 74.4 [21.8] 7.5	95.4 [28.0] 68.0 [19.9] 7.4	99.0 [29.0] 99.0 [29.0] 7.5	93.7 [27.5] 84.3 [24.7] 7.3	91.6 [26.8] 77.4 [22.7] 7.3
E M E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power		99.0 [29.0] 57.9 [17.0] 8.0	96.8 [28.4] 52.5 [15.4] 7.9	99.5 [29.2] 88.1 [25.8] 8.1	94.2 [27.6] 71.6 [21.0] 7.9	92.0 [27.0] 65.4 [19.2] 7.8	95.4 [28.0] 95.4 [28.0] 8.0	90.2 [26.4] 81.4 [23.9] 7.8	88.2 [25.8] 74.8 [21.9] 7.7
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	100.7 [29.5] 69.9 [20.5] 8.7	95.3 [27.9] 55.6 [16.3] 8.5	93.1 [27.3] 50.3 [14.8] 8.4	95.6 [28.0] 85.3 [25.0] 8.6	90.4 [26.5] 69.2 [20.3] 8.3	88.4 [25.9] 63.3 [18.6] 8.3	91.4 [26.8] 91.4 [26.8] 8.4	86.5 [25.4] 79.1 [23.2] 8.2	84.5 [24.8] 72.6 [21.3] 8.1
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	96.4 [28.3] 67.4 [19.8] 9.2	91.2 [26.7] 53.6 [15.7] 9.0	89.2 [26.1] 48.6 [14.3] 8.9	91.3 [26.8] 82.7 [24.2] 9.1	86.4 [25.3] 67.3 [19.7] 8.8	84.4 [24.7] 61.5 [18.0] 8.7	87.1 [25.5] 87.1 [25.5] 8.9	82.4 [24.1] 77.2 [22.6] 8.7	80.6 [23.6] 71.0 [20.8] 8.6
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	91.8 [26.9] 65.6 [19.2] 9.7	86.9 [25.5] 52.3 [15.3] 9.5	84.9 [24.9] 47.4 [13.9] 9.4	86.7 [25.4] 80.8 [23.7] 9.6	82.0 [24.0] 65.8 [19.3] 9.3	80.2 [23.5] 60.3 [17.7] 9.2	82.5 [24.2] 82.5 [24.2] 9.4	78.1 [22.9] 75.8 [22.2] 9.2	76.3 [22.4] 69.7 [20.4] 9.1

DR — Depression ratio

dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

NOTES: The the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

HEATING PERFORMANCE DATA—C090

Power —KW input

IDB		60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]			
	CI	FM [L/s]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]	3840 [1812]	2925 [1380]	2560 [1208]
0	0	Total BTUH [kW]		32.8 [9.61]	32.5 [9.52]	30.1 [8.82]	29.4 [8.62]	29.2 [8.56]	26.7 [7.82]	26.1 [7.65]	25.8 [7.56]
Ŭ	[-17.8]	Power	9.6	10.0	10.1	9.6	10.0	10.1	9.6	10.0	10.1
T	5	Total BTUH [kW]		38.5 [11.28]	38.2 [11.20]	36.0 [10.55]	35.2 [10.32]	34.9 [10.23]	32.5 [9.52]	31.8 [9.32]	31.5 [9.23]
ŏ	[26.7]	Power	9.2	9.6	9.7	9.2	9.6	9.7	9.2	9.6	9.7
O R	10	Total BTUH [kW]		44.3 [12.98]	43.9 [12.87]	41.8 [12.25]	40.9 [11.99]	40.5 [11.87]	38.4 [11.25]	37.5 [10.99]	37.2 [10.90]
	[-12.2]	Power	8.9	9.2	9.4	8.9	9.2	9.4	8.9	9.2	9.4
D	15	Total BTUH [kW]		50.0 [14.65]	49.6 [14.54]	47.7 [13.98]	46.6 [13.66]	46.2 [13.54]	44.3 [12.98]	43.3 [12.69]	42.9 [12.57]
Y	[32.2]	Power	8.5	8.8	9.0	8.5	8.8	9.0	8.5	8.8	9.0
В	20	Total BTUH [kW]		55.7 [16.32]	55.2 [16.18]	53.6 [15.71]	52.4 [15.36]	51.9 [15.21]	50.1 [14.68]	49.0 [14.36]	48.6 [14.24]
Ū	[-6.6]	Power	8.1	8.5	8.6	8.1	8.5	8.6	8.1	8.5	8.6
	25	Total BTUH [kW]		61.5 [18.02]	60.9 [17.85]	59.4 [17.41]	58.1 [17.03]	57.6 [16.88]	56.0 [16.41]	54.8 [16.06]	54.3 [15.91]
	[37.8]	Power	7.8	8.1	8.2	7.8	8.1	8.2	7.8	8.1	8.2
	30	Total BTUH [kW]		67.2 [19.69]	66.6 [19.52]	65.3 [19.14]	63.9 [18.73]	63.3 [18.55]	61.8 [18.11]	60.5 [17.73]	60.0 [17.58]
M	[-1.1]	Power	7.4	7.7	7.8	7.4	7.7	7.8	7.4	7.7	7.8
F	35	Total BTUH [kW]		73.0 [21.39]	72.3 [21.19]	71.1 [20.84]	69.6 [20.40]	69.0 [20.22]	67.7 [19.84]	66.2 [19.40]	65.6 [19.23]
R	[43.3]	Power	7.0	7.3	7.4	7.0	7.3	7.4	7.0	7.3	7.4
	40	Total BTUH [kW]		78.7 [23.06]	78.0 [22.86]	77.0 [22.57]	75.3 [22.07]	74.7 [21.89]	73.6 [21.57]	72.0 [21.10]	71.3 [20.90]
Ū	[4.4]	Power	6.7	7.0	7.1	6.7	7.0	7.1	6.7	7.0	7.1
	45	Total BTUH [kW]		84.4 [24.74]	83.7 [24.53]	82.9 [24.30]	81.1 [23.77]	80.3 [23.53]	79.4 [23.27]	77.7 [22.77]	77.0 [22.57]
	[46.1]		6.3	6.6	6.7	6.3	6.6	6.7	6.3	6.6	6.7
°F [°C]	50	Total BTUH [kW]		90.2 [26.44]	89.4 [26.20]	88.7 [26.00]	86.8 [25.44]	86.0 [25.20]	85.3 [25.00]	83.4 [24.44]	82.7 [24.24]
	[10]	Power	6.0	6.2	6.3	6.0	6.2	6.3	6.0	6.2	6.3

IDB-Indoor air dry bulb

COOLING PERFORMANCE DATA—C120

				EN	ITERING INDOC)R AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]
		DR ①	.03	.05	.01	.03	.05	.01	.03	.05	.01
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	151.2 [44.3] 115.7 [33.9] 8.0	147.4 [43.2] 104.8 [30.7] 7.9	141.0 [41.3] 87.4 [25.6] 7.8	141.4 [41.4] 132.2 [38.8] 8.0	137.9 [40.4] 120.6 [35.4] 7.9	131.8 [38.6] 101.7 [29.8] 7.7	135.2 [39.6] 135.2 [39.6] 7.9	131.8 [38.6] 131.8 [38.6] 7.8	126.1 [37.0] 113.0 [33.1] 7.6
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	148.0 [43.4] 107.4 [31.5] 8.4	144.4 [42.3] 97.2 [28.5] 8.3	138.1 [40.5] 80.7 [23.7] 8.1	138.2 [40.5] 124.0 [36.4] 8.3	134.8 [39.5] 113.0 [33.1] 8.2	128.9 [37.8] 95.1 [27.9] 8.0	132.0 [38.7] 132.0 [38.7] 8.2	128.7 [37.7] 125.3 [36.7] 8.1	123.1 [36.1] 106.3 [31.2] 8.0
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	144.8 [42.4] 100.5 [29.5] 8.8	141.2 [41.4] 90.7 [26.6] 8.7	135.0 [39.6] 75.0 [22.0] 8.5	134.9 [39.5] 116.9 [34.3] 8.7	131.6 [38.6] 106.4 [31.2] 8.6	125.8 [36.9] 89.3 [26.2] 8.4	128.7 [37.7] 128.7 [37.7] 8.6	125.5 [36.8] 118.7 [34.8] 8.5	120.1 [35.2] 100.6 [29.5] 8.3
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	141.4 [41.4] 94.5 [27.7] 9.2	137.9 [40.4] 85.2 [25.0] 9.1	131.9 [38.7] 70.3 [20.6] 8.9	131.6 [38.6] 111.0 [32.5] 9.1	128.3 [37.6] 100.9 [29.6] 9.0	122.7 [36.0] 84.6 [24.8] 8.8	125.4 [36.8] 124.1 [36.4] 9.0	122.3 [35.8] 113.4 [33.2] 8.9	116.9 [34.3] 95.9 [28.1] 8.7
L B T	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	138.0 [40.4] 89.8 [26.3] 9.7	134.6 [39.4] 80.9 [23.7] 9.5	128.7 [37.7] 66.6 [19.5] 9.3	128.2 [37.6] 106.3 [31.2] 9.6	125.0 [36.6] 96.6 [28.3] 9.4	119.5 [35.0] 80.9 [23.7] 9.2	122.0 [35.8] 119.3 [35.0] 9.5	118.9 [34.8] 108.9 [31.9] 9.4	113.7 [33.3] 92.1 [27.0] 9.2
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	134.5 [39.4] 86.3 [25.3] 10.1	131.2 [38.5] 77.7 [22.8] 10.0	125.4 [36.8] 63.8 [18.7] 9.8	124.7 [36.5] 102.8 [30.1] 10.0	121.6 [35.6] 93.4 [27.4] 9.9	116.3 [34.1] 78.2 [22.9] 9.7	118.5 [34.7] 115.8 [33.9] 9.9	115.5 [33.8] 105.7 [31.0] 9.8	110.5 [32.4] 89.4 [26.2] 9.6
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	130.9 [38.4] 83.8 [24.6] 10.6	127.6 [37.4] 75.4 [22.1] 10.5	122.1 [35.8] 62.1 [18.2] 10.3	121.1 [35.5] 100.4 [29.4] 10.5	118.1 [34.6] 91.2 [26.7] 10.4	112.9 [33.1] 76.4 [22.4] 10.2	114.9 [33.7] 113.5 [33.3] 10.4	112.0 [32.8] 103.6 [30.4] 10.3	107.1 [31.4] 87.6 [25.7] 10.1
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	127.2 [37.3] 82.6 [24.2] 11.1	124.1 [36.4] 74.4 [21.8] 11.0	118.6 [34.8] 61.2 [17.9] 10.8	117.4 [34.4] 99.1 [29.1] 11.1	114.5 [33.6] 90.1 [26.4] 10.9	109.5 [32.1] 75.6 [22.2] 10.7	111.2 [32.6] 111.2 [32.6] 11.0	108.4 [31.8] 102.5 [30.0] 10.8	103.7 [30.4] 86.8 [25.4] 10.6
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	123.5 [36.2] 82.6 [24.2] 11.7	120.4 [35.3] 74.4 [21.8] 11.6	115.1 [33.7] 61.4 [18.0] 11.3	113.6 [33.3] 99.0 [29.0] 11.6	110.8 [32.5] 90.1 [26.4] 11.5	106.0 [31.1] 75.7 [22.2] 11.2	107.4 [31.5] 107.4 [31.5] 11.5	104.7 [30.7] 102.5 [30.0] 11.4	100.2 [29.4] 87.0 [25.5] 11.1

DR —Depression ratio

dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input NOTES:

The the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

HEATING PERFORMANCE DATA—C120

		IDB		60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CI	FM [L/s]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]	4560 [2152]	4000 [1888]	3040 [1435]
0	0	Total BTUH [kW]	45.2 [13.25]	44.7 [13.10]	43.9 [12.87]	41.7 [12.22]	41.3 [12.10]	40.6 [11.90]	38.3 [11.22]	37.9 [11.11]	37.3 [10.93]
Ŭ	[-17.8]	Power	11.3	11.5	11.8	11.3	11.5	11.8	11.3	11.5	11.8
	5	Total BTUH [kW]	51.9 [15.21]	51.4 [15.06]	50.5 [14.80]	48.5 [14.21]	48.0 [14.07]	47.2 [13.83]	45.0 [13.19]		43.8 [12.84]
ō	[26.7]	Power	10.9	11.1	11.4	10.9	11.1	11.4	10.9	11.1	11.4
B	10	Total BTUH [kW]	58.6 [17.17]	58.0 [17.00]	57.1 [16.73]		54.7 [16.03]				50.4 [14.77]
	[-12.2]	Power	10.5	10.7	11.0	10.5	10.7	11.0	10.5	10.7	11.0
D	15	Total BTUH [kW]	65.4 [19.17]	64.7 [18.96]	63.6 [18.64]				58.5 [17.14]		56.9 [16.68]
Y	[32.2]	Power	10.2	10.3	10.7	10.2	10.3	10.7	10.2	10.3	10.7
в	20	Total BTUH [kW]	72.1 [21.13]	71.4 [20.93]	70.2 [20.57]				65.2 [19.11]		63.5 [18.61]
Ū	[-6.6]	Power	9.8	10.0	10.3	9.8	10.0	10.3	9.8	10.0	10.3
B	25	Total BTUH [kW]		78.1 [22.89]	76.7 [22.48]						70.0 [20.51]
_	[37.8]	Power	9.4	9.6	9.9	9.4	9.6	9.9	9.4	9.6	9.9
ΙĖ	30	Total BTUH [kW]		84.7 [24.82]	83.3 [24.41]	82.2 [24.09]	81.3 [23.83]	79.9 [23.42]	78.7 [23.06]	77.9 [22.83]	76.6 [22.45]
M	[-1.1]	Power	9.1	9.2	9.5	9.1	9.2	9.5	9.1	9.2	9.5
F	35	Total BTUH [kW]	92.3 [27.05]	91.4 [26.79]	89.8 [26.32]	88.9 [26.05]	88.0 [25.79]	86.5 [25.35]	85.5 [25.06]	84.6 [24.79]	83.2 [24.38]
R	[43.3]	Power	8.7	8.8	9.1	8.7	8.8	9.1	8.7	8.8	9.1
	40	Total BTUH [kW]	99.1 [29.04]	98.1 [28.75]	96.4 [28.25]	95.6 [28.02]	94.7 [27.75]		92.2 [27.02]		89.7 [26.29]
Ū	[4.4]	Power	8.3	8.5	8.7	8.3	8.5	8.7	8.3	8.5	8.7
F	45	Total BTUH [kW]							98.9 [28.98]		96.3 [28.22]
	[46.1]		7.9	8.1	8.3	7.9	8.1	8.3	7.9	8.1	8.3
°F [°C]	50	Total BTUH [kW]									102.8 [30.13]
[0]	[10]	Power	7.6	7.7	7.9	7.6	7.7	7.9	7.6	7.7	7.9

