

Ruud Commercial Achiever® Series Package Gas Electric Unit

RKNL-C Series

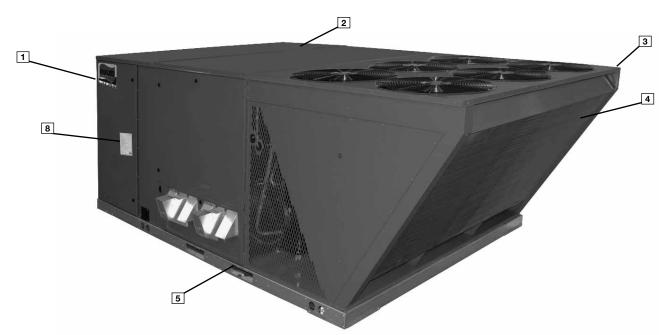
With ClearControl™ Nominal Sizes 15-25 Tons [52.8-87.9 kW] ASRAE 90.1-2007 Compliant

RKNL-H Series

With ClearControl[™] and VFD Technology Nominal Sizes 15-25 Tons [52.8-87.9 kW] ASRAE 90.1-2010 Compliant

TABLE OF CONTENTS

7	А
я	и


Unit Features & Benefits	3-8
Model Number Identification	9
Options	10
Selection Procedure	11
General Data	
RKNL-C/H Series	12-23
General Data Notes	24
Gross Systems Performance Data	
RKNL-C/H Series	25-26
Indoor Airflow Performance	
RKNL-C/H Series	27-30
Electrical Data	
RKNL-C/H Series	
Dimensional Data	35-38
Accessories	39-53
Mechanical Specifications	54-60
Wiring Diagrams	61-66
Limited Warranty	67

RKNL-C/H STANDARD FEATURES INCLUDE:

- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- · Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- Forkable base rails for easy handling and lifting.

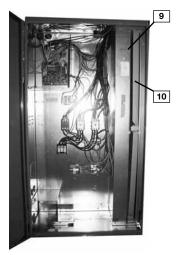
- · Single point electrical connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve and direct spark ignition.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- · Colored and labeled wiring.
- Copper tube/Aluminum Fin coils.
- Factory Installed Direct Digital Control (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- (-H) Models with Variable Frequency Drive (VFD) meet ASHRAE 90.1-2010 and California Title 24

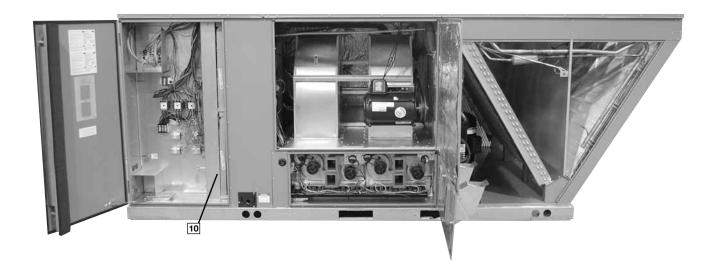
Ruud Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Ruud Commercial Series™ label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage (4). Every Ruud package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

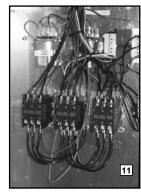
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Ruud-required reliability tests. Ruud adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (8). Contractors can rest assured that when a Ruud package unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-


number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKNL-C/H Package Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-C/H Package Gas/Electric with ClearControl™ is specifically designed to be applied in four distinct applications:

The RKNL-C/H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.


The RKNL-C/H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKNL-C/H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-C/H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

-H models with factory installed VFD (13) (variable frequency drive) optimize energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD equipped units meet California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the

airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for lowvoltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

In the outdoor section are the external gauge ports. ([15]). With gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly

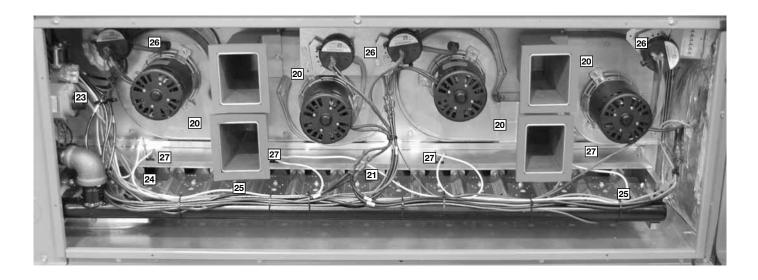
easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley ([16]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Ruud has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

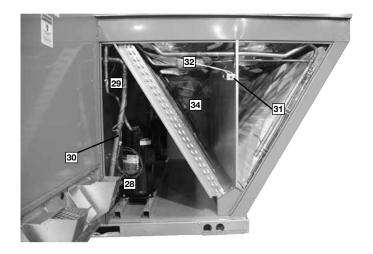
Also inside the blower compartment are the optional low-ambient controls (18). The lowambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow

and allows monitoring of the suction line temperature on the controller display.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

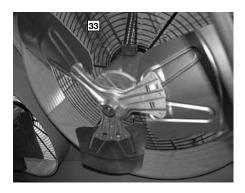

The furnace compartment contains the latest furnace technology on the market. The draft inducers ([20]) draw the flame from the Ruud exclusive in-shot burners (21) into the aluminized tubular heat exchanger (22) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (23), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.



The direct spark igniter (24) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (25) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (26) to assure adequate combustion airflow before ignition.
- Rollout switches (27) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.



The compressor compartment houses the heartbeat of the unit. The scroll compressor (28) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (29) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (30) and high-pressure switches (31) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

Each unit comes standard with filter dryer (32). The condenser fan motor (33) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (34) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

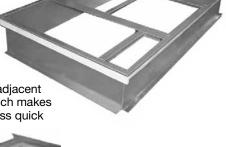
Each unit is designed for both downflow or horizontal applications (35) for job configuration flexibility. The return air compartment of

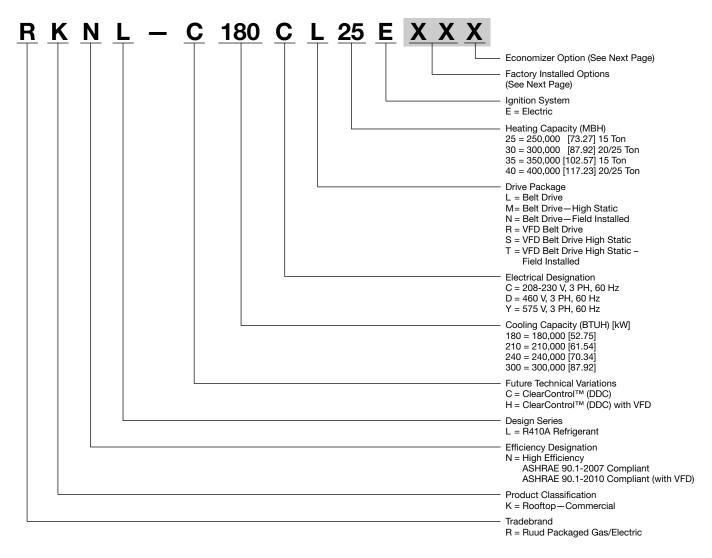
compartment can also contain an economizer (36).

Three models exists; two for down-flow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow quick plug-in installation. The downflow economizer is also available as a factory-installed option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage

35

adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. The power exhaust is housed in the barometric relief opening and is easily


slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.


The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network

connection.

The Ruud roofcurb (37) is made for toolless assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent curb sides (38), which makes the assembly process quick and easy.

FACTORY INSTALLED OPTION CODES FOR RKNL-C/H (15-25 TON) [52.8-87.9 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		Х		
AH			x	
AR				X
BF	Х		x	
BG	Х	X		
CY		X	x	X
JD	X			X
JB		X	x	
KA	Х	Х		X
DP	Х	Х	Х	Х

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKNL-C/H (15-25 TON) [52.8-87.9 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer* With Barometric Relief	DDC Single Enthalpy Economizer* With Barometric Relief and Smoke Detector
А	Х		
Н		X	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKNL-C240CL40E $\underline{\textbf{XX}}$ X (where $\underline{\textbf{XX}}$ is factory installed option)

Example: No Options

RKNL-C240CL40E

Example: No option with factory installed economizer

RKNL-C240CL40EAAH

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service disconnect, and stainless steel heat exchanger with no factory installed economizer

RKNL-C240CL40ECYA

Example: Options same as above with factory installed economizer

RKNL-C240CL40ECYJ

^{*}Downflow economizer only.

To select an RKNL-C Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example: 208/240V - 3 Phase - 60 Hz Voltage-Total Cooling Capacity-205,000 BTUH [60.0 kW] Sensible Cooling Capacity— 155,000 BTUH [45.4 kW] 235,000 BTUH [68.8 kW] Heating Capacity-*Condenser Entering Air-95°F [35.0°C] DB 65°F [18.3°C] WB *Evaporator Mixed Air Entering-78°F [25.6°C] DB *Indoor Air Flow (vertical)— 7200 CFM [3398 L/s]

0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

*External Static Pressure-

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

 $192,550 + (1.10 \times 7,200 \times (1 - 0.11) \times (78 - 80))$ Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,250 \times 0.99 = 235,868 \text{ BTUH } [69.06 \text{ kW}]$ Sensible Capacity = $178,452 \times 0.96 = 171,314 \text{ BTUH } [50.16 \text{ kW}]$ Power Input = $18,200 \times 0.99 = 18,018 \text{ Watts}$

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKNL-C240CL30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RKNL- Series Model RKNL- Series (with VFD)	C180CL25E H180CR25E	C180CL35E H180CR35E	C180CM25E H180CS25E	C180CM35E H180CS35E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	188,000 [55.08]	188,000 [55.08]	188,000 [55.08]	188,000 [55.08]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	182,000 [53.33]	182,000 [53.33]	182,000 [53.33]	182,000 [53.33]
Net Sensible Capacity Btu [kW]	135,700 [39.76]	135,700 [39.76]	135,700 [39.76]	135,700 [39.76]
Net Latent Capacity Btu [kW]	46,300 [13.57]	46,300 [13.57]	46,300 [13.57]	46,300 [13.57]
IEER3 Latent (Standard / VFD)	12.4/14.4	12.4/14.4	12.4/14.4	12.4/14.4
Net System Power kW	16.35	16.35	16.35	16.35
Heating Performance (Gas) ⁴		10.00		10100
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 55]	1 125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 5
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
	91	91	91	91
Outdoor Sound Rating (dB) ⁵	Louvered		Louvered	
Outdoor Coil—Fin Type		Louvered		Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	onigie / Maitiple	1
Motor HP	3	3	5	5
	1725	1725	1725	1725
Motor RPM				
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]
Weights				
Net Weight lbs. [kg]	1958 [888]	1971 [894]	1987 [901]	2000 [907]
Ship Weight Ibs. [kg]	2084 [945]	2097 [951]	2113 [958]	2126 [964]

C180DM35E

NOM. SIZES 15-25 TONS [52.8-87.9 kW] MODELS

C180DL25E

Model RKNL- Series

Model RKNL- Series (with VFD)	H180DR25E	H180DR35E	H180DS25E	H180DS35E
Cooling Performance ¹		-		CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [55.08]	188,000 [55.08]	188,000 [55.08]	188,000 [55.08]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	182,000 [53.33]	182,000 [53.33]	182,000 [53.33]	182,000 [53.33]
Net Sensible Capacity Btu [kW]	135,700 [39.76]	135,700 [39.76]	135,700 [39.76]	135,700 [39.76]
Net Latent Capacity Btu [kW]	46,300 [13.57]	46,300 [13.57]	46,300 [13.57]	46,300 [13.57]
IEER ³ Latent (Standard / VFD)	12.4/14.4	12.4/14.4	12.4/14.4	12.4/14.4
Net System Power kW	16.35	16.35	16.35	16.35
Heating Performance (Gas)4	10.00	10.00	10.00	10.00
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 55	1 125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 5
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Rows / FPI [FPcm] Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
·				
Drain Connection No./Size in. [mm]	1/1 [25.4] Propeller	1/1 [25.4] Propeller	1/1 [25.4] Propeller	1/1 [25.4] Propeller
Outdoor Fan—Type	•	•	•	•
No. Used/Diameter in. [mm]	4/24 [609.6] Direct/1	4/24 [609.6] Direct/1	4/24 [609.6] Direct/1	4/24 [609.6] Direct/1
Drive Type/No. Speeds				
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]
Weights				
Net Weight Ibs. [kg]	1958 [888]	1971 [894]	1987 [901]	2000 [907]
Ship Weight lbs. [kg]	2084 [945]	2097 [951]	2113 [958]	2126 [964]

C180DL35E

C180DM25E

Model RKNL- Series Model RKNL- Series (with VFD)	C180YL35E	C180YM35E	C210CL25E H210CR25E	C210CL35E H210CR35E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [55.08]	188,000 [55.08]	212,000 [62.12]	212,000 [62.12]
EER/SEER2	11.1/NA	11.1/NA	11.6/NA	11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	7000/7025 [3303/3315]	7000/7025 [3303/3315]
AHRI Net Cooling Capacity Btu [kW]	182,000 [53.33]	182,000 [53.33]	204,000 [59.77]	204,000 [59.77]
Net Sensible Capacity Btu [kW]	135,700 [39.76]	135,700 [39.76]	154,900 [45.39]	154,900 [45.39]
Net Latent Capacity Btu [kW]	46,300 [13.57]	46,300 [13.57]	49,100 [14.39]	49,100 [14.39]
IEER3 Latent (Standard / VFD)	12.4	12.4	12.6/14.5	12.6/14.5
Net System Power kW	16.35	16.35	17.57	17.57
Heating Performance (Gas) ⁴	10.00			
Heating Input Btu [kW] (1st Stage / 2nd Stage)	175 000/350 000 [51 27/102 55]	175 000/350 000 [51 27/102 55]	1 125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 5
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	30-60 [16.7-33.3] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	30-60 [16.7-33.3]	30-60 [16.7-33.3]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
	0.75 [18]	0.75 [18]	0.73 [18]	0.73 [18]
Compressor	2/Scroll	2/Scroll	2/Scroll	2/Scroll
No./Type				
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	14800 [6984]	14800 [6984]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
**	, ,	, , ,	Single / Multiple	Single / Multiple
No. Speeds (Standard / VFD)	Single	Single	,	Sillyle / Multiple
No. Motors	1	1	1	1
Motor HP	3	5	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	184	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	294/302 [8335/8562]	294/302 [8335/8562]
Weights				
Net Weight lbs. [kg]	1986 [901]	2015 [914]	2145 [973]	2158 [979]

C210DL35E

NOM. SIZES 15-25 TONS [52.8-87.9 kW] MODELS

C210CM25E

Model RKNL- Series

Model RKNL- Series (with VFD)	H210CS25E	H210CS35E	6210DE25E H210DR25E	H210DR35E
Cooling Performance ¹			-	CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [62.12]	212,000 [62.12]	212,000 [62.12]	212,000 [62.12]
EER/SEER ²	11.6/NA	11.6/NA	11.6/NA	11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	7000/7025 [3303/3315]	7000/7025 [3303/3315]	7000/7025 [3303/3315]	7000/7025 [3303/3315]
AHRI Net Cooling Capacity Btu [kW]	204,000 [59.77]	204,000 [59.77]	204,000 [59.77]	204,000 [59.77]
Net Sensible Capacity Btu [kW]	154,900 [45.39]	154,900 [45.39]	154,900 [45.39]	154,900 [45.39]
Net Latent Capacity Btu [kW]	49,100 [14.39]	49,100 [14.39]	49,100 [14.39]	49,100 [14.39]
IEER ³ Latent (Standard / VFD)	12.6/14.5	12.6/14.5	12.6/14.5	12.6/14.5
Net System Power kW	17.57	17.57	17.57	17.57
Heating Performance (Gas)4	11.01	11.01	11.01	17.07
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 55]	1 125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 5
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered Rifled	Louvered Rifled	Louvered Rifled	Louvered Rifled
Tube Type				
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	14800 [6984]	14800 [6984]	14800 [6984]	14800 [6984]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	5	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]
Weights	. [. [. [. []
Net Weight Ibs. [kg]	2174 [986]	2187 [992]	2145 [973]	2158 [979]
Ship Weight lbs. [kg]	2301 [1044]	2314 [1050]	2272 [1031]	2285 [1036]
See Page 24 for Notes.	2001 [1044]	2011[1000]		nates Metric Conversion

C210CM35E

C210DL25E

Model RKNL- Series	C210DM25E H210DS25E	C210DM35E H210DS35E	C210YL35E	C210YM35E
Model RKNL- Series (with VFD) Cooling Performance ¹	питогое	пи пироза		CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [62.12]	212,000 [62.12]	212,000 [62.12]	212,000 [62.12]
EER/SEER ²	212,000 [62.12] 11.6/NA	212,000 [62.12] 11.6/NA	212,000 [62.12] 11.6/NA	212,000 [62.12] 11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	7000/7025 [3303/3315]	7000/7025 [3303/3315]	7000/7025 [3303/3315]	7000/7025 [3303/3315]
AHRI Net Cooling Capacity Btu [kW]	204,000 [59.77]	204,000 [59.77]	204,000 [59.77]	204,000 [59.77]
		154,900 [45.39]		
Net Sensible Capacity Btu [kW]	154,900 [45.39]		154,900 [45.39]	154,900 [45.39]
Net Latent Capacity Btu [kW]	49,100 [14.39]	49,100 [14.39]	49,100 [14.39]	49,100 [14.39]
IEER³ Latent (Standard / VFD)	12.6/14.5	12.6/14.5	12.6	12.6
Net System Power kW	17.57	17.57	17.57	17.57
Heating Performance (Gas)4	105 000/050 000 100 00/70 051	175 000/050 000 (51 07/100 55)	1 47F 000/0F0 000 [F4 07/400 FF]	175 000/050 000 551 07/100 55
Heating Input Btu [kW] (1st Stage / 2nd Stage)				
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	14	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	000:0] Direct/1	4,24 [665.6] Direct/1	Direct/1	Direct/1
CFM [L/s]	14800 [6984]	14800 [6984]	14800 [6984]	14800 [6984]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
No. Used/Diameter in. [mm]			Belt (Adjustable)	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	(, ,	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple 1	Single / Multiple	Single	Single
No. Motors	•	1	1	1
Motor HP	5	5	3	5
Motor RPM	1725 184	1725	1725 56	1725
Motor Frame Size		184		184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]
Weights				
Net Weight lbs. [kg]	2174 [986]	2187 [992]	2173 [986]	2202 [999]
Ship Weight lbs. [kg]	2301 [1044]	2314 [1050]	2300 [1043]	2329 [1056]

Model RKNL- Series Model RKNL- Series (with VFD)	C240CL30E H240CR30E	C240CL40E H240CR40E	C240CM30E H240CS30E	C240CM40E H240CS40E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	244,000 [71.49]	244,000 [71.49]	244,000 [71.49]	244,000 [71.49]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	234,000 [68.56]	234,000 [68.56]	234,000 [68.56]	234,000 [68.56]
Net Sensible Capacity Btu [kW]	171,600 [50.28]	171,600 [50.28]	171,600 [50.28]	171,600 [50.28]
Net Latent Capacity Btu [kW]	62,400 [18.28]	62,400 [18.28]	62,400 [18.28]	62,400 [18.28]
IEER3 Latent (Standard / VFD)	11.4/14.8	11.4/14.8	11.4/14.8	11.4/14.8
Net System Power kW	21.04	21.04	21.04	21.04
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150.000/300.000 [43.95/87.9]	200,000/400,000 [58.6/117.2
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	-	-
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
' ' '	0.73 [18]	0.75 [18]	0.75 [19]	0.73 [18]
Compressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	0/24 [009.0] Direct/1	0/24 [003.0] Direct/1	0/24 [009.0] Direct/1	0/24 [009.0] Direct/1
	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
CFM [L/s]			6 at 1/3 HP	
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP		6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	5	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	213	213
-ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights		<u>.</u>	<u> </u>	<u> </u>
Net Weight Ibs. [kg]	2289 [1038]	2303 [1045]	2327 [1056]	2341 [1062]
Ship Weight lbs. [kg]	2415 [1095]	2430 [1102]	2453 [1113]	2468 [1119]
omp worght has [rg]	7-410 [1000]	2-100 [1102]	-100 [1110]	[פווון סטדי

Model RKNL- Series Model RKNL- Series (with VFD)	C240CN30E H240CT30E	C240CN40E H240CT40E	C240DL30E H240DR30E	C240DL40E H240DR40E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [71.49]	244,000 [71.49]	244,000 [71.49]	244,000 [71.49]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	11.1/NA
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	234,000 [68.56]	234,000 [68.56]	234,000 [68.56]	234,000 [68.56]
Net Sensible Capacity Btu [kW]	171,600 [50.28]	171,600 [50.28]	171,600 [50.28]	171,600 [50.28]
Net Latent Capacity Btu [kW]	62,400 [18.28]	62,400 [18.28]	62,400 [18.28]	62,400 [18.28]
IEER3 Latent (Standard / VFD)	11.4/14.8	11.4/14.8	11.4/14.8	11.4/14.8
Net System Power kW	21.04	21.04	21.04	21.04
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.75 [15]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	0/24 [003.0] Direct/1	0/24 [003.0] Direct/1	0/24 [003.0] Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	213	184	184
Filter—Type Furnished	Disposable Yes	Disposable Yes	Disposable Yes	Disposable Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [1139//9304]	402/331 [1139//9304]	402/331 [1139//9304]	402/331 [1139//9364]
Weights	0005 (4055)	0040 [4004]	0000 [4000]	0000 [4045]
Net Weight lbs. [kg]	2325 [1055]	2340 [1061]	2289 [1038]	2303 [1045]
Ship Weight lbs. [kg]	2452 [1112]	2466 [1119]	2415 [1095]	2430 [1102]