IDB-Indoor air dry bulb

\leq
\mathbf{X}
-
- N.
()
9
\mathbf{N}
22
~
$\mathbf{\nabla}$
S
N
- L
TÚL.
ш
15
U
\mathbf{i}
7
~
m
\frown
TT.
~
L
缸
ш
2
≥
×
^N 0
RFL (
AIRFL
RFL (
AIRFL
AIRFL

18

| 3100 [1463] 600 [1047 628 1027 656 1140 684 1190 771 [1244 739 1301 766 [1361 794 1424 821 1490 848 1559 875 1631 902 1706 929 1787 956 1867 982 1950 1009 2035 1035 2123 1061 2215 1087 2309 1113 2405 330 155 151 354 777 1428 844 1491 831 1558 857 1629 884 1703 991 1780 935 1709 1369 1857 962 1939 988 2022 1013 2109 1039 2199 1064 2291 1090 2387 1115 2465 7130 751 1428 757 151 1347 751 857 1130 1351 1578 157 1639 1770 1831 1779 919 1858 93 1779 919 1858 93 1779 919 1858 93 1779 919 1858 93 1779 191 1857 955 1139 2361 113 2361 113 2465 7330 1157 245 1491 837 1157 1856 71 1328 751 1039 231 1759 191 1856 93 1779 191 1856 931 191 981 1324 751 1328 751 113 2465 931 117 2557 930 1986 1237 1038 231 117 2557 1330 1770 1351 1779 191 1856 931 1770 1351 112 1267 1330 1770 1541 1864 955 1707 83 1324 751 1328 751 1323 756 1433 757 1535 1551 1639 1551 1550 751 1550 751 1338 1751 1556 751 1320 751 1550 751 1328 751 1550 751 1550 751 1550 751 1328 751 1750 751 1550 751 | - - - - - - - - - - - | RPM W RPM W< | U.3 L.U. FRPM V 582 8 590 8 590 8 600 9 610 9 631 10 643 10 | Flow External Static Pressure Inclusion (Water [kPa] CFM [L/s] 0.1 (1.021) 0.2 (1.051) 0.3 (1.071) 0.4 (1.071) 0.5 (1.171) 0.8 (1.201) 0.1 (1.211) 1.2 (1.301) 1.3 (1.321) 1.4 (1.351) 1.1 (1.471) 1.8 (1.451) 1.9 (1.471) 2.0 (1.501) 2400 [1133] | I. I. (.02) 0.2. (.05) 0.3. (.07) 0.4. (.10) 0.5. M W RPM W RPM W RPM W 550 810 582 845 614 883 645 559 839 590 876 622 916 653 559 839 590 876 622 916 653 559 839 590 816 620 926 671 569 872 600 916 650 935 671 19 951 948 640 992 670 993 670 19 951 948 640 993 670 993 670 13 951 948 640 993 670 993 670 13 951 602 903 651 903 651 873 873 | O.5 I.1. O.5 I.1. | 2] 0.(W RPI W RPI 924 67. 959 68 937 69 0384 70 134 718 137 728 | 121 0.6.6 151 W RPM W 924 677 968 959 684 1004 937 691 1084 1038 691 1084 1038 691 1084 1038 691 1084 1038 708 1138 1134 718 1187 1137 728 1242 | 0.7 [. 0.7 [. RPM RPM R15 1 715 1 715 1 722 1 722 1 737 1 756 1 | I17 0.8 [.171 0.8 [.1015 740 1015 740 1015 740 1015 745 11035 755 1140 759 1120 766 1243 775 1230 784 | External Static Pressure—Inches of Water [KPa] .171 0.8 L L <th col<="" th=""><th>External Static Pressure Inches of Water [kPa] 200 0.91.221 1.01.251 1.11.271 1.21.301 1 W RPM W RPM W RPM W RPM W 1066 771 1119 802 1175 833 1234 864 1296 6 1105 776 1160 807 1218 837 1279 867 1343 6 1149 782 1216 807 1218 837 1279 867 1434 644 1394 644 1394 644 1394 644 1394 644 1394 647 1394 647 1304 648 1384 1438 683 1438 683 1438 683 1438 683 1438 683 1438 683 1438 683 1507 6148 61507 6132 534 1636 534 1638 534 1638 534 15507 <</th><th>al Static
I.22] N F
1119
1119
11160
11160
11160
11160
11160
11160
11160
11160
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205</th><th>ic Pre:
1.0 [
RPM
802
807
812
818
818
824
831
831
833</th><th>Pressure Inc 1.0 [.25] 1.1 [1.0 [.25] 1.1 [802 1175 833 807 1178 837 812 1268 842 812 136 847 813 1331 853 813 1331 853 824 1311 853 831 1430 860 833 1492 867</th><th>Inch 1.11. 1.11. 1.11. 8833 8837 8847 1 8853 1 8853 1 8661 1 8661</th><th>Anes of V .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .28 8 1 1229 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>Nater .2.1.3 .2.</th><th>Ines of Water [KPa] 1.3 .321 1.4 I.4 Z71 1.2 1.3 1.32 1.4 I.4 I.4</th><th>3 [.32]
1 14(()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 147()</th><th>1.4 I.4 I.924 9935 931 940 940 950 0 950 935 931 940 940 940 940 940 940 940 940 940 940</th><th>Image: 1735 Image: 1435 Image: 1435</th><th>.351 1.5 .371 1.6 .401 1.7 .421 1.8 .451 1.9 .471 2.01 W RPM W RPM W RPM W RPM W RPM 1.9 .471 2.01 1435 955 1508 985 1584 1016 1663 1046 1744 1077 1829 1107 1430 957 1564 987 1641 1017 1721 1047 1804 1077 1890 1107 1546 961 1652 1929 1078 1920 1107 1600 1078 1920 1107 1546 961 1662 993 1763 1021 1884 1079 2021 1077 1800 1107 1566 968 1746 987 1641 1017 1107 1078 1079 1070 1071 1077 1079 1071 1077 1077 1077<th>371 1
W R
1508 9
1564 9
1683 9
1746 9
1746 9
1746 9
11 11</th><th>I.6 I.4 385 11 387 11 393 17 396 17 396 18 000 18 000 11</th><th>0] 1.
N RP
N RP
0] 1.
0] 10.
01 10.
763 10.
764 10.
765 10</th><th>7 1.42
7 1.42
17 17 17
17 172
19 178
19 178
11 20
11 20</th><th>I 1.8 1 1.8 1 1.4.8 1 1.046 1 1.045 1 1.046 1 1.052 1 1.052 1 1.052 1 1.052 1 1.055 1 1.055 1 1.055</th><th>I.45] I.45] I.45] I.1744 I.1938 I.1998 I.199</th><th>I.5.[.37] I.6.[.40] I.7.[.42] I.8.[.45] I.9.[.47] 2.01.50] RPM W RPM</th><th>47] 2 W R W W 829 1 954 1 1 954 1 1 159 1 1 153 1 1</th><th>2.0 [.50]
2.0 [.50]
107
1107 1916
1107 1979
1107 2044
1107 2014
1108 2181
1108 2181
1111 2328</th></th></th> | <th>External Static Pressure Inches of Water [kPa] 200 0.91.221 1.01.251 1.11.271 1.21.301 1 W RPM W RPM W RPM W RPM W 1066 771 1119 802 1175 833 1234 864 1296 6 1105 776 1160 807 1218 837 1279 867 1343 6 1149 782 1216 807 1218 837 1279 867 1434 644 1394 644 1394 644 1394 644 1394 644 1394 647 1394 647 1304 648 1384 1438 683 1438 683 1438 683 1438 683 1438 683 1438 683 1438 683 1507 6148 61507 6132 534 1636 534 1638 534 1638 534 15507 <</th> <th>al Static
I.22] N F
1119
1119
11160
11160
11160
11160
11160
11160
11160
11160
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205</th> <th>ic Pre:
1.0 [
RPM
802
807
812
818
818
824
831
831
833</th> <th>Pressure Inc 1.0 [.25] 1.1 [1.0 [.25] 1.1 [802 1175 833 807 1178 837 812 1268 842 812 136 847 813 1331 853 813 1331 853 824 1311 853 831 1430 860 833 1492 867</th> <th>Inch 1.11. 1.11. 1.11. 8833 8837 8847 1 8853 1 8853 1 8661 1 8661</th> <th>Anes of V .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .28 8 1 1229 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>Nater .2.1.3 .2.</th> <th>Ines of Water [KPa] 1.3 .321 1.4 I.4 Z71 1.2 1.3 1.32 1.4 I.4 I.4</th> <th>3 [.32]
1 14(()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 146()
1 147()
1 147()</th> <th>1.4 I.4 I.924 9935 931 940 940 950 0 950 935 931 940 940 940 940 940 940 940 940 940 940</th> <th>Image: 1735 Image: 1435 Image: 1435</th> <th>.351 1.5 .371 1.6 .401 1.7 .421 1.8 .451 1.9 .471 2.01 W RPM W RPM W RPM W RPM W RPM 1.9 .471 2.01 1435 955 1508 985 1584 1016 1663 1046 1744 1077 1829 1107 1430 957 1564 987 1641 1017 1721 1047 1804 1077 1890 1107 1546 961 1652 1929 1078 1920 1107 1600 1078 1920 1107 1546 961 1662 993 1763 1021 1884 1079 2021 1077 1800 1107 1566 968 1746 987 1641 1017 1107 1078 1079 1070 1071 1077 1079 1071 1077 1077 1077<th>371 1
W R
1508 9
1564 9
1683 9
1746 9
1746 9
1746 9
11 11</th><th>I.6 I.4 385 11 387 11 393 17 396 17 396 18 000 18 000 11</th><th>0] 1.
N RP
N RP
0] 1.
0] 10.
01 10.
763 10.
764 10.
765 10</th><th>7 1.42
7 1.42
17 17 17
17 172
19 178
19 178
11 20
11 20</th><th>I 1.8 1 1.8 1 1.4.8 1 1.046 1 1.045 1 1.046 1 1.052 1 1.052 1 1.052 1 1.052 1 1.055 1 1.055 1 1.055</th><th>I.45] I.45] I.45] I.1744 I.1938 I.1998 I.199</th><th>I.5.[.37] I.6.[.40] I.7.[.42] I.8.[.45] I.9.[.47] 2.01.50] RPM W RPM</th><th>47] 2 W R W W 829 1 954 1 1 954 1 1 159 1 1 153 1 1</th><th>2.0 [.50]
2.0 [.50]
107
1107 1916
1107 1979
1107 2044
1107 2014
1108 2181
1108 2181
1111 2328</th></th> | External Static Pressure Inches of Water [kPa] 200 0.91.221 1.01.251 1.11.271 1.21.301 1 W RPM W RPM W RPM W RPM W 1066 771 1119 802 1175 833 1234 864 1296 6 1105 776 1160 807 1218 837 1279 867 1343 6 1149 782 1216 807 1218 837 1279 867 1434 644 1394 644 1394 644 1394 644 1394 644 1394 647 1394 647 1304 648 1384 1438 683 1438 683 1438 683 1438 683 1438 683 1438 683 1438 683 1507 6148 61507 6132 534 1636 534 1638 534 1638 534 15507 < | al Static
I.22] N F
1119
1119
11160
11160
11160
11160
11160
11160
11160
11160
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205
11205 | ic Pre:
1.0 [
RPM
802
807
812
818
818
824
831
831
833 | Pressure Inc 1.0 [.25] 1.1 [1.0 [.25] 1.1 [802 1175 833 807 1178 837 812 1268 842 812 136 847 813 1331 853 813 1331 853 824 1311 853 831 1430 860 833 1492 867 | Inch 1.11. 1.11. 1.11. 8833 8837 8847 1 8853 1 8853 1 8661 1 8661 | Anes of V .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .27] 1 .28 8 1 1229 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Nater .2.1.3 .2. | Ines of Water [KPa] 1.3 .321 1.4 I.4 Z71 1.2 1.3 1.32 1.4 I.4 I.4 | 3 [.32]
1 14 (()
1 146 ()
1 147 () | 1.4 I .4 I .924 9 935 931 940 940 950 0 950 935 931 940 940 940 940 940 940 940 940 940 940 | Image: 1735 Image: 1435 Image: 1435 | .351 1.5 .371 1.6 .401 1.7 .421 1.8 .451 1.9 .471 2.01 W RPM W RPM W RPM W RPM W RPM 1.9 .471 2.01 1435 955 1508 985 1584 1016 1663 1046 1744 1077 1829 1107 1430 957 1564 987 1641 1017 1721 1047 1804 1077 1890 1107 1546 961 1652 1929 1078 1920 1107 1600 1078 1920 1107 1546 961 1662 993 1763 1021 1884 1079 2021 1077 1800 1107 1566 968 1746 987 1641 1017 1107 1078 1079 1070 1071 1077 1079 1071 1077 1077 1077 <th>371 1
W R
1508 9
1564 9
1683 9
1746 9
1746 9
1746 9
11 11</th> <th>I.6 I.4 385 11 387 11 393 17 396 17 396 18 000 18 000 11</th> <th>0] 1.
N RP
N RP
0] 1.
0] 10.
01 10.
763 10.
764 10.
765 10</th> <th>7 1.42
7 1.42
17 17 17
17 172
19 178
19 178
11 20
11 20</th> <th>I 1.8 1 1.8 1 1.4.8 1 1.046 1 1.045 1 1.046 1 1.052 1 1.052 1 1.052 1 1.052 1 1.055 1 1.055 1 1.055</th> <th>I.45] I.45] I.45] I.1744 I.1938 I.1998 I.199</th> <th>I.5.[.37] I.6.[.40] I.7.[.42] I.8.[.45] I.9.[.47] 2.01.50] RPM W RPM</th> <th>47] 2 W R W W 829 1 954 1 1 954 1 1 159 1 1 153 1 1</th> <th>2.0 [.50]
2.0 [.50]
107
1107 1916
1107 1979
1107 2044
1107 2014
1108 2181
1108 2181
1111 2328</th> | 371 1
W R
1508 9
1564 9
1683 9
1746 9
1746 9
1746 9
11 11 | I.6 I.4 385 11 387 11 393 17 396 17 396 18 000 18 000 11 | 0] 1.
N RP
N RP
0] 1.
0] 10.
01 10.
763 10.
764 10.
765 10 | 7 1.42
7 1.42
1 7 1 7 1 7
1 7 172
19 178
19 178
11 20
11 20 | I 1.8 1 1.8 1 1.4.8 1 1.046 1 1.045 1 1.046 1 1.052 1 1.052 1 1.052 1 1.052 1 1.055 1 1.055 1 1.055 | I.45] I.45] I.45] I.1744 I.1938 I.1998 I.199 | I.5.[.37] I.6.[.40] I.7.[.42] I.8.[.45] I.9.[.47] 2.01.50] RPM W RPM | 47] 2 W R W W 829 1 954 1 1 954 1 1 159 1 1 153 1 1 | 2.0 [.50]
2.0 [.50]
107
1107 1916
1107 1979
1107 2044
1107 2014
1108 2181
1108 2181
1111 2328 |
|--|---|--|---|--|--|--|--|---|---|---
--
--
--
--
--
---|--|--|--|--|---|---
---|---|---|--|---
--
---|---|--|--|---|---|---
--|---|---|
| 3400 146041 646 1220 672 1220 68 1324 724 1380 750 1439 776 14502 801 1567 802 1636 852 1707 878 1781 903 1859 925 1924 950 2006 975 2080 990 2175 102 | 500 1047 (
515 1101 (
530 1158 (| 628 1092
642 1147
657 1207 | 656 11
669 11
683 12 | 40 684 97 697 58 710 | 1190
1250
1313 | 711 15
724 13
736 13 | 244 73:
305 75
370 76: | 9 1301
1 1364
3 1431 | 766
777
789 | 1361 7
1426 8
1495 8 | 794 14,
304 14(
156