C240DM30E H240DS30E	C240DM40E H240D\$40E	C240DN30E H240DT30E	C240DN40E H240DT40E
			CONTINUED
244,000 [71.49]	244,000 [71.49]	244,000 [71.49]	244,000 [71.49]
11.1/NA	11.1/NA	11.1/NA	11.1/NA
8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
234,000 [68.56]	234,000 [68.56]	234,000 [68.56]	234,000 [68.56]
171,600 [50.28]	171,600 [50.28]	171,600 [50.28]	171,600 [50.28]
62,400 [18.28]	62,400 [18.28]	62,400 [18.28]	62,400 [18.28]
11.4/14.8	11.4/14.8	11.4/14.8	11.4/14.8
21.04	21.04	21.04	21.04
	-	-	
150.000/300.000 [43.95/87.9]	200.000/400.000 [58.6/117.2]	150.000/300.000 [43.95/87.9]	200,000/400,000 [58.6/117.
			162,000/324,000 [47.47/94.9
			25-55 [13.9-30.6] /
15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
81	81	81	81
12	14	12	14
2	2	2	2
			0.75 [19]
00 [0]	00 [0]	00 [0]	00 [.0]
2/Scroll	2/Scroll	2/Scroll	2/Scroll
			91
			Louvered
			Rifled
			0.375 [9.5]
			53.3 [4.95]
			2 / 22 [9]
			Louvered
			Rifled
0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
TX Valves	TX Valves	TX Valves	TX Valves
1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Propeller	Propeller	Propeller	Propeller
6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Direct/1	Direct/1	Direct/1	Direct/1
19800 [9344]	19800 [9344]		19800 [9344]
			6 at 1/3 HP
			1075
			FC Centrifugal
· ·	ŭ	ŭ	2/18x9 [457x229]
			Belt (Adjustable)
, . ,	, , ,	` '	
• •	• •		Single / Multiple
			1
			7 1/2
			1725
184	213	184	213
Disposable	Disposable	Disposable	Disposable
Yes	Yes	Yes	Yes
(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
2327 [1056]	2341 [1062]	2325 [1055]	2340 [1061]
	#244,000 [71.49] 11.1/NA 8000/7725 [3775/3645] 234,000 [68.56] 171,600 [50.28] 62,400 [18.28] 11.4/14.8 21.04 150,000/300,000 [43.95/87.9] 121,500/243,000 [35.6/71.2] 15-45 [8.3-25] / 15-45 [8	H240DS30E H240DS40E 244,000 [71.49] 244,000 [71.49] 11.1/NA 11.1/NA 8000/725 [3775/3645] 8000/725 [3775/3645] 234,000 [68.56] 171,600 [50.28] 62,400 [18.28] 62,400 [18.28] 11.4/14.8 11.4/14.8 21.04 21.04 150,000/300,000 [43.95/87.9] 200,000/400,000 [58.6/117.2] 121,500/243,000 [35.6/71.2] 162,000/324,000 [47.47/94.93] 15-45 [8.3-25] 25-55 [13.9-30.6] 15-45 [8.3-25] 25-55 [13.9-30.6] 81 81 81 81 12 14 2 2 0.75 [19] 0.75 [19] 2/Scroll 2/Scroll 91 91 Louvered Rifled Rifled Rifled 0.375 [9.5] 3.3 [4.95] 2 / 22 [9] 2 / 22 [9] Louvered Rifled Rifled Rifled 0.375 [9.5] 0.375 [9.5] 26.67 [2.48] 3 / 13 [5]	H240DS30E H240DS40E H240DT30E 244,000 [71.49] 244,000 [71.49] 244,000 [71.49] 11.1/NA 11.1/NA 11.1/NA 8000/7725 [3775/3645] 8000/7725 [3775/3645] 8000/7725 [3775/3645] 234,000 [68.56] 234,000 [68.56] 234,000 [68.56] 171,600 [50.28] 171,600 [50.28] 171,600 [50.28] 62,400 [18.28] 62,400 [18.28] 62,400 [18.28] 11.4/14.8 11.4/14.8 11.4/14.8 21.04 21.04 21.04 150,000/300,000 [43.95/87.9] 200,000/400,000 [58.6/117.2] 150,000/300,000 [43.95/87.9] 121,500/243,000 [36.67/1.2] 162,000/324,000 [47.47/94.93] 121,500/243,000 [35.67/1.2] 15-45 [8.3-25] 25-55 [13.9-30.6] 15-45 [8.3-25] 15-45 [8.3-25] 25-55 [13.9-30.6] 15-45 [8.3-25] 15-45 [8.3-25] 25-55 [13.9-30.6] 15-45 [8.3-25] 27 Cycroll 2/Scroll 2/Scroll 91 91 91 91 10-0vered Louvered Rifled Rifled Rifled Rifled Rif

Model RKNL- Series Model RKNL- Series (with VFD)	C240YL40E	C240YM40E	C240YN40E	C300CL30E H300CR30E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [71.49]	244,000 [71.49]	244,000 [71.49]	312,000 [91.42]
EER/SEER ²	11.1/NA	11.1/NA	11.1/NA	10/NA
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	10000/9475 [4719/4471]
AHRI Net Cooling Capacity Btu [kW]	234,000 [68.56]	234,000 [68.56]	234,000 [68.56]	294,000 [86.14]
Net Sensible Capacity Btu [kW]	171,600 [50.28]	171,600 [50.28]	171,600 [50.28]	214,100 [62.73]
Net Latent Capacity Btu [kW]	62,400 [18.28]	62,400 [18.28]	62,400 [18.28]	79,900 [23.41]
IEER3 Latent (Standard / VFD)	11.4	11.4	11.4	10.1/13.4
Net System Power kW	21.04	21.04	21.04	29.39
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200.000/400.000 [58.6/117.2]	200.000/400.000 [58.6/117.2]	200,000/400,000 [58.6/117.2]	150.000/300.000 [43.95/87.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)				121,500/243,000 [35.6/71.2]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	14	14	12
	2	2	2	2
No. Stages				
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	92
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
· ·				
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single	Single	Single	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	7 1/2	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	213	213	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	339/357 [9611/10121]
Weights		1		
Net Weight lbs. [kg]	2323 [1054]	2361 [1071]	2360 [1070]	2388 [1083]
	2450 [1111]	2488 [1129]	2486 [1128]	2514 [1140]
Ship Weight lbs. [kg]	24JU [1111]	2400 [1128]	2400 [1120]	2314 [1140]

Model RKNL- Series Model RKNL- Series (with VFD)	C300CL40E H300CR40E	C300CM30E H300CS30E	C300CM40E H300CS40E	C300DL30E H300DR30E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	312,000 [91.42]	312,000 [91.42]	312,000 [91.42]	312,000 [91.42]
EER/SEER2	10/NA	10/NA	10/NA	10/NA
Nominal CFM/AHRI Rated CFM [L/s]	10000/9475 [4719/4471]	10000/9475 [4719/4471]	10000/9475 [4719/4471]	10000/9475 [4719/4471]
AHRI Net Cooling Capacity Btu [kW]	294,000 [86.14]	294,000 [86.14]	294,000 [86.14]	294,000 [86.14]
Net Sensible Capacity Btu [kW]	214,100 [62.73]	214,100 [62.73]	214,100 [62.73]	214,100 [62.73]
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]
IEER3 Latent (Standard / VFD)	10.1/13.4	10.1/13.4	10.1/13.4	10.1/13.4
Net System Power kW	29.39	29.39	29.39	29.39
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)		121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	25-45 [13.9-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	12
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	92	92	92	92
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
••	•	•	•	•
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	10	10	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	215	215	213
Filter—Type	Disposable Yes	Disposable Yes	Disposable Yes	Disposable Yes
Furnished (NO.) Size Recommended in [mm v mm v mm]				
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]
Weights				
Net Weight lbs. [kg]	2402 [1090]	2399 [1088]	2413 [1095]	2388 [1083]
Ship Weight lbs. [kg]	2529 [1147]	2525 [1145]	2540 [1152]	2514 [1140]

Model RKNL- Series Model RKNL- Series (with VFD)	C300DL40E H300DR40E	C300DM30E H300DS30E	C300DM40E H300DS40E	C300YL40E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	312,000 [91.42]	312,000 [91.42]	312,000 [91.42]	312,000 [91.42]
EER/SEER ²	10/NA	10/NA	10/NA	10/NA
Nominal CFM/AHRI Rated CFM [L/s]	10000/9475 [4719/4471]	10000/9475 [4719/4471]	10000/9475 [4719/4471]	10000/9475 [4719/4471]
AHRI Net Cooling Capacity Btu [kW]	294,000 [86.14]	294,000 [86.14]	294,000 [86.14]	294,000 [86.14]
Net Sensible Capacity Btu [kW]	214,100 [62.73]	214,100 [62.73]	214,100 [62.73]	214,100 [62.73]
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]
IEER3 Latent (Standard / VFD)	10.1/13.4	10.1/13.4	10.1/13.4	10.1
Net System Power kW	29.39	29.39	29.39	29.39
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200.000/400.000 [58.6/117.2]	150.000/300.000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	200.000/400.000 [58.6/117.5
Heating Output Btu [kW] (1st Stage / 2nd Stage)	•	-		
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	10-40 [5.6-22.2] /	15-45 [8.3-25] /	15-45 [8.3-25] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	10-40 [5.6-22.2]	15-45 [8.3-25]	15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	[]	20 [0]	* []	**** [.**]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	92	92	92	92
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
	Louvered	Louvered	Louvered	Louvered
Indoor Coil—Fin Type	Rifled	Rifled	Rifled	Rifled
Tube Type				
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single
No. Motors	1	1	1	1
Motor HP	7 1/2	10	10	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	215	215	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]
Weights				
Net Weight lbs. [kg]	2402 [1090]	2399 [1088]	2413 [1095]	2422 [1099]
Ship Weight lbs. [kg]	2529 [1147]	2525 [1145]	2540 [1152]	2549 [1156]

Model RKNL- Series Model RKNL- Series (with VFD)	C300YM40E	
Cooling Performance ¹		
Gross Cooling Capacity Btu [kW]	312,000 [91.42]	
EER/SEER2	10/NA	
Nominal CFM/AHRI Rated CFM [L/s]	10000/9475 [4719/4471]	
AHRI Net Cooling Capacity Btu [kW]	294,000 [86.14]	
Net Sensible Capacity Btu [kW]	214,100 [62.73]	
Net Latent Capacity Btu [kW]	79,900 [23.41]	
IEER ³ Latent (Standard / VFD)	10.1	
Net System Power kW	29.39	
Heating Performance (Gas)4	20.00	
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200,000/400,000 [58.6/117.2]	
	162,000/324,000 [47.47/94.93]	
Heating Output Btu [kW] (1st Stage / 2nd Stage) Temperature Rise Range °F [°C]	15-45 [8.3-25] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	
Steady State Efficiency (%)	81	
No. Burners	14	
No. Stages	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	
Compressor	0.70 [10]	
No./Type	2/Scroll	
	92	
Outdoor Sound Rating (dB) ⁵		
Outdoor Coil—Fin Type	Louvered	
Tube Type	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 22 [9]	
Indoor Coil—Fin Type	Louvered	
Tube Type	Rifled	
Tube Size in. [mm]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	
Rows / FPI [FPcm]	4 / 15 [6]	
Refrigerant Control	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	
CFM [L/s]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	
Motor RPM	1075	
Indoor Fan—Type	FC Centrifugal	
	2/18x9 [457x229]	
No. Used/Diameter in. [mm]		
Drive Type	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single	
No. Motors	1	
Motor HP	10	
Motor RPM	1725	
Motor Frame Size	215	
Filter—Type	Disposable	
Furnished	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	
Weights		
Net Weight Ibs. [kg]	2433 [1104]	
Ship Weight lbs. [kg]	2560 [1161]	
See Page 24 for Notes.	. ,	[] Designates Metric Conversi

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 210/240 or 360.
- 4. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- 6. 25 ton model (C300) is outside the scope of AHRI Standard 340/360.