 | 24 821
91 831
31 841

 | 1490
1558
1631 | 848
857
867
 | 1559
1629
1703 | 875
884
893
1 | 1631 (
1703 (
1779 5 | 902 17
110 17
19 18 | 06 92
80 93
58 94 | 9 178
6 185
3 193(| 7 956
7 962
3 968 | 1867
1939
2012 | 982 5
988 5
993 2 | 1950 1
2022 1
2098 1
 | 009 21
013 2 ⁻
018 21 | 335 10
109 10
186 10 | 35 212
39 219
43 227
 | 3 1061
9 1064
7 1068 | I 2215
1 2291
3 2371 | 1087 2
1090 2
1093 2 | 309 1
387 1
468 1 | 113 2405
115 2485
117 2567 | |
| | 646 1220 (
662 1285 (
679 1355 7 | 672 1270
688 1337
704 1409 | 698 13
713 13
729 14 | 324 724
393 739
66 754 | 1380
1451
1526 | 750 14
764 15
779 15 | 439 77
512 78
589 80 | 6 1502
9 1576
4 1655 | 801
814
828 | 1567 ξ
1644 ξ
1724 8 | 327 16:
339 17 ⁻
53 17 <u>5</u>

 | 36 852
14 864
36 877

 | 1707
11787
1871 | 878
889
901
 | 1781
1863
1949 | 903 -
914 -
918 1 | 1859 (
1943 (
1998 5 | 325 15
133 20
142 20 | 24 95
00 95
78 96 | 0 200:
8 208:
5 2162 | 5 975
2 982
2 989 | 2089
2167
2249 | 999 2
1006 2
1012 2 | 2175 1
2255 1
338 1
 | 024 2;
029 2;
035 24 | 265 10
346 10
130 10 | 48 235
53 244
58 252
 | 7 1072
0 1077
5 1081 | 2453
2537
2537 | 1096 2
1100 2
1104 2 | 551 1
636 1
724 1 | 120 26
124 27
127 28 | |

				9	919
				5	679
	37.1]	H	44	4	1031
Z	3.0 [2237.1	BK65H	1VP-44	3	1085
				2	1134
				Ļ	1192
				9	673
				5	713
	37.1]	Н	44	4	752
Μ	3.0 [2237.1	BK90H	1VP-44	3	794
				2	830
				-	868
				9	548
				5	580
	491.4]	10H	o-44	4	612
	2.0 [14	BK1	1VP	3	646
				2	676
				-	708
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

Do not set motor sheave below minimum or maximum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS

				0000			0000
ACTUAL-CHM	2400	2600	2800	3000	3200	3400	3600
[r /s]	[1133]	[1227]	[1321]	[1416]	[1510]	[1604]	[1699]
TOTAL MBH	26.0	0.98	0.99	1.00	1.02	1.03	1.04
SENSIBLE MBH	0.87	0.92	0.97	1.02	1.07	1.12	1.17
POWER KW	0.98	0.99	0.99	1.00	1.01	1.01	1.02
NOTEC: 4 Multiply 20	vroation foot	i comontion footor timos aroos notionmenes data	o nordonaro	an data			

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIRFLOW RESISTANCE

2400 2600 2800 2800 [1133] [1227] [1321] 0.047 0.051 [014] 0.05 0.065 0.07 0.05 0.061 [014] 0.05 0.06 0.07 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.06 DNA 0.17 0.20 DNA DNA DNA		S	standard Inc	door Airflow	Standard Indoor Airflow-CFM [L/s]		
A65 or A65 or A67 0.051 (.012) (.013) (.015) (.015) (.015) (.015) (.015) (.015) (.015) (.012) (.015) (.016) (.012) (.016) (.012) (.016) (.012) (.016) (.012) (.002) (.0	2400 [1133]	2600 [1227]	2800 [1321]	3000 [1416]	3200 [1510]	3400 [1604]	3600 [1699]
0.047 0.051 0.055 0.012 0.013 0.014 0.05 0.05 0.06 0.05 0.06 0.07 0.05 0.06 0.07 0.037 0.093 0.04 0.037 0.0037 0.003 0.037 0.038 0.08 0.03 0.0203 0.038 0.04 0.0203 0.038 0.05 0.0203 0.042 0.010 0.0203 0.042 0.017 0.0203 0.042 0.017 0.0203 0.042 0.017 0.0203 0.042 0.017 0.0203 0.042 0.017 0.042 0.0503 0.017 0.042 0.0503 0.017 0.042 0.0503		-	Resistance-	-Inches of	Water [kPa]		
0.05 0.06 0.07 0.012 0.015 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.020 0.020 A65 or DNA 0.17 0.20 A61 or 0.042 DNA DNA	0.047 [.012]	0.051 [.013]	0.055 [.014]	0.06 [.015]	0.065 [.016]	0.071 [.018]	0.076 [.019]
A65 or DNA DNA DNA DNA A65 or DNA DNA DNA DNA DNA A61 DVA DNA DNA DNA DNA DNA DNA		0.06	0.07	0.08	0.09	0.10	0.11
0.03 0.04 0.04 0.07 0.09 0.01 0.08 0.08 0.08 0.08 0.08 0.020 0.17 0.20 0.17 0.20 0.10 0.20 0.10 0.20 0.10 0.20 0.10 0.20 0		[610.]	[.01/]	[.020]	[.022]	[620.]	[.027]
[.007] [.009] [.010] [.008] 0.08 0.08 0.08 0.08 0.08 0.08 0.08 A65 or [0.020] [0.020] [0.020] A65 or DNA 0.17 0.20 A65 or DNA [0.042] [0.050] A65 or DNA DNA DNA	_	0.04	0.04	0.05	0.05	0.06	0.06
0.08 0.08 0.08 [0.020] [0.020] [0.020] DNA 0.17 0.20 DNA [0.042] [0.050]		[600.]	[.010]	[.011]	[.012]	[.014]	[.015]
[0.020] [0.020] [0.020] DNA 0.17 0.20 DNA [0.042] [0.050]	0.08	0.08	0.08	0.10	0.11	0.12	0.13
DNA 0.17 0.20 [0.042] [0.050] DNA DNA DNA	[0.020]	[0.020]	[0.020]	[0.024]	[0.027]	[0:030]	[0.032]
DNA DNA DNA DNA		0.17	0.20	0.25	0.31	0.37	
DNA DNA DNA	DINA	[0.042]	[0.050]	[0.062]	[0.077]	[0.092]	DINA
		DNA	DNA	DNA	DNA	DNA	0.17
							[0.042]

NOTE: Add component resistance to duct resistance to determine external static pressure. DNA = Data not available.

			.17] 0.8[.20] 0.9[.22] 1.0[.25] 1.1[.27] 1.2[.30] 1.3[.32] 1.4[.35] 1.5[.37] 1.6[.40] 1.7[.42] 1.8[.45] 1.9[.47] 2.0[.50]	I W RPM W	970 1864 994 1931 1017 2000 1040 2069 1063 2140 1085 2211	979 [1945] 1002 [2016] 1025 [2087] 1048 [2159] 1070 [2232] 1091 [2306]	987 2032 1010 2105 1033 2179 1055 2254 1077 2329 1098 2406	973 2049 996 2124 1019 2199 1041 2276 1063 2353 1084 2431 1106 2510	2538 1113 2620	896 1931 920 2007 944 2084 968 2162 991 2241 1014 2321 1036 2402 1057 2484 1079 2566 1100 2650 1120 2734	2766 1127 2853											
			7] 2.	V RF	40 10	32 10	29 10	31 11	38 11	50 11	66 11		·		-							
			9 [.4]	M	63 21	70 22	77 23	84 24	92 25	00 26	07 27	15 28	23 3013	31 31	-							
				/ RP	69 10	59 10	54 10	53 10	1071 2457 1092	66 11	80 11	99 11	22 11	50 11	84 -	21				•		
			8 [.45	N	40 20	48 21	55 22	53 23	71 24	79 25	37 26	95 27	33 29	12 30	20 31	1129 3321						
			1.	/ RP	0 1 OC	37 10	79 10	76 10	77 10	34 10	35 10	11 10	32 11	57 11	38 11:	23 11:	33	80				
			7 [.42	M	17 20(25 208	33 21	11 22	982 2143 1005 2220 1027 2298 1049 2377	57 248	36 259	74 27	33 28(32 29!	00 308	32,	8 33(27 35(
				RP	31 10-	6 102	100	99 102	98 102	105	1 106	24 107	108	35 109	33 11(26 11(34 11-	112	1)5 –		
			3 [.40	M	4 193	12 201	0 210	9 219	226	36 240	4 251	3 262	32 274	71 286	30 299	312	9326	340	8 355	28 370		
				RP	34 99	100	32 10 ⁻	24 10-	20 102	21 103	27 104	38 105	54 106	4 107	00 108	30 108	35 109	11(-11-	98 112	52 —	
			6.37	N N	0 186	9 194	7 203	6 212	5 222	4 232	3 242	2 253	1 265	0 277	0 290	9 303	9 316	9 330	9 344	9 359	9 375	
			1.5	RPI		6 97		66 6	3 100	1 101	5 102	3 103	6 104	4 105	7 106	4 106	6 107	4 108	6 109	2 110	4 111	
			[.35]	M N	946 1797	955 1876	964 1960	3 204	2 214	1 224	0 234	0 245	9 256	9 268	9 280	8 293	8 306	9 320	9 334	9 349	9 364	
			1.4	RPI						2 99	977 [2263] 1000 [2345] 1023 [2427] 1044 [2511] 1066 [2595] 1087 [2680] 1107	917 2122 941 2203 964 2286 987 2369 1010 2453 1032 2538 1053 2624 1074 2711 1095 2799 1115 2887	951 2308 974 2393 997 2479 1019 2566 1041 2654 1062 2742 1083 2832 1103 2922 1123	939 2332 962 2418 985 2506 1007 2595 1029 2684 1050 2774 1071 2865 1092 2957 1112 3050 1131 3144	973 2533 995 2624 1017 2715 1039 2807 1060 2900 1080 2993 1100 3088 1120 3184	961 2561 984 2653 1006 2746 1027 2840 1048 2934 1069 3030 1089 3126 1109 3223	972 2683 995 2778 1016 2873 1038 2969 1058 3066 1079 3165 1099 3264 1118 3363	984 2810 1006 2907 1027 3005 1048 3104 1069 3204 1089 3304 1108 3406 1127 3508	2745 973 2842 995 2941 1017 3041 1038 3142 1059 3243 1079 3346 1099 3449 1118 3553	985 2976 1007 3078 1028 3180 1049 3283 1069 3387 1089 3492 1109 3598 1128 3705	997 3115 1018 3219 1039 3324 1060 3430 1080 3536 1099 3644 1119 3752	
			[.32]	N	844 1538 870 1601 896 1666 921 1731	854 1607 880 1673 905 1740 930 1807	188	900 1830 925 1902 949 1975	1991 958 2066	3 2162	7 226	7 236(7 2475	7 2595	7 2715	7 284(3 2965	3 3104	3 324	338.	3536	
		Pa]	1.3	RPN	921	930	940	946	956	1 96	3 97/	987	3 997	3 1007	1 1017	3 1027	3 1035	1048	2 1055	3 1065	1080	
		External Static Pressure—Inches of Water [kPa]	[.30]	×	1666	1740	1815	1902		2084	906 2024 931 2103 954 2183	2286	2396	2506	2624	\$ 2746	3 2875	7 300£	3142	3285	3430	
		of Wat	1.2	RPN	896	902	915	925	934	944	954	964	974	985	962	1006	1016	1027	1038	1049	1060	
		thes o	[.27]	N	1601	1673	1749	1830	910 1916 934	2007	2103	2203	2308	2418	2533	2653	2778	2907	3041	3180	3324	
		Ê		RPM	870	880	890	006		920	931	941	951	962	973	984	366	1006	1017	1028	1039	
		ssure	.25]	W	1538	1607	1681	875 1759	885 1843	1931	2024	2122	928 2224	2332	950 2444	2561	2683	2810	2941	3078	3219	
		c Pre	1.0	RPM	844	854						917	928	939		961			966	1007	1018	
		Stati	.22]	Ν	1414 818 1476	1415 802 1478 828 1542	1613	1551 823 1620 849 1689	1770	1781 871 1855	882 1946	1883 868 1961 893 2041	2141	2077 891 2161 915 2246	2268 927 2356	2291 915 2380 938 2470	2497 950 2589	961 2714	2842	2976	3115	
		ternal	0.9	RPM	818	828	839	849	1698 860	871		893	2059 904 2141	915	927	938	950		973	985	997	
		Ä	.20]	N	1414	1478	1546	1620			1869	1961		2161		2380	2497	2618	2745	2876	3012	
			0.8[RPM	791	802	812	823	834	846	857	868	880	891	903	915			951		975	
			17	×	1354 791	1415	1481	1551	1627	1707 846	1792	1883	1977 880	2077	2181	2291	2405 926	2524 939	2648 951	2776 963	2909 975	
				RPM			786		808		831				879		903		928	940		
			15]	N	1294	1352	1416	1484	1557	1635	1717	1805 843	1897 855	1994	2096	2202		2430			2808	
			0.6[.	RPM	736	747	758	770	782	793		817	829	842	854	866	879	892	904	917	930	
			12]	N	1235	1291	1352	1417	1488	1563	1643	1728	1817	1912	2011	2115	2224	2338	2456	2579	2708	
			0.5[.	PM	707 1235 736 1294 764	662 1171 691 1230 719 1291 747 1352 775	674 1226 703 1288 731 1352 758 1416	687 1287 715 1351 743 1417 770 1484 797	755	767	. 6/1	791	804	816	829	842 2	854	867	880	894	907	
	ase		10]	N	1177	1230	1288	1351	1419	1492	1569	1651	1738	1830	1927	2028	2135	2246	2362	2483	2608	, co
	-3 Ph		0.4[.	βPM	679 1177	691	703	715	727	740	752	765	777	2067	803	816 2	829 2	843 2	856 2	870 2	883 2	NOTE: I Drive left of held line M Drive right of held line
120	575-		120	M		171	226	287	352	422	496	576	661	750	844	943	046	155	268	386	209	0 + 4 v
<u>, c</u>	460,		3[.(ΡM	 	362 1	374 1	387 1	399 1	712 1.	725 1.	738 1	751 1	764 1	77 1	791 1	304 2	318 2	31 2	345 2	359 2	rivo ri
RJNL-B120, C120	208/230, 460, 5753 Phase		15] 0	W	1	9	9	9	1285 699 1352 727 1419 755 1488 782	353 7	425 7	502 7	584 7	570 7	762 7	358 7	959 8	365 8	176 8	291 8	412 8	
RJN	208/		.2 [.0	RPM W RPM W RPM W RPM W RPM W RPM					671 12	684 1353 712 1422 740 1492 767 1563 793 1635 820	97 14	10 15	24 15	37 16	51 17	64 15	78 15	92 2(06 2	20 22	35 24	1100
_	ge		2] 0.	V B					<u>6</u>	- 68	54 6	28 7	2 20	92 7.	80 7:	74 7	73 7.	176 7:	184 8(97 8,	15 8,	f hold
Model	Voltage		1 [.0	۸ N							39 13	32 14	36 15	10 15	24 16	38 17	52 18	36 19	31 20	35 21	10 23	104
┝			CFM [L/s] 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	R		_					3800 [1793] 669 1354 697 1425 725 1496 752 1569 779 1643 805	3900 [1840] 682 1428 710 1502 738 1576 765 1651 791 1728 817	4000 [1888] 696 1507 724 1584 751 1661 777 1738 804 1817 829	4100 [1935]] 710 1592 737 1670 764 1750 790 1830 816 1912 842 1994 867	4200 [1982]] 724 [1680] 751 [1762] 777 [1844] 803 [1927] 829 [2011] 854 [2096]	4300 [2029] 738 [1774] 764 [1858] 791 [1943] 816 [2028] 842 [2115] 866 [2202] 891	4400 [2076]] 752 [1873] 778 [1959] 804 [2046] 829 [2135] 854 [2224] 879 [2314	4500 [2123]] 766 [1976] 792 [2065] 818 [2155] 843 [2246] 867 [2338] 892 [2430] 915	4600 [2171] 781 [2084 806 [2176] 831 [2268] 856 [2362] 880 [2456] 904 [2551	4700 [2218] 795 2197 820 2291 845 2386 870 2483 894 2579 917 2677	4800 [2265]] 810 2315 835 2412 859 2509 883 2608 907 2708 930 2808 953	Driv C
	Air	Flow	:M [L/		3200 [1510]	3300 [1557	3400 [1604]	3500[1652]	3600 [1699]	3700 [1746])0 [17	<u>)0 [18</u> 4	<u>)0 [18</u>	<u>)0 [19;</u>	J0 [19	<u>)0 [20;</u>	<u>)0 [20;</u>	0 [21;	<u>)0 [21</u> ,)0 [22	<u>)0 [22</u> (Ē
		_	Ъ		320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	

				9	915
				5	968
W	237.1]	BK65H	1 VP-44	4	1018
Z	3.0 [2237.1]	BK6	1VP	e	1074
				2	1127
				-	1179
				9	661
				5	200
	491.4]	BK90H	1 VP-44	4	739
	2.0 [1491.4]	BKG	1VP	e	6/7
				2	816
				-	853
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type. 2. Do not set motor sheave below minimum or maximum turns open shown. 3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS-10 TON [35.2 kW]

ACTUAL-CFM	3200	3300	3400	3500	3600	3700	3800		4000	4100	4200	4300	4400	4500	4600	4700	4800
[r/s]	[1510]	[1557]	[1604]	[1652]	[1699]	[1746]	[1793]	[1840]	[1888]	[1935]	[1982]	[2029]	[2076]	[2123]	[2171]	[2218]	[2265]
TOTAL MBH	0.96	0.97	0.97	0.98	0.97	1.00	0.98	1.01	0.98	1.02	0.99	1.02	0.99	1.02	1.00	1.02	1.00
SENSIBLE MBH	0.87	1.00	0.92	1.01	0.97	1.01	1.02	1.02	1.06	1.02	1.06	1.03	1.06	1.03	1.06	1.04	1.06
POWER kW	0.87	0.98	0.88	0.99	0.90	1.00	0.92	1.00	0.93	1.01	0.95	1.01	0.97	1.01	0.99	1.01	1.00
NOTES-1 Multinly	Pinly C	v correction	tion fa	factor times	imec	aroee	nerfr	nerformance		data							

 Multiply correction ractor unless gross periormatice data.
 Resulting sensible capacity cannot exceed total capacity. NU ES.

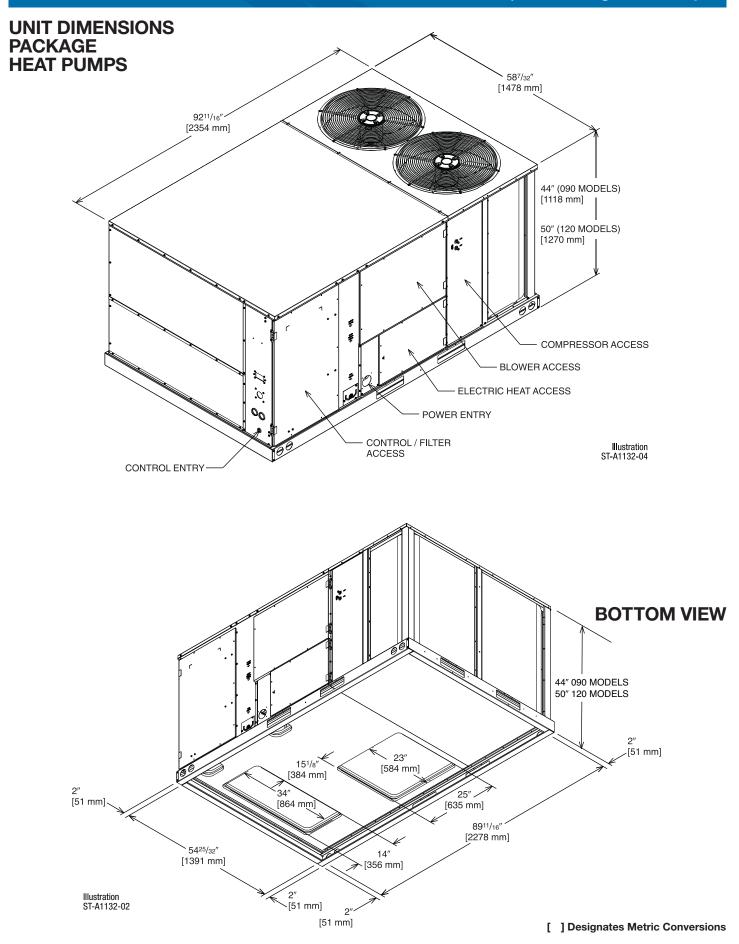
[] Designates Metric Conversions

AIRFLOW RESISTANCE— 10 TON [35.2 kW]

							Standa	ird Indo.	Standard Indoor Airflow-CFM [L/s]	N-CF	M [L/S]						
Component	3200 [1510]	3300 [1557]	3400 [1604]	3500 [1652]	3600 [1699]	3700 [1746]	3800 [1793]	3900 [1840]	3200 3300 3300 3500 3500 3700 3800 3900 4000 4100 4200 4200 4500 4500 4600 4700 8201 1557][1604][1652][1699][1746][1793][1840][1888][1935][1935][1935][2029][2076][2123][2177][2218][2265]	4100 [1935]	4200 [1982]	4300 4400 4500 4600 4700 4800 [2029] [2076] [2123] [2171] [2265	4400 [2076]	4500 [2123]	4600 [2171]	4700 [2218]	4800 [2265]
							Resist	a nce	Resistance-Inches of Water [kPa	f Wate	r [kPa]						
Wet Coil	0.07 [.02]	0.07 [.02]	0.07 [.02]	0.07 [.02]	0.08 [.02]	0.08 [.02]	0.08 [.02]	0.09 [.02]	0.09 [.02]	0.09 [.02]	0.09 [.02]	0.10 [.02]	0.10 [.02]	0.10 [.03]	0.10 [.03]	0.11 [.03]	0.11 [.03]
Downflow Economizer RA Damper Open	0.09 [.02]	0.10 [.02]	0.10 [.02]	0.11 [.03]	0.11 [.03]	0.12 [.03]	0.12 [.03]	0.13 [.03]	0.13 [.03]	0.14 [.03]	0.14 [.03]	0.15 [.04]	0.15 [.04]	0.16 [.04]	0.16 [.04]	0.17 [.04]	0.17 [.04]
Horizontal Economizer RA Damper Open	0.05 [.01]	0.05 [.01]	0.06 [.01]	0.06 [.01]	0.06 [.02]	0.06 [.02]	0.07 [.02]	0.07 [.02]	0.07 [.02]	0.07 [.02]	0.08 [.02]	0.08 [.02]	0.08 [.02]	0.09 [.02]	0.09 [.02]	0.09 [.02]	0.10 [.02]
Horizontal Economizer OA Damper Open	0.11 [.03]	0.12 [.03]	0.12 [.03]	0.13 [.03]	0.13 [.03]	0.14 [.03]	0.14 [.04]	0.15 [.04]	0.15 [.04]	0.16 [.04]	0.16 [.04]	0.17 [.04]	0.17 [.04]	0.18 [.04]	0.19 [.05]	0.19 [.05]	0.20 [.05]
Concentric Grill RXRN-FA65 or RXRN-FA75 & Transition RXMC-CD04	0.31 [.08]	0.34 [.08]	0.37 [.09]	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
Concentric Grill RXRN-AA61 or RXRN-AA71 & Transition RXMC-CE05	DNA	DNA	DNA	DNA	0.17 [.04]	0.18 [.04]	0.18 [.04]	0.20 [.05]	0.21 [.05]	0.23 [.06]	0.24 [.06]	0.25 [.06]	0.27 [.07]	DNA	DNA	DNA	DNA
Concentric Grill RXRN-AA66 or RXRN-AA76 & Transition RXMC-CF06	DNA	DNA	DNA	DNA	DNA	DNA	0.31 [.08]	0.31 [.08]	0.32 [.08]								
Note: Add component resistance to duct resistance to determine external static pressure.	resist	ance	to du	ct res	istanc	ie to c	detern	nine e	xtern	al stat	tic pre	ssure					

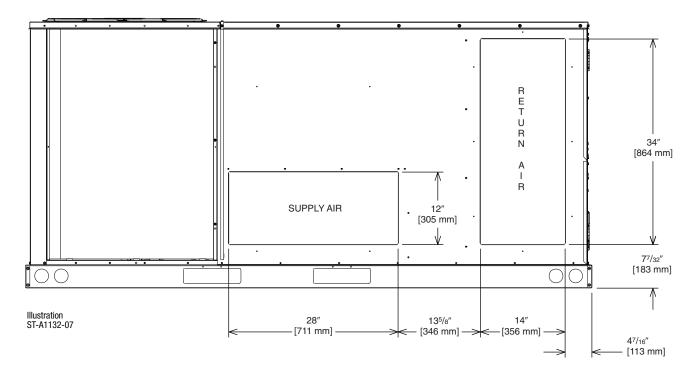
DNA = Data not available.