GROSS SYSTEMS PERFORMANCE DATA-C/H180

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
<u> </u>		DR ①	.04	.08	.13	.04	.08	.13	.04	.08	.13
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	226.5 [66.4] 148.8 [43.6] 12.6	217.8 [63.8] 126.2 [37.0] 12.3	210.4 [61.7] 108.5 [31.8] 12.1	214.3 [62.8] 174.1 [51.0] 12.4	206.0 [60.4] 149.6 [43.9] 12.2	199.0 [58.3] 130.2 [38.2] 12.0	206.3 [60.5] 193.4 [56.7] 12.2	198.4 [58.1] 167.5 [49.1] 12.0	191.7 [56.2] 146.8 [43.0] 11.8
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	222.2 [65.1] 146.6 [43.0] 13.1	213.6 [62.6] 124.3 [36.4] 12.9	206.4 [60.5] 106.9 [31.3] 12.7	209.9 [61.5] 171.9 [50.4] 13.0	201.8 [59.1] 147.8 [43.3] 12.7	195.0 [57.1] 128.7 [37.7] 12.5	202.0 [59.2] 191.3 [56.1] 12.8	194.2 [56.9] 165.7 [48.6] 12.6	187.6 [55.0] 145.3 [42.6] 12.4
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	217.5 [63.7] 144.1 [42.2] 13.8	209.1 [61.3] 122.3 [35.9] 13.5	202.0 [59.2] 105.2 [30.8] 13.3	205.3 [60.2] 169.5 [49.7] 13.6	197.3 [57.8] 145.7 [42.7] 13.4	190.7 [55.9] 127.0 [37.2] 13.1	197.3 [57.8] 188.8 [55.3] 13.5	189.7 [55.6] 163.6 [48.0] 13.2	183.3 [53.7] 143.5 [42.1] 13.0
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	212.5 [62.3] 141.4 [41.5] 14.5	204.3 [59.9] 120.0 [35.2] 14.2	197.4 [57.9] 103.3 [30.3] 14.0	200.2 [58.7] 166.7 [48.9] 14.3	192.5 [56.4] 143.5 [42.1] 14.0	186.0 [54.5] 125.1 [36.7] 13.8	192.3 [56.4] 186.2 [54.6] 14.2	184.9 [54.2] 161.4 [47.3] 13.9	178.6 [52.3] 141.6 [41.5] 13.7
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	207.2 [60.7] 138.5 [40.6] 15.2	199.2 [58.4] 117.6 [34.5] 14.9	192.4 [56.4] 101.2 [29.7] 14.7	194.9 [57.1] 163.9 [48.0] 15.1	187.4 [54.9] 141.1 [41.4] 14.8	181.0 [53.0] 123.0 [36.1] 14.5	187.0 [54.8] 183.3 [53.7] 14.9	179.8 [52.7] 159.0 [46.6] 14.6	173.7 [50.9] 139.6 [40.9] 14.4
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	201.5 [59.1] 135.4 [39.7] 16.0	193.7 [56.8] 115.0 [33.7] 15.7	187.2 [54.9] 99.1 [29.1] 15.4	189.2 [55.4] 160.7 [47.1] 15.9	181.9 [53.3] 138.4 [40.6] 15.6	175.8 [51.5] 120.8 [35.4] 15.3	181.3 [53.1] 180.1 [52.8] 15.7	174.3 [51.1] 156.3 [45.8] 15.4	168.4 [49.4] 137.3 [40.2] 15.1
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	195.5 [57.3] 132.0 [38.7] 16.9	188.0 [55.1] 112.2 [32.9] 16.5	181.6 [53.2] 96.6 [28.3] 16.3	183.2 [53.7] 157.3 [46.1] 16.7	176.2 [51.6] 135.6 [39.8] 16.4	170.2 [49.9] 118.3 [34.7] 16.1	175.3 [51.4] 175.3 [51.4] 16.5	168.5 [49.4] 153.4 [45.0] 16.2	162.8 [47.7] 134.8 [39.5] 16.0
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	189.2 [55.4] 128.4 [37.6] 17.8	181.9 [53.3] 109.1 [32.0] 17.4	175.7 [51.5] 93.9 [27.5] 17.1	176.9 [51.8] 153.7 [45.1] 17.6	170.1 [49.9] 132.6 [38.9] 17.3	164.3 [48.2] 115.8 [33.9] 17.0	169.0 [49.5] 169.0 [49.5] 17.5	162.5 [47.6] 150.5 [44.1] 17.1	156.9 [46.0] 132.3 [38.8] 16.8
را	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	182.5 [53.5] 124.5 [36.5] 18.7	175.5 [51.4] 105.9 [31.0] 18.4	169.5 [49.7] 91.2 [26.7] 18.1	170.2 [49.9] 149.9 [43.9] 18.6	163.7 [48.0] 129.4 [37.9] 18.2	158.1 [46.3] 113.0 [33.1] 17.9	162.3 [47.6] 162.3 [47.6] 18.4	156.0 [45.7] 147.2 [43.2] 18.1	150.8 [44.2] 129.6 [38.0] 17.8

GROSS SYSTEMS PERFORMANCE DATA—C/H210

				EN	ITERING INDO	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	8400 [3964]	7025 [3315]	5600 [2643]	8400 [3964]	7025 [3315]	5600 [2643]	8400 [3964]	7025 [3315]	5600 [2643]
		DR ①	.06	.09	.13	.06	.09	.13	.06	.09	.13
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	258.4 [75.7] 193.9 [56.8] 13.0	249.5 [73.1] 168.8 [49.5] 12.8	240.3 [70.4] 144.5 [42.4] 12.5	244.1 [71.5] 224.6 [65.8] 12.8	235.7 [69.1] 197.4 [57.9] 12.6	227.0 [66.5] 170.8 [50.1] 12.4	231.9 [68.0] 231.9 [68.0] 12.7	223.9 [65.6] 217.1 [63.6] 12.4	215.7 [63.2] 189.1 [55.4] 12.2
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	252.7 [74.1] 182.3 [53.4] 13.6	244.0 [71.5] 158.3 [46.4] 13.4	235.0 [68.9] 135.2 [39.6] 13.1	238.4 [69.9] 212.9 [62.4] 13.4	230.2 [67.5] 186.9 [54.8] 13.2	221.7 [65.0] 161.5 [47.3] 13.0	226.2 [66.3] 226.2 [66.3] 13.3	218.4 [64.0] 206.6 [60.6] 13.0	210.4 [61.7] 179.8 [52.7] 12.8
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	246.7 [72.3] 171.9 [50.4] 14.2	238.2 [69.8] 149.0 [43.7] 14.0	229.4 [67.2] 126.9 [37.2] 13.7	232.4 [68.1] 202.7 [59.4] 14.1	224.4 [65.8] 177.7 [52.1] 13.8	216.1 [63.3] 153.4 [45.0] 13.6	220.2 [64.5] 220.2 [64.5] 13.9	212.6 [62.3] 197.4 [57.9] 13.7	204.8 [60.0] 171.7 [50.3] 13.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	240.4 [70.5] 162.9 [47.8] 14.9	232.1 [68.0] 141.0 [41.3] 14.7	223.5 [65.5] 119.9 [35.1] 14.4	226.1 [66.3] 193.6 [56.7] 14.8	218.3 [64.0] 169.6 [49.7] 14.5	210.3 [61.6] 146.3 [42.9] 14.3	213.9 [62.7] 213.9 [62.7] 14.6	206.5 [60.5] 189.3 [55.5] 14.4	198.9 [58.3] 164.5 [48.2] 14.1
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	233.8 [68.5] 155.3 [45.5] 15.7	225.7 [66.1] 134.2 [39.3] 15.4	217.4 [63.7] 114.0 [33.4] 15.1	219.5 [64.3] 186.0 [54.5] 15.5	212.0 [62.1] 162.9 [47.8] 15.2	204.1 [59.8] 140.3 [41.1] 15.0	207.3 [60.8] 207.0 [60.7] 15.3	200.2 [58.7] 182.6 [53.5] 15.1	192.8 [56.5] 158.6 [46.5] 14.8
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	226.9 [66.5] 149.0 [43.7] 16.5	219.1 [64.2] 128.7 [37.7] 16.2	211.0 [61.8] 109.2 [32.0] 15.9	212.6 [62.3] 179.6 [52.6] 16.3	205.3 [60.2] 157.3 [46.1] 16.0	197.7 [57.9] 135.5 [39.7] 15.7	200.4 [58.7] 200.4 [58.7] 16.1	193.5 [56.7] 177.0 [51.9] 15.9	186.4 [54.6] 153.8 [45.1] 15.6
A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	219.7 [64.4] 143.9 [42.2] 17.3	212.1 [62.2] 124.3 [36.4] 17.0	204.3 [59.9] 105.5 [30.9] 16.7	205.4 [60.2] 174.6 [51.2] 17.1	198.3 [58.1] 152.9 [44.8] 16.8	191.0 [56.0] 131.8 [38.6] 16.5	193.2 [56.6] 193.2 [56.6] 17.0	186.5 [54.7] 172.7 [50.6] 16.7	179.7 [52.7] 150.2 [44.0] 16.4
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	212.2 [62.2] 140.3 [41.1] 18.2	204.9 [60.1] 121.3 [35.6] 17.9	197.3 [57.8] 102.9 [30.2] 17.5	197.9 [58.0] 171.0 [50.1] 18.0	191.1 [56.0] 149.9 [43.9] 17.7	184.0 [53.9] 129.3 [37.9] 17.4	185.7 [54.4] 185.7 [54.4] 17.9	179.3 [52.5] 169.6 [49.7] 17.6	172.7 [50.6] 147.6 [43.3] 17.2
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	204.4 [59.9] 138.1 [40.5] 19.1	197.3 [57.8] 119.4 [35.0] 18.8	190.1 [55.7] 101.6 [29.8] 18.5	190.1 [55.7] 168.7 [49.5] 19.0	183.5 [53.8] 148.0 [43.4] 18.6	176.8 [51.8] 127.9 [37.5] 18.3	177.9 [52.1] 177.9 [52.1] 18.8	171.8 [50.3] 167.8 [49.2] 18.5	165.4 [48.5] 146.1 [42.8] 18.1