www.SureComfort.com

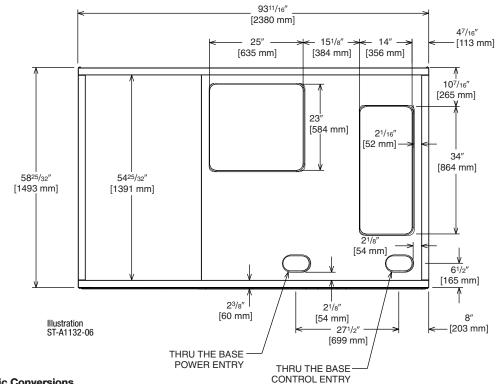

	Kit		Over Current Protective Device Size	Min./Max. 240V	50/60					50/60					60/60					60/70					60/80				Ι
	t and Heater	Heat Pump	Over Protective	Min./Max. 208V	50/60					50/60					09/09					02/09					60/80				
	oply for Both Uni		Min. Circuit	208/240V	43/43	I				43/43					45/45					50/50					52/52				I
PLICATION	Separate Power Supply for Both Unit and Heater Kit	Heater Kit	Max. Fuse	208/240V		40/45	50/60	80/90	110/125	l	40/45	50/60	80/90	110/125		40/45	50/60	80/90	110/125	l	40/45	50/60	80/90	110/125		40/45	50/60	80/90	110/125
SISTICS AND APF	Sep	Heat	Min. Ckt.			38/44	50/58	76/87	101/116	_	38/44	50/58	76/87	101/116	-	38/44	50/58	76/87	101/116	-	38/44	50/58	76/87	101/116		38/44	50/58	76/87	101/116
IS CHARACTEF			Over Current Protective Device Size	Min./Max. 240V	50/60	100/100	110/110	150/150	175/175	50/60	100/100	110/110	150/150	175/175	09/09	100/100	125/125	150/150	175/175	02/09	100/110	125/125	150/150	175/175	60/80	110/110	125/125	150/150	200/200
RIC HEATER KI		Heat Pump	Over (Protective	Min./Max. 208V	50/60	06/06	100/100	125/125	150/150	50/60	06/06	100/100	125/125	150/150	09/09	100/100	110/110	150/150	175/175	60/70	100/110	110/110	150/150	175/175	60/80	100/110	110/125	150/150	175/175
XILIARY ELECTF	it		Unit Min. Ckt.	208/240V	43/43	81/87	93/101	119/130	144/159	43/43	81/87	93/101	119/130	144/159	45/45	83/89	95/103	121/132	146/161	50/50	88/94	100/108	126/137	151/166	52/52	96/06	102/110	128/139	153/168
HASE, 60 HZ, AU	nit and Heater Kit		Heater	208/240V		30.1/34.7	40/46.2	60.2/69.4	80.1/92.4	l	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4		30.1/34.7	40/46.2	60.2/69.4	80.1/92.4	l	30.1/34.7	40/46.2	60.2/69.4	80.1/92.4		30.1/34.7	40/46.2	60.2/69.4	80.1/92.4
208/240 VOLT, THREE PHASE, 60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	Single Power Supply for Both Unit		Heater LPTII/Ur.@	208/240V		36.84/49.13	49.13/65.5	73.69/98.25	98.25/131		36.84/49.13	49.13/65.5	73.69/98.25	98.25/131		36.84/49.13	49.13/65.5	73.69/98.25	98.25/131		36.84/49.13	49.13/65.5	73.69/98.25	98.25/131		36.84/49.13	49.13/65.5	73.69/98.25	98.25/131
208/240	Single Power S	Heater Kit	Rated Heater	208/240V		10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4		10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4		10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4		10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4		10.8/14.4	14.4/19.2	21.6/28.8	28.8/38.4
			No. of	Steps					-					-															-
			RXJJ- ucator Vit	Nominal kW	No Heat	CC15C	CC20C	CC30C	CC40C	No Heat	CC15C	CC20C	CC30C	CC40C	No Heat	CC15C	CC20C	CC30C	CC40C	No Heat	CC15C	CC20C	CC30C	CC40C	No Heat	CC15C	CC20C	CC30C	CC40C
			Model No.	RJNL-			C090CL					C090CM					C090CN					C120CL					C120CM		

			Size	Min./Max. 480V			1		1					1	1				1					1										
	Kit		Over Current sctive Device			1	1		1		1	1	1	1	1	1			1		1	1	1	1	1	1	1	1	'					
	nit and Heate	Heat Pump	Over Current Protective Device Size	Min./Max. 480V	25/30					25/30					25/30					35/40				I	35/45									
	oply for Both Uni		Min. Circuit		21					21					22					28			I		29									
ICATION	Separate Power Supply for Both Unit and Heater Kit	Heater Kit	Max. Fuse	480V		25	30	45	60		25	30	45	60		25	30	45	60		25	30	45	60		25	30	45	60					
60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	Sep	Heat	Min. Ckt.			22	29	44	58		22	29	44	58		22	29	44	58	1	22	29	44	58		22	29	44	58					
CHARACTERIS			Over Current Protective Device Size	Min./Max. 480V																									Ι					
HEATER KITS		Heat Pump	Over C Protective I	Min./Max. 480V	25/30	50/50	60/60	70/70	06/06	25/30	50/50	60/60	70/70	06/06	25/30	50/50	60/60	80/80	06/06	35/40	60/60	60/60	80/80	06/06	35/45	60/60	70/70	80/80	100/100					
LIARY ELECTRIC	It		Unit Min. Ckt.	Allipacity @	21	43	50	65	79	21	43	50	65	79	22	44	51	99	80	28	50	57	72	86	29	51	58	73	87					
SE, 60 HZ, AUXI	nit and Heater Kit		Heater	480V		17.4	23.1	34.7	46.2		17.4	23.1	34.7	46.2		17.4	23.1	34.7	46.2		17.4	23.1	34.7	46.2		17.4	23.1	34.7	46.2					
480 VOLT, THREE PHASE,	Single Power Supply for Both Unit		Heater	480V		49.13	65.5	98.25	131		49.13	65.5	98.25	131	ļ	49.13	65.5	98.25	131		49.13	65.5	98.25	131	ļ	49.13	65.5	98.25	131					
480 VI	Single Power S	Heater Kit	Rated Heater	480V		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4					
			No. of	Steps											1	, -										, -								
								RXJJ-	Nominal kW	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D	No Heat	CC15D	CC20D	CC30D	CC40D
			Model No.	RJNL-			C090DL					C090DM					C090DN					C120DL					C120DM							

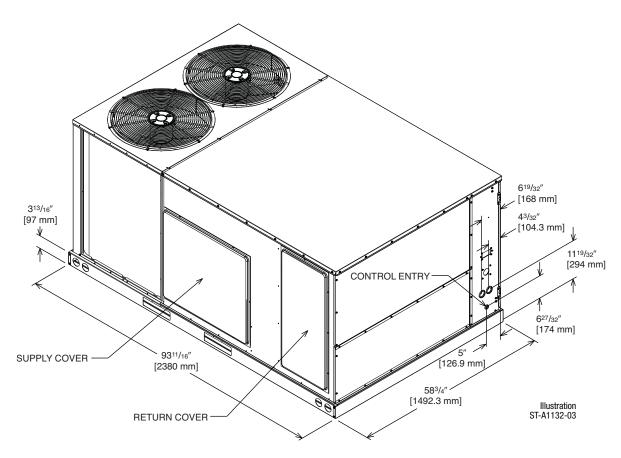
			0	÷																									
	it		Over Current Protective Device Size	Min./Max 600V						I										Ι					1				
	t and Heater K	Heat Pump	Over (Protective	Min./Max. 600V	20/20					20/20					20/25		I			25/30					25/30				Ι
	ply for Both Uni		Min. Circuit		16					16					17		I			20			I		21				Ι
ATION	Separate Power Supply for Both Unit and Heater Kit	r Kit	Max. Fuse	A216	1	20	25	40	50		20	25	40	50		20	25	40	50	1	20	25	40	50		20	25	40	50
60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	Sepa	Heater Kit	Min. Ckt.	600V	1	18	24	37	49		18	24	37	49		18	24	37	49	1	18	24	37	49		18	24	37	49
CHARACTERIST			Over Current Protective Device Size	Min./Max. 600V																1									
HEATER KITS		Heat Pump	Over C Protective I	Min./Max. 600V	20/20	40/40	45/45	60/60	70/70	20/20	40/40	45/45	60/60	70/70	20/25	45/45	50/50	60/60	80/80	25/30	45/45	50/50	60/60	80/80	25/30	50/50	60/60	70/70	80/80
LIARY ELECTRIC	t		Unit Min. Ckt.		16	34	40	53	65	16	34	40	53	65	17	35	41	54	66	20	38	44	57	69	21	39	45	58	70
	nit and Heater Kit		Heater		I	13.9	18.5	28.9	38.5		13.9	18.5	28.9	38.5		13.9	18.5	28.9	38.5	1	13.9	18.5	28.9	38.5		13.9	18.5	28.9	38.5
600 VOLT, THREE PHASE,	Single Power Supply for Both Unit		Heater Leater		1	49.13	65.5	98.25	131		49.13	65.5	98.25	131		49.13	65.5	98.25	131	1	49.13	65.5	98.25	131		49.13	65.5	98.25	131
600 V(Single Power Si	Heater Kit	Rated Heater	600V	1	14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4		14.4	19.2	28.8	38.4
		-	No. of	Steps			-	-	-		-	-	-	-		-	-	-	-					-		-	-		-
			RXJJ- ucotor Vit	Nominal kW	No Heat	CC15Y	CC20Y	CC30Y	CC40Y	No Heat	CC15Y	CC20Y	CC30Y	CC40Y	No Heat	CC15Y	CC20Y	CC30Y	CC40Y	No Heat	CC15Y	CC20Y	CC30Y	CC40Y	No Heat	CC15Y	CC20Y	CC30Y	CC40Y
			Model No.	RJNL-			C090YL					C090YM					C090YN					C120YL					C120YM		


		E	LECTRIC	AL DATA	– RJNL-	C				
		C090CL	CO90CM	C090CN	C090DL	C090DM	CO90DN	C090YL	C090YM	CO90YN
- E	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506	517-632	517-632	517-632
atio	Volts	208/230	208/230	208/230	460	460	460	575	575	575
Ë	Minimum Circuit Ampacity	43/43	43/43	45/45	21	21	22	16	16	17
Unit Information	Minimum Overcurrent Protection Device Size	50/50	50/50	60/60	25	25	25	20	20	20
_ _	Maximum Overcurrent Protection Device Size	60/60	60/60	60/60	30	30	30	20	20	25
	No.	1	1	1	1	1	1	1	1	1
	Volts	200/230	200/230	200/230	460	460	460	575	575	575
5	Phase	3	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450
sor	HP, Compressor 1	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4	10 1/4
res	Amps (RLA), Comp. 1	25/25	25/25	25/25	12.2	12.2	12.2	9	9	9
Compressor Motor	Amps (LRA), Comp. 1	164/164	164/164	164/164	100	100	100	78	78	78
ö	HP, Compressor 2	—	_	_	_			—		—
	Amps (RLA), Comp. 2	_						—		—
	Amps (LRA), Comp. 2	—	_	_	_	_	_	—		—
5	No.	2	2	2	2	2	2	2	2	2
Aoto	Volts	208/230	208/230	208/230	460	460	460	575	575	575
er N	Phase	1	1	1	1	1	1	1	1	1
Condenser Motor	НР	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
puo	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4	1	1	1
5	Amps (LRA, each)	3.9/3.9	3.9/3.9	3.9/3.9	1.8	1.8	1.8	1.5	1.5	1.5
_	No.	1	1	1	1	1	1	1	1	1
Far	Volts	208/230	208/230	208/230	460	460	460	575	575	575
ator	Phase	3	3	3	3	3	3	3	3	3
Evaporator Fan	HP	2	2	3	2	2	3	2	2	3
Eva	Amps (FLA, each)	8/8	8/8	13/13	4	4	7	4	4	8
	Amps (LRA, each)	56/56	56/56	74.5/74.5	28	28	38.1	19	19	20

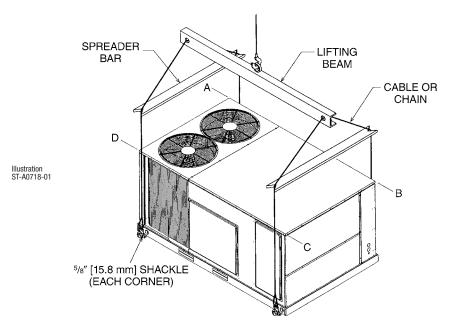
		ELECTRIC	SAL DATA – F	RJNL-C			
		C120CL	C120CM	C120DL	C120DM	C120YL	C120YM
l	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	517-632	517-632
ation	Volts	208/230	208/230	460	460	575	575
<u> </u>	Minimum Circuit Ampacity	50/50	52/52	28	29	20	21
Unit Information	Minimum Overcurrent Protection Device Size	60/60	60/60	35	35	25	25
>	Maximum Overcurrent Protection Device Size	70/70	80/80	40	45	30	30
	No.	1	1	1	1	1	1
	Volts	200/230	200/230	460	460	575	575
	Phase	3	3	3	3	3	3
Mote	RPM	3450	3450	3450	3450	3450	3450
sor	HP, Compressor 1	12 3/4		12 3/4	12 3/4	12 3/4	12 3/4
Compressor Motor	Amps (RLA), Comp. 1	30.1/30.1	30.1/30.1	16.7	16.7	12.2	12.2
du	Amps (LRA), Comp. 1	225/225	225/225	114	114	80	80
- S	HP, Compressor 2	—	—	—	_	—	—
	Amps (RLA), Comp. 2	—	—	—	_	_	—
	Amps (LRA), Comp. 2	_			_	_	
-	No.	2	2	2	2	2	2
Aoto	Volts	208/230	208/230	460	460	460	460
er N	Phase	1	1	1	1	1	1
Condenser Motor	HP	1/2	1/2	1/2	1/2	1/2	1/2
puo	Amps (FLA, each)	2.3/2.3	2.3/2.3	1.5	1.5	1	1
5	Amps (LRA, each)	5.6/5.6	5.6/5.6	3.1	3.1	2.2	2.2
	No.	1	1	1	1	1	1
Far	Volts	208/230	208/230	460	460	575	575
ator	Phase	3	3	3	3	3	3
Evaporator Fan	HP	2	3	2	3	2	3
Eva	Amps (FLA, each)	8/8	13/13	4	7	4	8
	Amps (LRA, each)	56/56	74.5/74.5	28	38.1	19	20



UNIT DIMENSIONS PACKAGE HEAT PUMPS


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATION

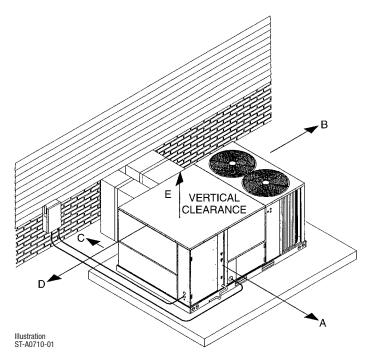
SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS



UNIT DIMENSIONS PACKAGE HEAT PUMPS

CORNER WEIGHTS

Capacity Tons [kW]	Corne	r Weights	by Perce	ntage
	А	В	С	D
7.5-10 [26.4-35.2]	32%	26%	20%	22%



CLEARANCES

The following minimum clearances are recommended for proper unit performance and serviceability.

Recommended Clearance In. [mm]	Location							
48 [1219]	A - Front							
18 [457]	B - Condenser Coil							
18 [457]	C - Duct Side							
18 [457]	*D - Evaporator End							
60 [1524]	E - Above							
*Without Economizer. 48" [1219 mm] With Economizer								

[] Designates Metric Conversions

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
	RXJJ-CC15 (C,D,Y)	46 [20.9]	36 [16.3]	Yes
	RXJJ-CC20 (C,D,Y)	46 [20.9]	36 [16.3]	Yes
Electric Heaters	RXJJ-CC30 (C,D,Y)	47 [21.3]	37 [16.8]	Yes
	RXJJ-CC40 (C,D,Y)	49 [22.2]	39 [17.7]	Yes
Economizer w/Single Enthalpy	AXRD-PJCM3	90 [40.8]	81 [36.7]	Yes
Economizer w/Single Enthalpy and Smoke Detector	AXRD-SJCM3	91 [41.3]	82 [57.2]	Yes
Dual Enthalpy Kit	RXRX-AV03	3 [1.4]	1 [.5]	No
Horizontal Economizer w/Single Enthalpy	AXRD-RJCM3	94 [42.6]	89 [40.4]	No
Carbon Dioxide Sensor	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No
Manual Fresh Air (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.0]	No
Manual Fresh Air (Return Panel)	AXRF-JDA1	26 [11.8]	21 [9.5]	No
Motorized Fresh Air (Return Panel)	AXRF-JDB1	43 [19.5]	38 [17.2]	No
Motor Kit for RXRF-KDA1	RXRX-AW02	35 [15.9]	27 [12.2]	No
Modulating Motor Kit w/Position Feedback for RXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to Round)	RXMC-CD04	15 [6.8]	13 [5.9]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 ①	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 @	20 [9.1]	18 [8.2]	No
Low-Ambient Control Kit	RXRZ-A03	3 [1.4]	2 [1.0]	Yes
Outdoor Coil Louver Kit (090)	AXRX-AAD01H	25 [11.3]	22 [10.0]	Yes
Outdoor Coil Louver Kit (120)	AXRX-AAD01J	29 [13.2]	26 [11.8]	Yes
Non-Powered Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [0.7]	Yes
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No

NOTES: ${\rm \textcircled{O}}$ Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

2 Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

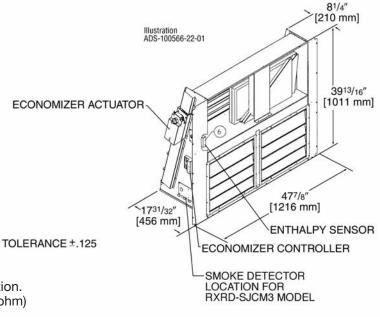
 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

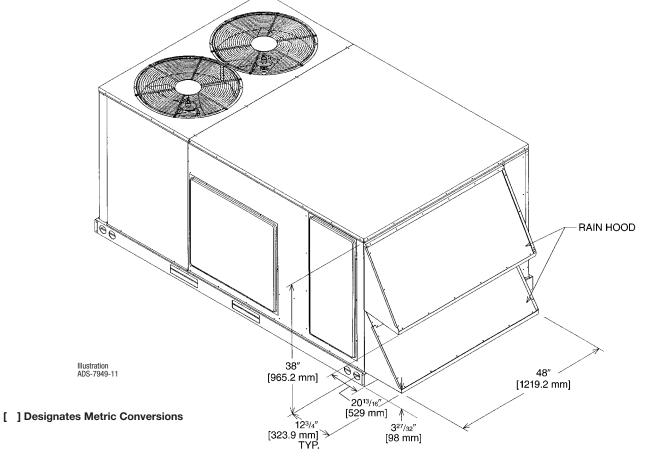
COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

The field installed BACnet[®] Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet[®] Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

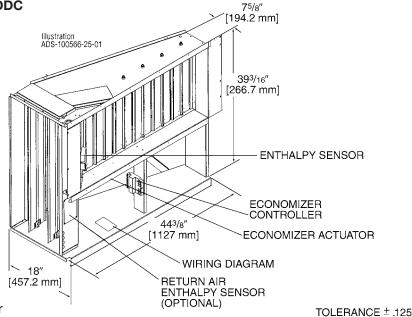

The field installed LonWorks[®] Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

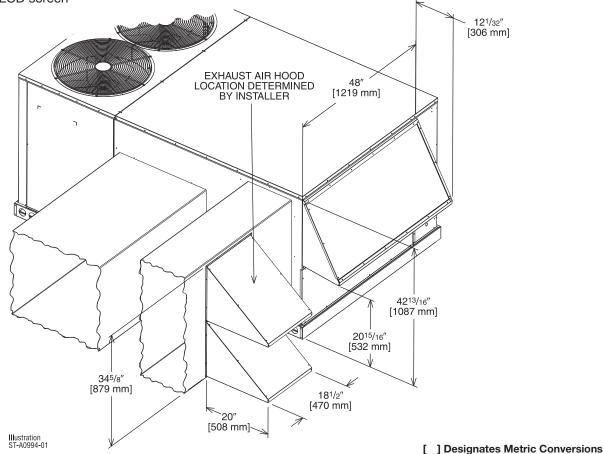

ECONOMIZERS

Use to Select Factory Installed Options Only

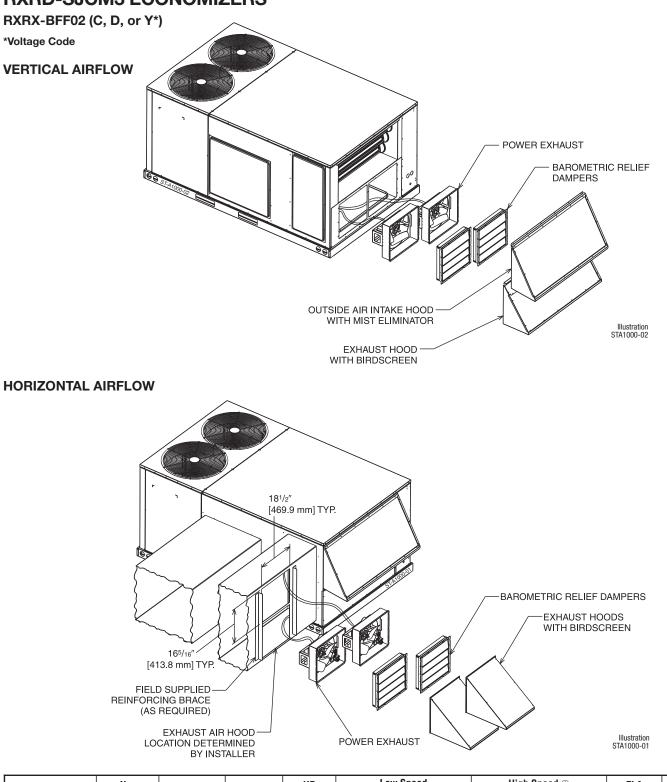
AXRD-PJCM3—Single Enthalpy (Outdoor) with DDC AXRD-SJCM3—Single Enthalpy w/Smoke Detector ar RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to a thermostat, all economizer functions can be viewed on 16 x 2 LCD screen





ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION Field Installed Only


AXRD-RJCM3—Single Enthalpy (Outdoor) with DDC RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured— No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen

POWER EXHAUST KIT FOR AXRD-PJCM3(-), AXRD-RJCM3(-), RXRD-SJCM3 ECONOMIZERS

Model No.	No.	Volts	Phase	HP	Low Spec	ed	High Spee	d 1)	FLA	LRA
MOUEL NO.	of Fans	VUIIS	Flidse	(ea.)	CFM [L/s] 2	RPM	CFM [L/s] 2	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8
RXRX-BFF02Y	2	575	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.81	1.5

NOTES: ① Power exhaust is factory set on high speed motor tap.

② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for RXRF-KDA1)

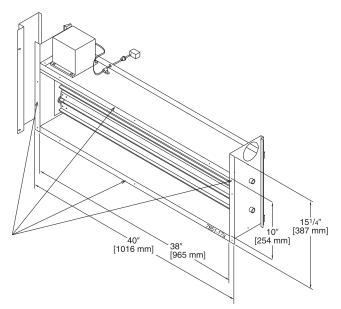
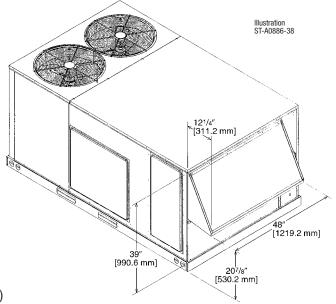
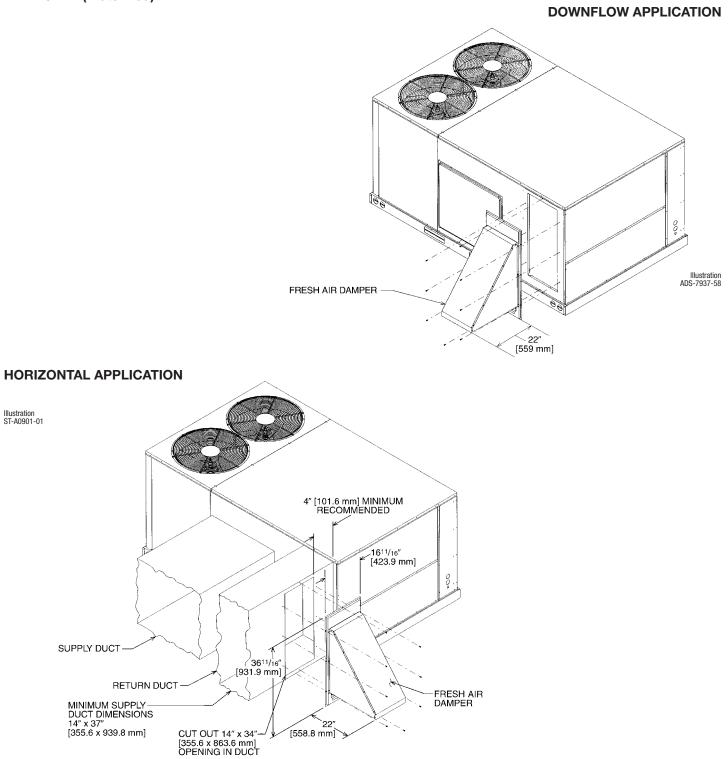


Illustration ST-7951-17


[] Designates Metric Conversions

RXRX-AW04 (Modulating Motor Kit with position feedback for AXRF-KDA1)

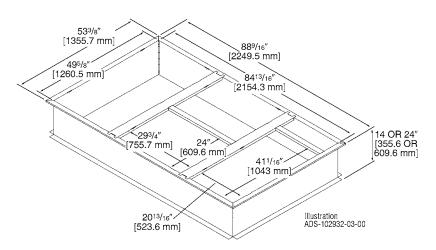
- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin
- Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm)
- (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen


AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

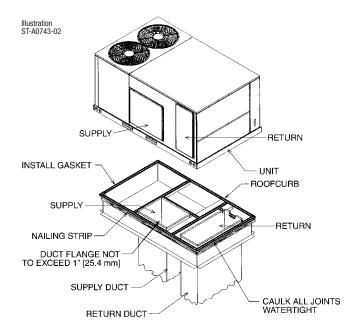
FRESH AIR DAMPER (Cont.)

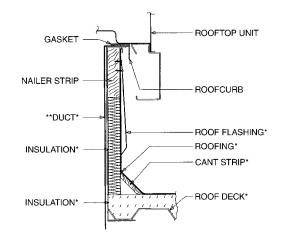
AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)



ROOFCURBS (Full Perimeter)

- Sure Comfort's new roofcurb design can be utilized on 7.5 and 10 ton [26.4 and 35.2 kW] RJNL-C models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 2" [51 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

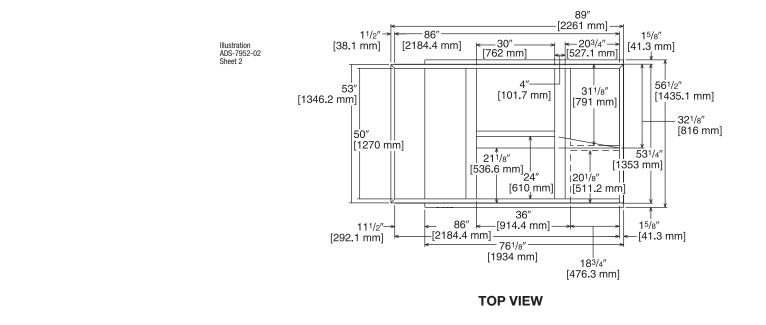

Roofcurb Model	Height of Curb		
RXKG-CAE14	14" [356 mm]		
RXKG-CAE24	24" [610 mm]		