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA - C/H240

				EN	ITERING INDO	OR AIR @ 80°F	[26.7°C] dbE ①				
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
		DR ①	.06	.11	.15	.06	.11	.15	.06	.11	.15
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	283.5 [83.1] 187.4 [54.9] 15.4	271.5 [79.6] 156.3 [45.8] 15.1	263.0 [77.1] 136.0 [39.9] 14.9	269.6 [79.0] 220.5 [64.6] 15.3	258.2 [75.7] 186.7 [54.7] 15.0	250.2 [73.3] 164.4 [48.2] 14.7	258.7 [75.8] 245.6 [72.0] 15.1	247.8 [72.6] 209.7 [61.5] 14.8	240.0 [70.3] 185.7 [54.4] 14.6
ÜTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	280.8 [82.3] 186.4 [54.6] 16.2	269.0 [78.8] 155.6 [45.6] 15.9	260.6 [76.4] 135.4 [39.7] 15.6	267.0 [78.2] 219.6 [64.4] 16.0	255.7 [74.9] 186.0 [54.5] 15.7	247.7 [72.6] 163.8 [48.0] 15.5	256.1 [75.1] 244.7 [71.7] 15.9	245.3 [71.9] 209.0 [61.3] 15.5	237.6 [69.6] 185.2 [54.3] 15.3
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	277.4 [81.3] 184.9 [54.2] 17.0	265.7 [77.9] 154.4 [45.3] 16.7	257.4 [75.4] 134.4 [39.4] 16.4	263.5 [77.2] 218.1 [63.9] 16.9	252.4 [74.0] 184.8 [54.2] 16.5	244.5 [71.7] 162.7 [47.7] 16.3	252.6 [74.0] 243.1 [71.3] 16.7	242.0 [70.9] 207.8 [60.9] 16.3	234.4 [68.7] 184.2 [54.0] 16.1
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	273.1 [80.0] 182.8 [53.6] 17.9	261.6 [76.7] 152.7 [44.8] 17.5	253.4 [74.3] 132.9 [39.0] 17.3	259.3 [76.0] 216.2 [63.4] 17.7	248.3 [72.8] 183.2 [53.7] 17.4	240.6 [70.5] 161.5 [47.3] 17.1	248.4 [72.8] 241.1 [70.7] 17.6	237.9 [69.7] 206.1 [60.4] 17.2	230.5 [67.6] 182.8 [53.6] 16.9
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	268.1 [78.6] 180.2 [52.8] 18.8	256.7 [75.2] 150.5 [44.1] 18.4	248.7 [72.9] 131.1 [38.4] 18.2	254.2 [74.5] 213.5 [62.6] 18.7	243.5 [71.4] 181.1 [53.1] 18.3	235.9 [69.1] 159.6 [46.8] 18.0	243.3 [71.3] 238.6 [69.9] 18.5	233.0 [68.3] 204.0 [59.8] 18.1	225.8 [66.2] 181.0 [53.1] 17.8
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	262.2 [76.8] 177.1 [51.9] 19.8	251.1 [73.6] 148.0 [43.4] 19.4	243.3 [71.3] 129.0 [37.8] 19.1	248.3 [72.8] 210.4 [61.7] 19.6	237.8 [69.7] 178.5 [52.3] 19.2	230.4 [67.5] 157.4 [46.1] 18.9	237.4 [69.6] 235.3 [69.0] 19.5	227.4 [66.6] 201.4 [59.0] 19.1	220.3 [64.6] 178.7 [52.4] 18.8
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	255.5 [74.9] 173.4 [50.8] 20.8	244.7 [71.7] 145.0 [42.5] 20.4	237.1 [69.5] 126.4 [37.1] 20.1	241.6 [70.8] 206.6 [60.6] 20.7	231.4 [67.8] 175.4 [51.4] 20.2	224.2 [65.7] 154.7 [45.3] 19.9	230.7 [67.6] 230.7 [67.6] 20.5	221.0 [64.8] 198.4 [58.2] 20.1	214.1 [62.7] 176.2 [51.6] 19.8
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	248.0 [72.7] 169.2 [49.6] 21.9	237.5 [69.6] 141.5 [41.5] 21.5	230.1 [67.4] 123.4 [36.2] 21.1	234.1 [68.6] 202.4 [59.3] 21.7	224.2 [65.7] 171.9 [50.4] 21.3	217.2 [63.7] 151.7 [44.5] 21.0	223.2 [65.4] 223.2 [65.4] 21.6	213.8 [62.7] 194.9 [57.1] 21.1	207.1 [60.7] 173.1 [50.7] 20.8
ر م	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	239.6 [70.2] 164.3 [48.2] 23.1	229.5 [67.3] 137.5 [40.3] 22.6	222.3 [65.1] 119.9 [35.1] 22.2	225.8 [66.2] 197.7 [58.0] 22.9	216.2 [63.4] 168.0 [49.2] 22.4	209.5 [61.4] 148.4 [43.5] 22.1	214.9 [63.0] 214.9 [63.0] 22.7	205.8 [60.3] 191.0 [56.0] 22.2	199.4 [58.4] 169.8 [49.8] 21.9

GROSS SYSTEMS PERFORMANCE DATA-C/H300

					ITERING INDO	OR AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]	,		67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	12000 [5663]	9475 [4472]	8000 [3776]	12000 [5663]	9475 [4472]	8000 [3776]	12000 [5663]	9475 [4472]	8000 [3776]
		DR ①	.02	.08	0.11	.02	.08	0.11	.02	.08	0.11
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power			348.9 [102.3] 182.0 [53.3] 20.0		341.5 [100.1] 245.2 [71.9] 20.0	331.8 [97.2] 218.4 [64.0] 19.7	347.0 [101.7] 326.2 [95.6] 20.2	330.9 [97.0] 274.0 [80.3] 19.7	321.6 [94.3] 245.5 [72.0] 19.5
ÜTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power					335.2 [98.2] 242.3 [71.0] 21.0	325.7 [95.5] 215.9 [63.3] 20.7	340.4 [99.8] 322.6 [94.6] 21.2	324.6 [95.1] 271.1 [79.5] 20.7	315.5 [92.5] 243.0 [71.2] 20.4
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power			335.9 [98.4] 176.8 [51.8] 21.9			318.9 [93.5] 213.2 [62.5] 21.7	333.0 [97.6] 318.6 [93.4] 22.2	317.6 [93.1] 268.0 [78.6] 21.7	308.6 [90.4] 240.2 [70.4] 21.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power			328.4 [96.2] 173.8 [50.9] 23.0			311.3 [91.2] 210.1 [61.6] 22.7	324.9 [95.2] 314.4 [92.2] 23.3	309.8 [90.8] 264.5 [77.5] 22.7	301.1 [88.2] 237.2 [69.5] 22.4
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power				327.0 [95.8] 277.8 [81.4] 24.7	311.9 [91.4] 232.0 [68.0] 24.1	303.1 [88.8] 207.0 [60.7] 23.8	315.9 [92.6] 309.7 [90.8] 24.4	301.3 [88.3] 260.8 [76.4] 23.9	292.8 [85.8] 234.0 [68.6] 23.5
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power			311.1 [91.2] 167.1 [49.0] 25.3		302.6 [88.7] 228.0 [66.8] 25.3	294.1 [86.2] 203.6 [59.7] 25.0	306.2 [89.7] 304.7 [89.3] 25.6	292.1 [85.6] 256.9 [75.3] 25.1	283.8 [83.2] 230.5 [67.6] 24.7
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power			301.4 [88.3] 163.4 [47.9] 26.5			284.3 [83.3] 199.8 [58.6] 26.2	295.7 [86.7] 295.7 [86.7] 26.9	282.0 [82.6] 252.5 [74.0] 26.3	274.1 [80.3] 226.8 [66.5] 25.9
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power			290.9 [85.3] 159.5 [46.8] 27.8				284.4 [83.3] 284.4 [83.4] 28.3	271.3 [79.5] 248.1 [72.7] 27.6	263.6 [77.3] 222.9 [65.3] 27.2
[O	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power			279.7 [82.0] 155.3 [45.5] 29.2		270.4 [79.2] 214.5 [62.9] 29.3		272.4 [79.8] 272.4 [79.8] 29.7	259.8 [76.1] 243.3 [71.3] 29.0	252.4 [74.0] 218.8 [64.1] 28.6

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

AIRFLOW PERFORMANCE — 15 TON [52.8 kW]-SIDEFLOW

		_	_	ω	2	œ	80	4	7	9	Ŋ	4					í
		[.50]	>	2878	2995	3118	3248	3384	3527	3676	3832	3994	-	1	ı	ı	
		2.0	RPM	881	887	892	897	903	606	914	920	926	١	1	١	ı	
		[47]	>	2761	2873	2992	3117	3248	3386	3531	3682	3839	4003	4173	4350	I	
		1.9 [RPM	863	898	874		885	891	897	903	606	916	922	929	ı	
		45]	8	2647	2755	2869 874	2989 879	3116	3249	3389 897	3532	3688	3847	4013	4185	4364	
		.8 [PM	344	320 /	855	861	298	373		988	892	668	902			
		[Zt	W	237	640		865	286	116	3251 879	3335	3541	3692	3826	024	198	
		.7 [.4	PM	325 2	330 2	336 2	342 2	849 2987	355 3	361 3	898	875 3	881 3	388	395 4	302 4	
		0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	W	632 1621 656 1732 679 1841 701 1947 723 2052 744 2154 764 2254 785 2326 805 2430 825 2537 844 2647 863	811 2528 830 2640 850 2755 868	2633 836 2749	2744 842 2865	2861 8	2985 855 3116 873	3116 861	3253 8	3 3688	3546	3702 888	3865 895 4024 912	732 2870 753 3000 773 3127 793 3270 812 3416 831 3566 849 3719 868 3875 885 4035 902 4198 919	
		7]9:	PM	05 2	11 2	817 2	23 2	830 2	836 2	43 3		856 3	863 3	871 3	78 3	85 4	
		7] 1	N R	8 97		20 8	326 8	39 8	8 85	84 8	16 8	3255 8	3400 8	25	10 8	8 22	
		5 [.3	M	35 23	791 2420	777 2410 797 2520	784 2512 804 2626 823	10 27	2548 778 2614 798 2735 817 2858	785 2731 805 2856 824 2984 843	2854 812 2984 831 3116 850	838 32	845 37	53 35	30 37	38 38	
		.1	/ RF	54 78		10 79	12 80	20 8	35 8-	26 82	84 83	18		05 85	29 86	19 86	
		4 [.35	M	4 22	1 23	7 24	4 25	1 26	8 27:	5 28	2 29	9 31	7 32	4 34	2 35	9 37	
]	RP	9/ /5	8 77	22 9:	.7 78	1 79	4 79	1 80	4 81	2983 819 3118	3119 827 3258	2 83	0 84	94	
		[.32	M	1 215) 224	234	1 244) 255	3 261	5 273	285) 298	311	326	341	326	
	Pa]	1.3	RPI	744	2 750	1 757) 764	2 770	3 778	785	2728 792	2852 800	2984 808	1 815	823	831	
	ter [k	[.30]	8	202	214	2241	743 2340 764 2447	750 2442 770 2551 791 2620 810 2739	2548	2657	3728			3121	326	3416	
	if Wa	1.2	RPIV	723	729	236	743		157	292	273	780	788	962	804	812	
	hes o	.27]	>	1947	2038	2133	2231	2331	2436	2543	2653 773	2767	768 2884 788	2984	3124	3270	
	i T	1.1	RPM	701	208	715	722	729	737	744	752	2648 760	292	922	282	793	
	ssure	.25]	Ν	1841	1930	2023	2119	2218	2321	2426	2535	2648	2763	2882	3003	3127	
	c Pre	1.0 [RPM	629	989	693	2005 701 2119 722 2231	2103 708 2218 729 2331	716	724	2415 731 2535 752	739	2640 748	2756 756 2882 776 2984 796 3121 815 3262 834 3405 853 3552	764	773	
	Stati	.22]	Μ	1732	1820	1911	2002	2103	2204	2308	2415	2526 739	2640	2756	2877	3000	
	External Static Pressure—Inches of Water [kPa]	0.9	RPM	929	663 1820 686 1930 708 2038 729 2145 750 2248 771 2350	671 1911 693 2023 715 2133 736 2241 757 2346	1890 678	989	2085 694 2204 716 2321 737 2436 757	2187 702 2308 724 2426 744 2543 765	2293 710	718	727	735	2748 744 2877 764 3003 785 3124 804 3265 823 3410 842 3559 860 3710 878	753	
	EX	.20]	Ν	1621	1707	1797	1890	1986	2085	2187	2293	2402 718	2514	714 2629	2748	2870	
		0.8	RPM	632	640	849	655	663	672	089	889	269	705	714	723	732	
		[.17]	×	1508	1593	1681	1772	1866	1964	2065	2169	2276	2386	2500	2617	2737	
		0.7 [.	RPIM		616					657	999	674	683	692	701	_	
hase		15]	×	393	476	299	652	745	840	940					484	3602	
– 3 P		0.6[.	PM	583 1393 608	591 1476	600 1562 624	608 1652 632	919	. 979	634	643	652 2148	661 2257	670 2369	629	689	
- 2/2		12]	W	Ι	1	1442	1530	1621 616 1745 640	715	1813 634 1940	1913 643 2042		2125	2235	2349 679 2484	3466	
460,		0.5 [.	NA!	ı	1	. 2/2	283	. 265	1588 601 1715 625 1840 649	. 019		604 1885 628 2017	289	647	7 999	999	
/230,		[0]	W	Τ	ı	ı	ı	ı	288	683	783	885		660	211	327	9
3 208		.4 [ЬМ	П		-		ı	276	585 1683 610	595 1783 619	304 1	1854 614 1991	1961 623 2099 647	333 2	343 2	7000
oltag) [/(W	Ι	1	1	1	1	1	1	1650	1750	854	961	072	185	+4
۸		.3[.0	PM	<u> </u>	<u> </u>	1	l	1	<u> </u>	Ī	570 1	579 1	589	1 66	09 2	19 2	
H180		[S] [C	W	Ī	1	1	Ī	1	1	1	1		-	1822 599	9 086	342 6	
/O-TN		.2 [.0	ЬМ	<u>.</u>	<u> </u>	<u>.</u>	<u> </u>	i I	<u> </u> 	i I	<u>.</u>	<u>.</u>	<u>.</u>	574 18	584 1930 609 2072 633 2211 656	95 20	
el RKI		2] 0	N	<u>.</u> 1	<u>.</u>	<u> </u>	<u>'</u> 	1	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>	<u> </u>	- 5		97 5	4
Model RKNL-C/H180 Voltage 208/230, 460, 575 — 3 Phase		1[.0	RPM W								_		_		1	70 18	40
		7	<u>。</u>	— [<u>5</u>	- [69	- [4]	- [8 ₁	- [2]	- [21	11	— [9;	[0;	4]	- [6i		7200 [3398] 570 1897 595 2042 619 2185 643 2327 666 2466 689 2602 711	MOTE: 1 Drive of held line M Drive sight of held line
		<u> </u>	Ĺ	4800 [2265]	5000 [2359]	5200 [2454]	5400 [2548]	5600 [2643]	5800 [2737]	6000 [2831]	6200 [2926]	6400 [3020]	6600 [3114]	6800 [3209]	[3303]	0[339]	- -
		5	5	480	500	520	540	260	580	009	620	640	099	980	700	720	ļ