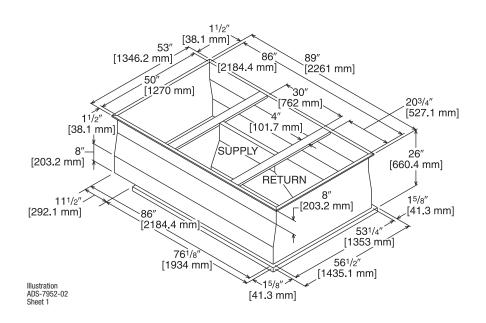

ROOFCURB INSTALLATION

[] Designates Metric Conversions

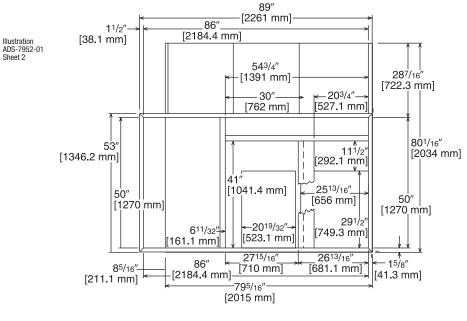
*BY CONTRACTOR

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

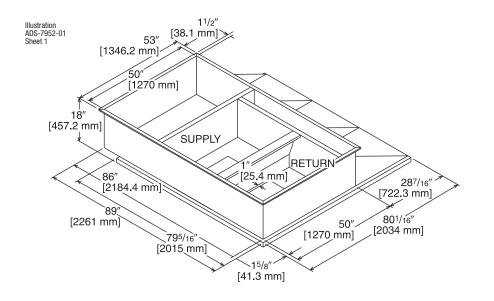

Illustration ST-A0743-02

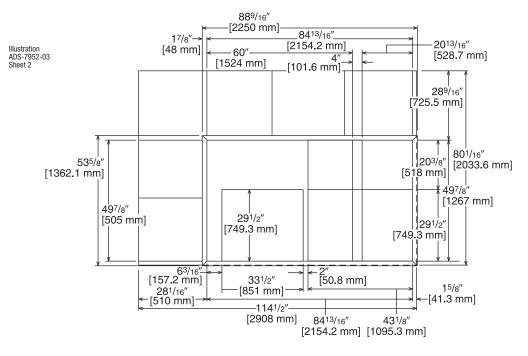

ROOFCURB ADAPTERS

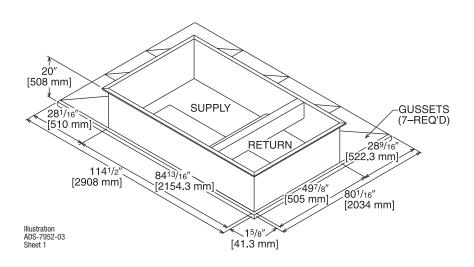
OLD MODELS	OLD ROOFCURB	ROOFCURB ADAPTER	NEW MODELS (All Share Common Footprint)
(-)RCF, (-)REF-075/076 (-)RGF-150075, (-)RGF-131076 (-)RGF-201076	RXRK-E50	RXRX-CDCE50	
(-)RGF-200075 (-)RGG, (-)REG, (-)RCG-075 (-)RGF, (-)REF, (-)RCF-085 (-)RGF, (-)REF, (-)RCF-100 (-)RGG, (-)REG, (-)RCG-100	RXRK-E54	RXRX-CFCE54	 (-)JNL-C090 (-)JNL-C120
(-)RGF, (-)REF, (-)RCF-125	RXRK-E56	RXRX-CFCE56	
(-)PDC-075 (-)PDC-100/101	RXPK-C12	RXRX-CGCC12	

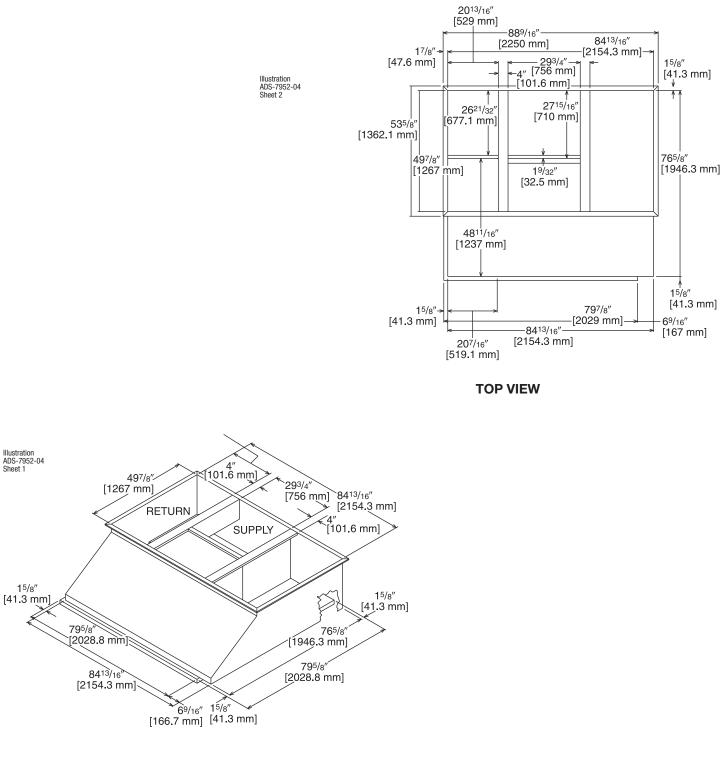

NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced.

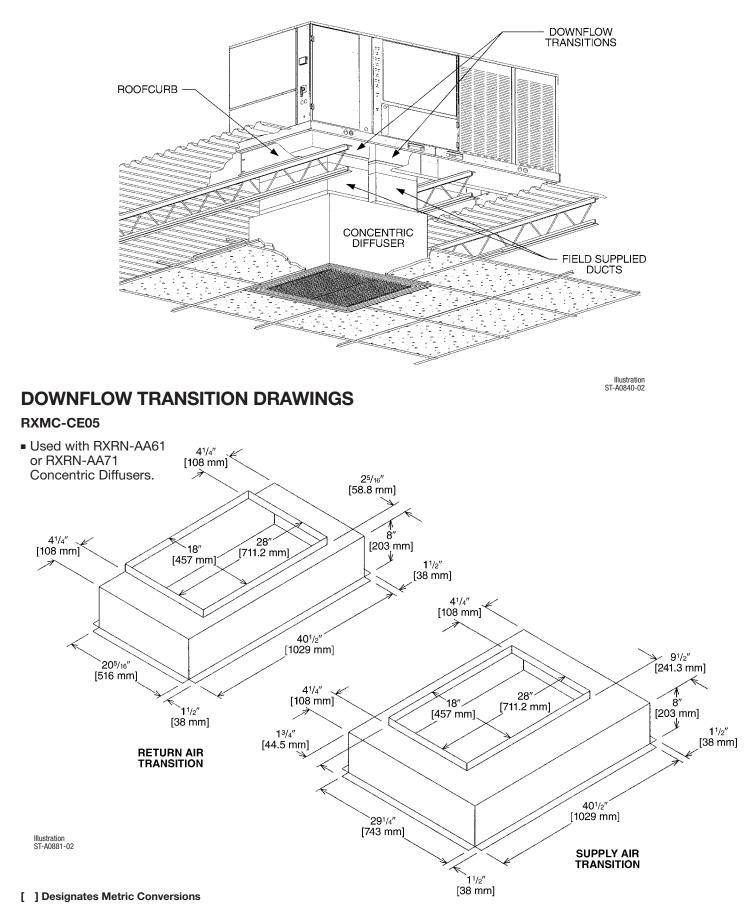
RXRX-CDCE50



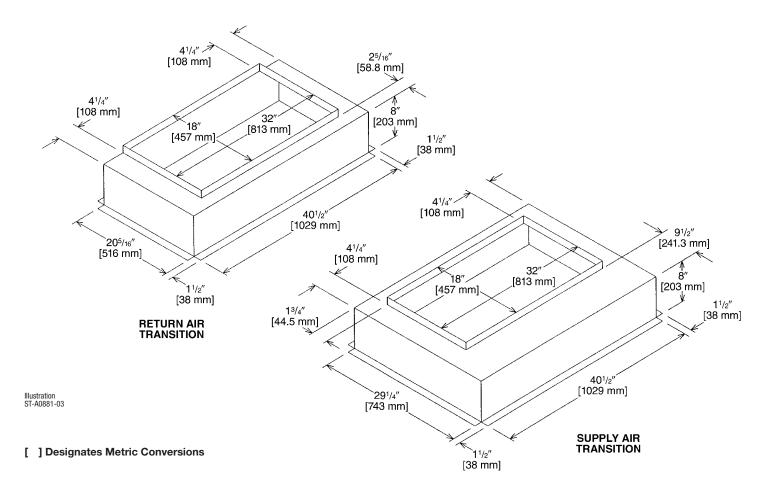

RXRX-CFCE54


TOP VIEW

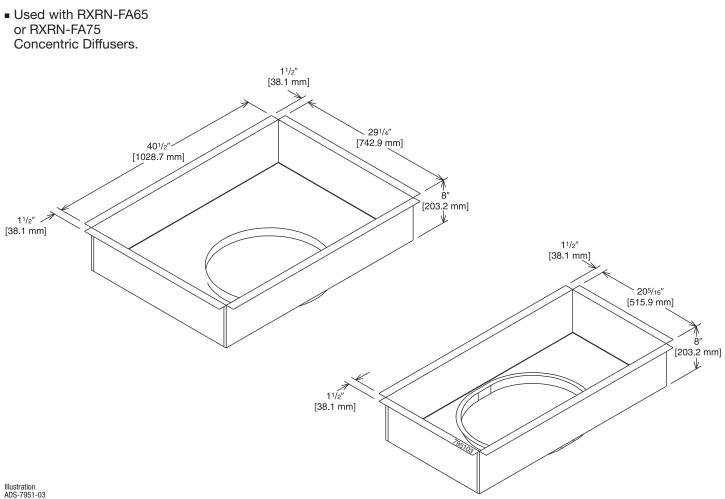

RXRX-CFCE56


TOP VIEW

RXRX-CGCC12


CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS (Cont.)


RXMC-CF06

 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CD04

CONCENTRIC DIFFUSER—STEP DOWN

RXRN-FA65 (7.5 Ton [29.9 kW] Model)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

 All aluminum diffuser with aluminum return air eggcrate. 133/4 271/2" 111/2" [349.3 mm] [699 mm] [292.1 mm] Built-in anti-sweat gasket. 451/2" 133/4 [1156 mm] Molded fiberglass supports. [349.3 mm] 221/2" Built-in hanging supports. [572 mm] Diffuser box constructed of 111/2" ** [292.1 mm]⁻ ¥ sheetmetal insulated with 1" [25.4 mm] 1.5 lbs. 2 [.7 kg] duct liner. [51 mm] ₹ 8¹/8″ [206.4 mm] 47⁵/8″ [1210 mm] 451/2" 295/8 [752.5 mm] [1156 mm] 271/2" [699 mm]

Illustration ADS-5348-02

ENGINEERING DATA[®]

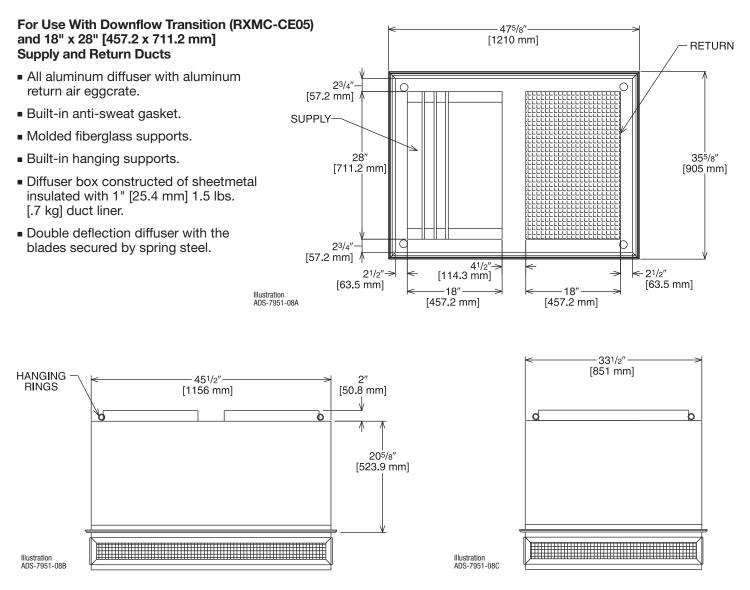
Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: ① All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.


[] Designates Metric Conversions

143/8"

[365.1 mm]

CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (10 Ton [35.2 kW] Model)

ENGINEERING DATA^①

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
800 [1 RXRN-AA61 4000 [1 4200 [1	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: 1) All data is based on the air diffusion council guidelines.

O Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

FLUSH MOUNT CONCENTRIC DIFFUSER—FLUSH

RXRN-FA75 (7.5 Ton [26.4 kW] Models)

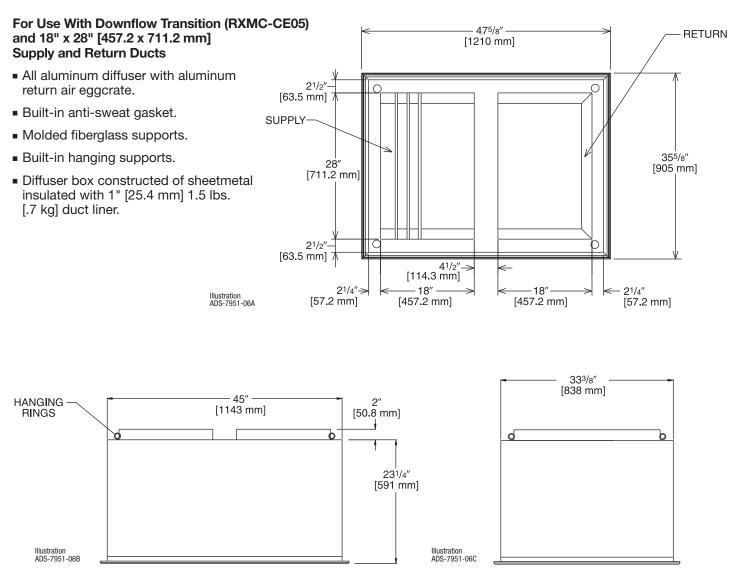
For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- -**13**1/2" Built-in anti-sweat gasket. 27 **11**¹/4" [343 mm] [686 mm]-[286 mm] 45″ Molded fiberglass supports. [1143 mm] 131/2" [343 mm] Built-in hanging supports. 22^{1/2}" [572 mm] Diffuser box constructed of sheetmetal insulated with V **11**¹/4″ 1" [25.4 mm] 1.5 lbs. [286 mm] 16⁵/8″ [.7 kg] duct liner. Ŵ [422.3 mm] 2' [51 mm] 475/8 [1210 mm] Illustration ADS-5348-04 295/8' [753 mm]

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
RXRN-FA75	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council guidelines.