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	775			
				2	808			
	[3.8]	3H	99	4	840			
M, S	5.0 [3728.5]	BK105H	1VP-56	3	873			
				2	903			
				-	927			
(2237.1) (2237.1) (105H VL-44 640								
				2	605			
<u>ح</u>	237.1]	05H	-44	4	640			
Ļ	3.0 [23	BK1	1VL	3	699			
				2	701			
				-	233			
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM			

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-15 TON [52.8 kW]

0.03 [0.01] 0.05 [0.01]	0] [2454]				,	2000	200	2000	0000	000/	007/
0.03 0.05 110w 0.05 10.01		[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
w [0.01]			Resi	Resistance — Inches of Water [kPa]	Inches o	f Water [k	Pa]				
(0.01) w (0.01)		90.0	90.0	0.07	0.08	0.09	0.10	0.10	0.11	0.12	0.13
0.05] [0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
[0.01]		0.05	0.05	0.05	0.02	90.0	90.0	90.0	0.07	0.08	0.08
	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]
_	_	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open [0.02] [0.02]	2] [0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
		0.02	0.02	0.03	0.03	0.04	0.04	0.02	0.05	90.0	90.0
R.A. Damper Open [0.00] [0.00]	[0.00]	[0.00]	[0.00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Concentric Grill RXRN-AD80 or 0.21 0.25	5 0.28	0.32	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64
		[0.08]	[0.0]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS-15 TON [52.8 kW]

						•							
ACTUAL—CFM	4800	2000	5200	5400	2600	2800	0009	6200	6400	0099	0089	2000	7200
[F/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
TOTAL MBTUH	26.0	0.97	0.98	86'0	66'0	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06:0	0.92	0.94	76.0	66.0	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	0.98	0.98	. 66'0	66'0	66'0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
and the state of t			1-4-	_		14-4-1							

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

AIRFLOW PERFORMANCE — 17.5 TON [61.5 kW]—SIDEFLOW

		<u>.</u>	>	ı	ı	ı	ı	ı	ı	ı	ı	Т	ı	ı	ı	ı	ı	ı	ĺ
		2.0[.50	RPM \	<u>'</u> 	1	1	1	1	1	1	<u>.</u>	1	<u>.</u> 	1	1	1	1	1	
			N R	ı	1	ı	1	1	ı	ı	1	1	1	-	ı	ı	ı	ı	
		1.9 [.47]	RPM	ı	1	ı	1	1	ı	ı	1	1	1	-	ı	ı	ı	ı	
			W	3803	3923	4053	4193	ı	ı	ı	ı	ı	Ι	ı	ı	ı	ı	ı	
		1.8 [.45]	RPM	927	931	936	941 4	Ι	ı	ı	ı	ı	Ι	ı	ı	ı	ı	ı	
			>	3628	3745	3873	4011	4160	4319	4489	ı	ı	Ι	ı	Ι	ı	ı	ı	
		1.7 [.42]	RPM	906	911	916	921	927	933	940	ı	ı	ı	ı	ı	ı	ı	ı	
			≥	3455	3570	3696	3833	3980	4137	4304	4482	4670	I	I	I	I	ı	I	
		1.4 [.35] 1.5 [.37] 1.6 [.40]	RPM	885	830	968	902	806	914	921	928	936	-	-	Ι	I	ı	I	
		.37]	>	3285	3399	3523	3657	3802	3957	4123	4299	4485	4682	4889	Ι	I	I	I	
		1.5	RPM	863	869	875	881	888	895	902	910	917	926	934	Ι	ı	ı	Ι	
		.35]	≥	3119	3230	3353	3485	3628	3781	3945	4119	4303	4498	4703	4918	5144	I	I	
		1.4	RPM	841	847	854	861	898	875	883	168	668	806	216	976	936	I	I	
		[32]	≥	2955	3065	3185	3316	3457	3608	3770	3942	4124	4317	4520	4734	4958	5192	5437	
	a]	1.3	RPM	819	825	832	840	847	822	863	871	880	889	899	606	919	929	940	
	External Static Pressure—Inches of Water [kPa]	1.2 [.30] 1.3 [.32]	٨	2795	2903	810 3021	3150	3289	3438	3598	3768	3949	4139	4341	4552	4774	5007	5065 923 5249 940 5437	
	of Wat	1.2	RPM	96/	803		818	826	834	843	852	861	871	881	891	901	912	923	
	set ([.27]	Μ	2638	2744	2860	2987	3124	3272	3429	3598	3776	3962	4164	4374	4594	4824	5065	
	j—ļu	0.8[.20] 0.9[.22] 1.0[.25] 1.1[.27]	RPM W RPM	1773	3 780	882	962 ,	5 805	813	1 822	832	841	1 851	862	872	883	995	906 1	
	essure	[.25]	8	2484	2588	2703	2827	2962	3108	3264	3430	3607	3794	3991	4199	4417	4645	889 4884	
	tic Pro	1.0		1 749	3 757	3 765	774	1 783	792	802	811	822	832	843	854	3 865	877	888	
	al Sta	[.22]	× •	2334	2436	2548	2671	2804	2947	3101	3266	3440	3625	3821	4026	4243	4469	4706	
	xterna	0.9	RPM	2186 725	2286 734	2397 742	7 751	2649 761	0 770	2 780	4 791	7 801	0 812	4 823	288 2	2 847	928	4531 871	
	Ш	[.20]	×				3 2517		3 2790	9 2942	3104	3277	3460	3654	3857	3 4072	4296	3 453	
			RPM	2 701	0 710	8 719	7 728	822 9	6 748	6 759	69/ 9	7 780	8 792	0 803	2 815	4 828	7 840	9 853	
		[.17]	M	3 2042	5 2140	5 2248	5 2367	5 2496	3 2636	7 2786	3 2946	3117	3298	3 3490	3695	3 3904	4127	5 4359	
se		0.7	RPI	0 67	9 9	369 8	0 70	7 715	5 726	3 737	1 748	0 759	-22 6	6 783	962 6	808 6	0 821	1 835	
3 Pha		3[.15	×	1 190	1 199	1 210	1 222	2 234	3 248	4 263	6 279	8 296	0 313	3 332	5 352	9 373	802 3960	6 419	
.2		0	/ RP	32 65	99 99	31 67	99 92	01 69	37 70	33 71	t0 72	73	34 75	21 76	27 69	8/ 8/	96	56 81	
50, 57		5 [.12	×	5 176	5 185	9 196	7 207	8 220	9 233	1 248	3 264	6 280	8 298	2 317	5 336	9 357	3 376	7 402	
30, 4		<u>.</u>	V RP	599 1627 625 1762 651 1900 676	610 1719 635 1856 661 1996 685	621 1822 646 1961 671 2103 695	607 1797 632 1935 657 2076 681 2220 705	619 1919 644 2058 668 2201 692 2347	1912 632 2051 656 2192 679 2337 703 2485	620 2052 644 2193 668 2336 691 2483 714 2633	91 70	56 71	31 72	17 74	13 75	19 76	36 78	63 79	
208/2		4 [.10	×	16,	0 17	18,	193	4 20	9 21	8 23	11 24	13 26	17 283	.08 0:	35.	.8	36	.7 386	
tage		.0	/ RP	\vdash	\vdash	— e2	97 63	19 64	51 65	93 66	45 68	69 80	82 70	99 72	60 73	64 74	92 62	04 77	
2		3[.07	×	-	1	Н	17	19	32 20	14 21	57 23	7 25	34 26	38 28	3 30	32	12 34	37	
1 210		0.	V RP	- -	1		\vdash	<u> </u>	12 63	52 64	03 65	64 67	39 98	17 66	10 71	12 72	25 74	48 75	
-c		2 [.05	M	-	1		-		607 19	0 20	14 22	18 23	25,	.6 27	1 29	91.	33,	17 35	
Model RKNL-C/H210 Voltage 208/230, 460, 575 — 3 Phase		2] 0.	RPM W RPM W RPM W RPM W RPM W RPM W RPM		1		1	 	09 —	— 62	64 63	23 64	92 66	72 67	.62 69	63 70	74 72	95 73	
Mode		1 [.02	M	-		 -	-				10 20	24 22	39 23	33 25	39 27	34 29	31,	16 33	
		<u>.</u>	<u>,</u> E	43]	37] —	31] —		20] —	14]	<u>]</u>	33] 61	38] 65	32] 63	36] 65	31] 66	75] 68	39] 70	74] 71	
		FIUW CEM [1 6.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	/ 	5600 [2643]	5800 [2737]	6000 [2831]	6200 [2926]	6400 [3020]	6600 [3114]	6800 [3209]	7000 [3303] 610 [2064] 634 [2203] 657 [2345] 681 [2491] 703 [2640] 726 [2791	7200 [3398] 624 2223 648 2364 671 2508 693 2656 716 2807 738 2960 759	7400 [3492] 639 2392 662 2536 684 2682 707 2831 728 2984 750 3139 <u> 771</u>	7600 [3586] 653 2572 676 2717 698 2866 720 3017 742 3171 763 3329 783	7800 [3681] 669 [2762 691 [2910 713 [3060 734 [3213] 755 [3369] 775 [3529]	8000 [3775] 684 [2963] 706 [3112] 727 [3264] 748 [3419] 769 [3578] 789 [3739]	8200 [3869] 700 3174 721 3325 742 3479 762 3636 783 3796	8400 [3964] 716 3395 737 3548 757 3704 777 3863 797 4026 816 4191	
L		5	5	560	580	909	620	64(99	989	700	720	74(760	780	800	820	84(1

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	781			
				2	814			
	28.5]	HS	99	4	845			
M, S	5.0 [3728.5]	BK105H	1VP-56	3	879			
				2	606			
				-	939			
				9	601			
				2	633			
L, R 3.0 [2237.1] BK100H 1VL-44 3 4								
L, R 3.0 [2237.1] BK100H 1VL-44 3 4								
				2	731			
				-	763			
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM			

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-17.5 TON [61.5 kW]

									ı						
	2600	2800	0009	6200	6400	0099	0089	0002	7200	7400	0092	7800	8000	8200	8400
CFM E (a)	[2643]	[2737]	[2831]	[5926]	[3020]	[3114]	[3209]	[3303]	[3338]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]
[۲/2]						Resist	Resistance —	Inches o	Inches of Water [kPa]	[kPa]					
1:-0 +5M	90.0	0.07	0.08	60.0	0.10	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.17	0.18
Wet coll	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]
3000	0.02	0.05	0.02	90.0	90.0	90.0	0.07	80.0	0.08	0.09	0.10	0.11	0.12	0.13	0.14
DOWIIIOW	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[.03]
Downflow Economizer	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24
R.A. Damper Open	[:03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[:05]	[.06]	[.06]
Horizontal Economizer	0.05	0.03	0.03	0.04	0.04	0.05	0.05	90'0	90.0	0.07	0.07	0.08	60.0	0.09	0.10
R.A. Damper Open	[.00]	[.01]	[.01]	[.01]	[.01]	[.01	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]
Concentric Grill RXRN-AD80 or	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64	89.0	0.72	0.75	0.79	0.83	0.86
RXRN-AD81 & Transition RXMC-CJ07	[.09]	[.10]	Ξ	Ξ	E.	[.13]	[14]	[.15]	[.16]	[11]	[.18]	[.19]	[.20]	[.21]	[.21]
Concentric Grill RXRN-AD86 &	0.14	0.17	0.20	0.23	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.50	0.53	0.56
Transition RXMC-CK08	[:03]	[.04]	[.05]	[90:]	[90.]	[.07]	[80.]	[.09]	[00]	[.10]	<u>E</u> .	[.12]	[.12]	[.13]	[.14]

AIRFLOW CORRECTION FACTORS-17.5 TON [61.5 kW]

				•)										
ACTUAL—CFM	2600	2800	0009	6200	6400	0099	0089	7000	7200	7400	2600	7800	8000	8200	8400
[L/s]	[2643]	[2737]	[2831]	[2926]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3286]	[3681]	[3775]	[3869]	[3964]
TOTAL MBUH	96.0	0.97	0.97	0.98	96.0	0.99	0.99	1.00	1.00	1.01	1.01	1.02	1.03	1.03	1.04
SENSIBLE MBUH	98.0	0.88	06:0	0.92	0.94	96.0	0.98	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14
POWER KW	0.99	0.99	0.99	66.0	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.02	1.02	1.02
							-].

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-SIDEFLOW

		.50]	8	4121	1 4271	4432	4603	4784	4976	5179	5392	616	5850	6094	I	I	I	I	I	1
		2.0 [.	RPM	937 4	944 4	950 4	922 4	964 4	971 4	978	3 986	993 5616		1008 6	ī	Т	ī	1	П	П
			×	3902	4056	4283	4448	4624	4810	2009	5214	5432	5660 1001	5899 1	6148	6408	1	_	_	
		1.9 [.47]	RPM	923 36	930 40	933 42	940 47	947 46	954 48	962 50	696	677 52	982 26	33 26		1009 6	<u>.</u> I	i	Ė	1
				_										_	54 1001			Ĺ	Ė	Н
		1.8 [.45]	×	1928 9	912 3912	9 4072	926 4240	2 4417	938 4650	5 4841	953 5043	1 5255	969 5477	7 5710	985 5954	993 6208	2 6472	0 6747		1
		1.8	RPM	1 906		919		4 932		7 945	l	4 961		8 977			1002	1 1010	1	1
		[.42]	8	3621	3769	3926	4091	4264	923 4447	4637	936 4878	5084	5300	5528	9 2 2 6 2	8 6013	986 6272	6541	1 6851	1
		1.7	RPM	888	894	901	606	916		930		944	952	961	696	978		662	1004	1
		[.40]	≥	3481	3626	3780	3942	4112	4292	4479	4675	4880	5130	5352	5584	5826	6209	6342	6616	6901
		1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42]	RPM	698	9/8	884	891	868	906	914	922	930	986	944	623	962	971	086	686	866
		.37]	8	3342	3484	3634	3794	3961	4137	4322	4515	4717	4927	5146	5408	5645	2885	6149	6418	9699
		1.5 [RPM	820	857	865	873	881	889	897	902	914	922	931	937	946	922	964	973	983
		35]		3203	3342	3490	3646	3811	3984	4165	4356	4554	4761	4977	5201	5434	5712	5963	6225	3498
		.4 [.	PM	830	838	846 (854	863	871	879	888	768	906	915	924	933	939	949	928	968 6498
		. [28	W RPM W	3065	3201	3346	3499	3661	3831	4009	4197	4392	4596	4809	2030	5260	5498	2784	6040	2089
		.3[.		810 3	819 3	827 3	835 3	844 3	853 3	862 4	870 4	880 4	889 4	898 4	206	917 5	927 5	933 2	942 6	952 6
	[kPa]	0] 1	W RPM W RPM	8 8		3202 8		-		3854 8	4038 8	4231 8	4432 8	4642 8	4860 9	2087	5322 9	2262	5818 9	6122 9
	/ater	1.1 [.27] 1.2 [.30]	Z N	785 2789	798 3060	807 32	816 3352	825 3511	834 3678	843 38	852 40	32 42	871 44)1 2(11 53		931 58	37 61
	of M]_1	/ RF	20 78	38 79				26 83		30 8	70 862	4268 87	75 881	90 891	14 901	16 911	37 921	2636 93	94 93
	nches	I [.27		3 2670	3 2808	3 2955	8 3207	5 3362	5 3526	4 3699	4 3880	4 40	4 426	4 4475	4 4690	4 4914	894 5146	5 5387	2 56	9 28
	External Static Pressure—Inches of Water [kPa]	-	RPM W RPM	2553 763	2685 773	6 783	2977 796	9 805	5 815	5 824	3 834	3910 844 4070	4105 854	9 864	1 874	2 884	1 89	6 905	5 915	5709 926 5894 937
	essur	1.0 [.25]	×	255		2826		3139	3375	3545	3723			4309	4521	4742	4971	5209	5455	570
	tic Pr	1.0	RPI	3 741	1 751	192	1 772	9 783	262	805	7 815	825	835	3 846	826	298 (877	888	668	5526 910
	l Sta	0.8 [.20] 0.9 [.22]	>	2439	2564	2699	2844	2999	3165	3341	3567	3750	3942	4143	4352	4570	4796	5031	5274	5526
	terna	0.9	RPM	719	729	739	750	761	772	783	262	806	816	827	838	849	860	871	882	894
	ñ	.20]	≥	2328	2446	2574	2713	2862	3021	3190	3370	3559	3780	3978	4184	4399	4622	4854	5094	5343
		0.8	RPM	869	707	718	728	739	750	761	773	785	797	808	819	831	842	853	865	877
		7 [.17]	Μ	2218	2330	2452	2585	2727	2880	3043	3216	3338	3592	3796	4017	4229	4449	4678	4915	5161
		0.7[8		989	969	907	717	728 2880	740	3064 751 3216	292	9//	789	3832 800 4017	812 4229	824 4449	835 4678	4736 847 4915	4979 859 5161
hase		15]	>	2111	2217	2332	2458			2897	3064	3241	3427	3625	3832	1029	4276	4502	1736	1979
ا ت		0.6 [.	3PM	654	664	674	684	695	90/	718	729	741	754	292	780	/ 262	802	817	829	842
5/5-		12]	×	200	106	215	334	464	604	754	914	980	1565	456	259	898	680	1327	1558	86/
460,		.5[PM	632 2007 654 2111	642 2106 664	630 2100 652 2215 674	641 2213 663 2334 684 2458 706	630 2211 651 2336 673 2464 695 2594	2338 663 2470 684 2604 706 2741	630 2339 652 2475 674 2613 696 2754 718	642 2480 664 2622 686 2767 707 2914 729	719 3	732 3	745 3	28 3	771 3	785 4	86/	311 4	323 4
230,		0]	8	1	<u> </u>	100	213 (336	470 (913 (. 292	931	105	530	484	: 689	904	129	381	817 8
708 /		4[.1	Δ	i	<u> </u>	30 2	41 2	51 2	63 2	74 2	86 2	98 2	10 3	23 33	36 3	49 3	63 33	77 4	92 4:	05 4
ltage		7] 0	™	<u>.</u>	<u>.</u>	9	9 —	11 6	38	.75 6	52 6	9 08.	48 7	26 7	14 7	12 7	.51 7	39 7	2 89	.07
\$		3 [.0]	<u>۷</u>	-			_	10 22	641 23	24	34 26	.6 27	8 29	11 31	4 33	1 35	11 37	12 33	9 41	44
240]	뮨	-	_	-	-	Н	\vdash	39 68	39 08	31 67	39 86	34 70	16 71	38 72	10 24	52 75	22 26	37 76
<u>۲</u>		? [.05	×	1	_	-	-	1	1) 233	2 248	4 263	3 279	9 296	2 314	5 333	327	3 375	282	2 420
Ž		0.2	묎	1					1	_		29 9	99 (0	2 679	769 C	9 706	1 719	7 733	3 747	92 0
Model RKNL-C/HZ40 Voltage 208/230, 460, 575 — 3 Phase		0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.	>	1	1	1	-	1	1		1	248,	264	280	1298	316	336	356	378,	401
_		0.1	A M M M M M M M M M	-	_ [[[8000 [3776] 632 2485 654 2631 676 2780 698 2931 719 3085 741 3241	8200 [3870] 644 2640 666 2793 688 2948 710 3105 732 3265 754 3427	8400 [3964] 657 2805 679 2964 701 3126 723 3290 745 3456 767	8600 [4059] 670 2980 692 3146 714 3314 736 3484 758 3657 780	8800 [4153] 683 3166 705 3338 727 3512 749 3689 771 3868 793 4059	9000 [4248] 697 3361 719 3540 741 3721 763 3904 785 4089 805	9200 [4342] 711 3567 733 3752 755 3939 777 4129 798 4327 817	9400 [4436] 725 3783 747 3975 769 4168 792 4381 811 4558 829	9600 [4531] 739 4010 762 4207 784 4407 805 4617 823 4798 842
	All	M II /el	[[-	6400 [3020]	6600 [3115]	6800 [3209]	000 [3304]	7200 [3398]	400 [3492]	7600 [3587]	7800 [3681]	3776	[3870]	[3964]	[4059]	[4153]	[4248]	[4342]	[4436]	[4531]
•	₹ ਹੋ	_ E	E 5	6400	0099	9800	7000	7200	7400	2600	7800	8000	8200	8400	8600	8800	0006	9200	9400	0096
				_	_		_	_	_	_	_	_		_						_

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Drive Package			L,	L, R					M, S					N(fie	V(field installed only), T	d only),	L	
Motor H.P. [W]			5.0 [3728.5]	728.5]					7.5 [5592.7]	92.7]					7.5 [5592.7]	2.7]		
Blower Sheave			BK130H	30H					BK130H	НО					BK120H	H		
Motor Sheave			1VP	IVP-56					1VP-71	71					1VP-71	7		
Turns Open	-	2	3	4	5	9	-	2	3	4	2	9	-	2	3	4	2	9
RPM	756	734	602	683	829	631	876	905	874	847	820	793	1009	981	922	928	899	870