[©] Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (10 Ton [35.2 kW] Model)

ENGINEERING DATA^①

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-AA71	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: ① All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

Guide Specifications – RJNL-C090 thru C120

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. <u>www.csinet.org.</u>

ROOFTOP PACKAGED HEAT PUMP

HVAC Guide Specifications

Size Range: 7.5 to 10 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

- 23 07 16.13 Decentralized, Rooftop Units:
 - 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
 - 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 23 Direct-digital Control system for HVAC

- 23 09 23.13 Decentralized, Rooftop Units:
- 23 09 23.13.A. RTU-C controller
 - 1. Shall be ASHRAE 62-2001 compliant.
 - 2. Shall accept 18-32VAC input power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
 - 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
 - 5. Shall accept a CO₂ sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
 - 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust/ reversing valve/ occupied.
 - 7. Unit shall provide surge protection for the controller through a circuit breaker.
 - 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
 - 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
 - 10. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
 - 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
 - 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
 - 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.
- 23 09 23.13.B. Open protocol, direct digital controller:
 - 1. Shall be ASHRAE 62-2001 compliant.
 - 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
 - 4. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
 - 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
 - 6. The LonWorks[™] plug in communication card shall include the Echelon processor required for all Lon applications.
 - 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
 - 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
 - 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
 - 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust/ reversing valve.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

- 23 09 33.13 Decentralized, Rooftop Units:
- 23 09 33.13.A. General:
 - 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
 - 2. Shall utilize color-coded wiring.
 - Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
 - 4. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.
 - 5. Shall include integrated defrost system to prevent excessive frost accumulation during heating duty, and shall be controlled as follows:
 - a. Defrost shall be initiated on the basis of Demand Defrost.
 - b. The need for a defrost cycle is determined by one of two factors: Time or Frost Detection.
 - c. Should six hours of compressor run time elapse without a defrost cycle and the coil temperature is below the frost accumulation temperature, a defrost cycle will be initiated.
 - d. The control shall be capable of detecting frost accumulation on the outdoor coil and initiate a defrost cycle when the Dry Coil Delta T + the Coil Temperature Dependant Variable (10 degrees of degradation) is sensed.
 - e. As the ambient temperature changes, the ambient change will be used to adjust the detection of frost accumulation.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.

23 09 93 Sequence of Operations for HVAC Controls

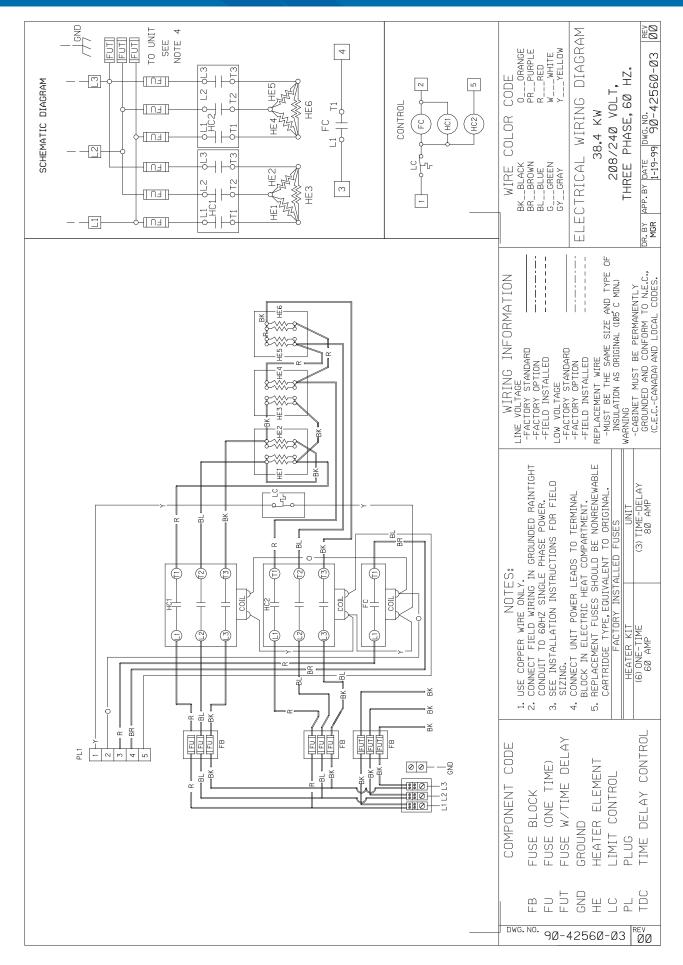
- 23 09 93.13 Decentralized, Rooftop Units:
 - 23 09 93.13 INSERT SEQUENCE OF OPERATION

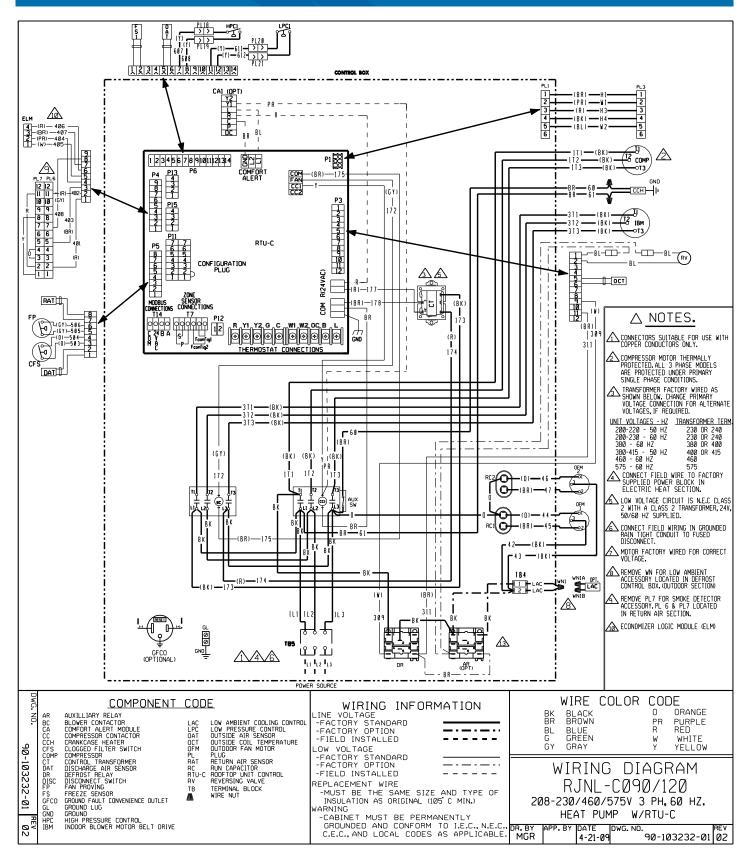
23 40 13 Panel Air Filters

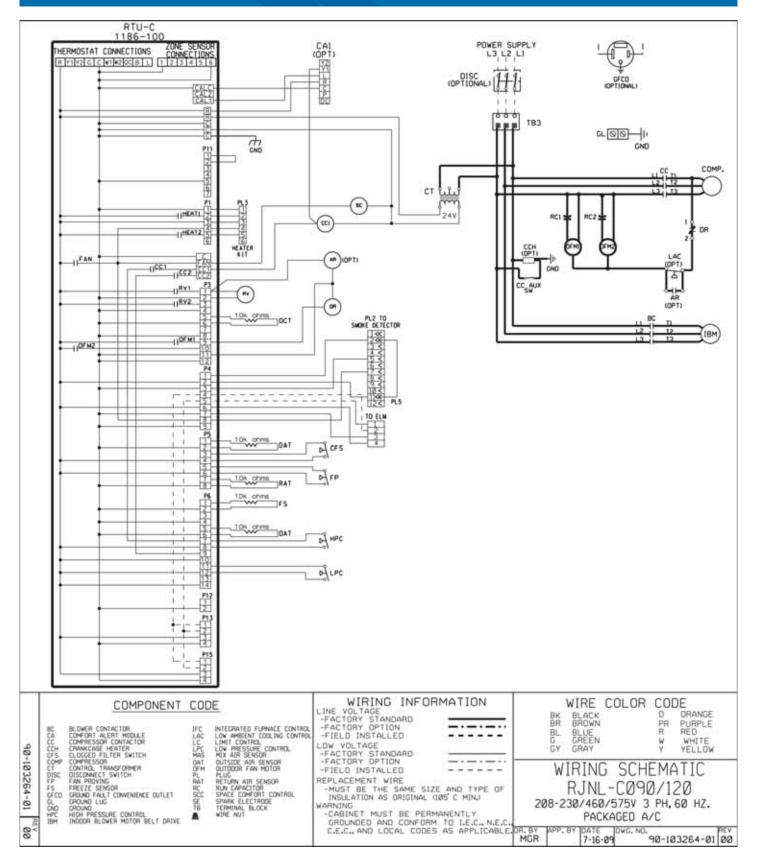
- 23 40 13.13 Decentralized, Rooftop Units:
- 23 40 13.13.A. Standard filter section shall
 - 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Filters shall be accessible through an access panel as described in the unit cabinet section of this specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

- 23 81 19.13 Small-Capacity Self-Contained Air Conditioners
- 23 81 19.13.A. General
 - 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
 - 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
 - 3. Unit shall use environmentally sound R-410a refrigerant.
 - 4. Unit shall be installed in accordance with the manufacturer's instructions.
 - 5. Unit must be selected and installed in compliance with local, state, and federal codes.


23 81 19.13.B. Quality Assurance


- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210/240 and 340/360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.
- 23 81 19.13.C. Delivery, Storage, and Handling
 - 1. Unit shall be stored and handled per manufacturer's recommendations.
 - 2. Lifted by crane requires either shipping top panel or spreader bars.
 - 3. Unit shall only be stored or positioned in the upright position.
- 23 81 19.13.E. Project Conditions
 - 1. As specified in the contract.
- 23 81 19.13.F. Operating Characteristics
 - 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 340/360 at ± 10% voltage.
 - 2. Compressor with standard controls shall be capable of operation from 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
 - 3. Unit shall be capable of simultaneous heating duty and defrost cycle operation when using accessory electric heaters.
 - 4. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
 - 5. Unit shall be factory configured for vertical supply & return configurations.
 - 6. Unit shall be field convertible from vertical to horizontal configuration.
- 23 81 19.13.G. Electrical Requirements
 - 1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.
- 23 81 19.13.H. Unit Cabinet
 - 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
 - 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
 - 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210/240 or 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb density, flexible fiberglass insulation, aluminum foil-faced on the air side.
 - 4. Base of unit shall have locations for thru-the-base electrical connections (factory installed or field installed), standard.
 - 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
 - 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b.Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" -11 1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - 7. Top panel:
 - a. Indoor section shall be a single piece top panel.
 - 8. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
 - b. Thru-the-base capability
 - (1.) Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - (2.) No basepan penetration, other than those authorized by the manufacturer, is permitted.


- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor, and electric or gas heater components (where applicable), shall have 1/4 turn latches.
- 23 81 19.13.J. Coils
 - 1. Standard Aluminum/Copper Coils: on all models.
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and Condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psig.
- 23 81 19.13.K. Refrigerant Components
 - 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valve (TXV) with venturi type distributor.
 - b. Refrigerant filter drier.
 - c. External service gauge connections to unit suction and discharge lines.
 - 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - d. Compressors shall be internally protected from high discharge temperature conditions.
 - e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - f. Compressor shall be factory mounted on rubber grommets.
 - g. Compressor motors shall have internal line break thermal, current overload and high pressure differential protection.
 - h. Crankcase heaters shall be utilized on all models to protect compressor with specific refrigerant charge.
- 23 81 19.13.L. Filter Section
 - 1. Filters access is specified in the unit cabinet section of this specification.
 - 2. Filters shall be held in place by a sliding filter tray, facilitating easy removal and installation.
 - 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
 - 4. Filters shall be standard, commercially available sizes.
 - 5. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 23 81 19.13.M. Evaporator Fan and Motor
 - 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection or circuit breaker.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
 - 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
- 23 81 19.13.N. Condenser Fans and Motors
 - 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
 - 2. Condenser Fans:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.
- 23 81 19.13.O. Special Features, Options and Accessories
 - 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.

- e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
- f. Shall be capable of introducing up to 100% outdoor air.
- g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
- h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
- i. An outdoor single enthalpy sensor shall be provided as standard. Outdoor air sensor setpoint shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
- j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
- k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper setpoint.
- I. Dampers shall be completely closed when the unit is in the unoccupied mode.
- m.Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
- n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 30°F (-1°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
- o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- p. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
- q. Economizer wire harness will have provision for smoke detector.
- 2. Two-Position Motorized Damper
 - a. Damper shall be a Two-Position Motorized Damper. Damper travel shall be from the full closed position to the field adjustable %-open setpoint.
 - b. Damper shall include adjustable damper travel from 25% to 100% (full open).
 - c. Damper shall include single or dual blade, gear driven dampers and actuator motor.
 - d. Actuator shall be direct coupled to damper gear. No linkage arms or control rods shall be acceptable.
 - e. Damper will admit up to 100% outdoor air for applicable rooftop units.
 - f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
 - g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
 - h. Outside air hood shall include aluminum water entrainment filter
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered design.
- 6. Convenience Outlet:
 - a. Non-Powered convenience outlet.
 - (1.) Outlet shall be powered from a separate 115-120v power source.
 - (2.) A transformer shall not be included.
 - (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - (4.) Outlet shall include 15 amp GFI receptacles.
 - (5.) Outlet shall be accessible from outside the unit.
- 7. Fan/Filter Status Switch:
 - a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
 - b. Status shall be displayed either over communication bus (when used with direct digital controls) or through the controller LCD display inside the unit control box.
- 8. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust is shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- 9. Roof Curbs (Vertical):
 - a. Full perimeter roof curb with exhaust capability providing separate air streams for energy recovery from the exhaust air without supply air contamination.
 - b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

- 10. High-Static Indoor Fan Motor(s) and Drive(s):
 - a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.
- 11. Outdoor Air Enthalpy Sensor:
 - a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.
- 13. Return Air Enthalpy Sensor:
 - a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
- 14. Indoor Air Quality (CO2) Sensor:
 - a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - b. The IAQ sensor shall be available in wall mount with LED display. The setpoint shall have adjustment capability.
- 15. Smoke detectors:
 - a. Shall be a Four-Wire Controller and Detector.
 - b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
 - c. Shall use magnet-activated test/reset sensor switches.
 - d. Shall have a recessed momentary switch for testing and resetting the detector.
 - e. Controller shall include:
 - (1.) One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
 - (2.) Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - (3.) One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - (4.) Capable of direct connection to two individual detector modules.
 - (5.) Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.
- 16. Electric Heat:
 - a. Heating Section
 - (1.) Heater element open coil resistance wire, nickel-chrome alloy, strung through ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.
 - (2.) Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24 v coil) and terminal block all mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Sure Comfort[®] will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Conditional Parts (Registration Required) 1 Phase, Residential ApplicationsTen (10) Years Compressor 1 Phase, Residential ApplicationsTen (10) Years 1 & 3 Phase, Commercial ApplicationsFive (5) Years Parts 1 & 3 Phase, Commercial ApplicationsOne (1) Year

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.