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE-20 TON [70.3 kW]

			1														
	6400	0099	0089	7000	7200	7400	0092	7800	8000	8200	8400	0098	8800	0006	9200	9400	0096
CFM	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
[۲/9]							Resista	Resistance — Inches of Water [kPa	luches c	of Water	· [kPa]						
Wot Coil	0.00	00.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.07
Wet Coll	[.00]	[.00]	[.00]	[.00]	[.00]	[.00]	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]
Committee	90.0	90.0	0.07	80.0	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22
80	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[.03]	[.04]	[.04]	[.04]	[:05]	[:05]	[.05]
Downflow Economizer	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
R.A. Damper Open	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[:02]	[.06]	[.06]	[90.]	[90]	[.07]	[.07]	[.07]	[.07]
Horizontal Economizer	0.04	0.05	0.05	90.0	90.0	0.07	0.07	0.08	60.0	0.09	0.10	0.10	0.11	0.11	0.12	0.12	0.13
R.A. Damper Open	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[:03]	[:03]	[.03]
Concentric Grill RXRN-AD86	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.5	0.53	0.56	69.0	0.62	0.65	69.0	0.72	0.75
& Transition RXMC-CK08	[90.]	[.07]	[.08]	[.09]	[.09]	[.10]	Ξ	[.12]	[.12]	[13]	[.14]	[.15]	[.15]	[.16]	[.17]	[.18]	[.19]

ACTUAL—CFM 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000 9200 9400 TOTAL MBH 0.97 0.97 0.98 0.99 0.90 1.00 1.01 1.01 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.05 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	AIRFICOW CORRECTION F	につつ)			•									
H 0.97 0.97 0.98 0.99 0.99 1.00 1.00 1.01 1.01 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.01 1.02	ACTUAL—CFM [L/s]	6400 [3020]	6600 [3114]	6800 [3209]	7000 [3303]	7200 [3398]	7400 [3492]	7600 [3586]	7800 [3681]	8000 [3775]	8200 [3869]	8400 [3964]	8600 [4058]	8800 [4153]	9000 [4247]	9200 [4341]	9400 [4436]	9600 [4530]
MBH 0.88 0.90 0.92 0.94 0.96 0.97 0.99 1.01 1.01 1.05 1.05 1.07 1.07 1.07 1.01 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.02 1.03	TOTAL MBH	0.97	0.97	0.98	96.0	66.0	0.99	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03	1.04	1.04
I 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02	SENSIBLE MBH	0.88	06.0	0.92	0.94	96.0	0.97	0.99	1.01	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.16	1.18
	POWER KW	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.02

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

AIRFLOW PERFORMANCE - 25 TON [87.9 kW]-SIDEFLOW

		_	_	7	1	=	6	=	∞	8															ı
		2.0[.50	×	.285 61	988 5774 1003 5935 1018 6097	982 5832 997 5997 1012 6164 1028 633	977 5894 992 6064 1007 6235 1022 6407 1037 6579	987 6134 1002 6310 1017 6486 1032 6663 1047 684	997 6389 1012 6570 1027 6752 1042 6934 1057 7118	8 7408	 -	 -		 -	 -	 -	 -	<u> </u>	 -	<u> </u>	 -	 -	 -	-	
			RPM	994 5720 1009	5 101	4 102	7 103	3 104	4 105	977 6289 992 6473 1007 6658 1022 6844 1037 7031 1052 7219 1068	8						-	1	-	-		I			
		[.47	×	1 572	3 593	5 616	640	999 7	5 693	721	3 751						-			١			-		
		1.9	W RPM		1003	101	102	1032	1042	1052	106	1	1	1	1	1	-		1		1	1		1	
		[45]		979 5565	5774	2887	6235	6486	6752	7031	7325	7632	7954	1	I	I	1	I	1	I	1	1	I	I	
		1.8	W RPM		988	997	1007	1017	1027	1037	1048	1058	1069	1	1	١	1	I	1	I	1	1	Ι	I	
		42]	>	963 5410	973 5614	5832	5064	5310	9220	5844	7132	7434	7751	8081	1	I	I	I	I	I	1	1	1	I	
		1.7 [.		896	973	982	992	005	012	025	032	043	054	990	Ι	ı	Ι	ı	I	ı	Ι	Ι	Ι	I	
		10	×	526	455	299	894	134	389	. 859	941	. 388	. 248	. 823	212	292	-	-	1	-	1	1	1	1	
		1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47]	PM	948 5256	958 5455	967 5667	3 2 2 6	987	997	9 200	017	028 7	039 7	020	061	072	1	ı	1	ı	ı	Т	Τ	ı	
		111	×	854					ı	473 1	987 6561 1002 6750 1017 6941 1032 7132 1048 7325 1063 7518	042	347 1	967 1	1000	348 1	210	ı	1	-		Т	_	1	
		.5[.3	Δ	920 4854	943 5296	952 5503	962 5725	972 5960	982 6209	392 e	.90 700	113 7)24 73	34 7	346 8	327 8	.8 890	Ī	1	1	Ī	i	<u> </u>	1	
		5] 1	N R					5787		68	61 10	47 10	47 10	91 10	.89 10	31 10	88 10		<u>.</u> 	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u> 	
		4 [.3	ν.	903 4680	914 4912	924 5157	947 5557	957 57	967 6031	77 62	87 65	89 86	09 71	19 74	31 77	42 81	53 84	88 S8			<u>'</u> 	1	_		
		1.	/ RP						l	95		53 9	47 10	26 10	79 10	16 10	37 10	32 10	11 —	<u> </u>	Ė	Ė	Ė	_	
		3 [.32	<u>></u>	886 4510	897 4735	908 4972	919 5223	942 5614	952 5853	962 6105	972 6372	3 66	4 69	15 72	6 75	.62 2	8 820	98 0	.1 80.				-	 -	
	Pa]	-	RP	4 88					ı			36 0	6	2 100	0 101	1 102	7 103	7 106	0 106	8	0		 -	-	
	ter [k	1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37]	>	9 4344	0 4561	1 4791	2 5034	3 5290	4 5558	947 5923	958 6184	968 [6460] 983 [6653] 998 [6847 1013 7042 1028 7238 1043 7434 1058 7632	979 6749 994 6947 1009 7147 1024 7347 1039 7548 1054 7751 1069 7954	990 7052 1005 7256 1019 7461 1034 7667 1050 7873 1065 8081	1 737	2 770	3 804	5 840	8 8 8	8 916	0 957		_	1	
	of Wa	1.2	RPI	5 869	2 880	1 891	0 902	3 913	924				_		100	3 101	3 102	2 103	104	3 105	107	-			
	;hes (1.0 [.25] 1.1 [.27]	MAW W RPM W	851 4182	863 4392	874 4614	886 4850	862 268	908 5359	919 5633	943 5997	953 6267	964 6551	975 6849	986 7162 1001 7370 1016 7579 1031 7789 1046 8000 1061 8212	997 7488 1012 7701 1027 7916 1042 8131 1057 8348 1072 8565	993 7610 1008 7828 1023 8047 1038 8267 1053 8488 1068 8710	818	822	893	935	3 973		1	
	틸	-	RPI											_		166	1008	1020	1032	1043	105	1068			
	ssure	[.25]	>	833 4024	845 4226	856 4442	868 4670	880 4910	892 5164	903 5430	915 5710	926 6002	949 6355	960 6647	6954	982 7275	1910	1956	8351	3698	3806	9467	9913	1	
	c Pre		W RPM					_			_				126			7736 1005 7959 1020 8182 1035 8407 1050 8632 1065 8858	8094 1017 8321 1032 8550 1046 8780 1061 9011	8465 1029 8698 1043 8933 1058 9168	8851 1041 9089 1055 9329 1070 9570	9250 1053 9494 1068 9739	9664 1065 9913	1	
	External Static Pressure—Inches of Water [kPa]	0.8 [.20] 0.9 [.22]	≥	3870	4065	4273	4493	4727	4973	5232	5504	22.88	6085	6446	6748	2002	7393	7736	8094	8465		9250	9664	9585 1048 9838 1063 10092	
	ernal	0.9	RPM	814	826	838	820	862	874	988	868	910	922	945	926	296	626	066	987 7867 1002	1014	8376 1011 8613 1026	8765 1023 9007 1038	9168 1035 9416 1050	1063	
	E	20]	>	3720	3908	820 4108	4321	4547	4786	2037	5302	2226	5869	917 6171	6542	953 6852	7176	975 7514 990	1867	999 8233 1014	8613	2006	9416	9838	
		0.8	RPM	794	807	820	832	845	857	698	881	893	902	917	941	953	964	975	286	666	1011	1023	1035	1048	
		17]	<u>-</u>	ı	ı	3947	4153	4371	4603	4847	5104	5373	2656	5951	6229	6580	1969	7294	7640	8001	3376	3765	3168	9285	
		0.7 [.	PM	ī	Τ	801	813	826	839	851	864	876	688	901	913	926	949	961	972	984	966				
nase			W	Т	_	ı	686	200					_									524	921 1	333	
- 3 -		. 9	PM		ī	1	794 3989	807 4200	820 4424	833 4660	846 4910	859 5172	872 5447	884 5735	897 6035	909 6349	922 6675	946 7	958 7415	969 7771	981 8140	994 8524 1008	8 900	019 9	
- 6/6		2] [0	N R	П	_	П	Т	1	4249									772					976 1	082 1	
46U,		.5[.	Δ	Ė	Ī	i	i	· 	801 4	815 4478	828 4720	841 4975	354 5	367 5	880 5816	.9 868	906 6441	318 6	943 7191	325 7	2 296	379 83	391 8	004	
230,		0 [0	N R	Ť	<u> </u>	Ī	Ť	Ī	1		334	181	342	315	900	366	510	334		313	371	744	131	332 1	,
; 2U8/		.4[.1	Me	<u>.</u>	_	<u>.</u>	<u>.</u>	<u> </u>	1	795 4300	790 4352 809 4534	804 4592 823 4781	36 50	49 53	63 56	39 92	39 68	02 65	15 68	40 73	52 76	64 80	72 87	89 88	1
oltage		<u> 1</u>	×	Ė	_	i	İ	<u>.</u>	1	_ 1	52 8	8 26	45 8	10 8	8 68	8 089	84 8	01 8	30 9	172 9	28 9	6 90	87 9	83 9	of bo
ĭ		3[.0	<u>√</u>	<u> </u>	_	<u> </u>	1			<u> </u>	30 43)4 45	17 48	31 51	15 53	98 26	72 59	35 63	99 66	12 69	25 73	92 28	32 81	75 85	+4014
1300		.i	/ R	<u> </u> -				-	_		- 79)8 —	52 8	10 83	81 84	92 86	91 87	71 88	93 86	58 9-	26 52	36 98	44 96	34 97	
IL-C/I		2[.0	> N	_		_	-					-	798 4652 817 4845 836 5042 854 5242	3 49	4978 827 5181 845 5389 863 5600	0 54	4 57	.09 8	2 63	29 9	02 6	2 74	62 8	0 83	11
HKN		0	R P	_	_	-	_			_			_	14 81	78 82	54 84	13 85	98 51	30 88	37 89	37 90	30 92	16 94	37 96	11
Model KKNL-C/H3UU Voltage 208/23U, 46U, 5/5 — 3 Phase		0.1[.02] 0.2[.05] 0.3[.07] 0.4[.10] 0.5[.12] 0.6[.15]	RPM W RPM W RPM W RPM W RPM W RPM W RPM		_	1	<u> </u>	 -	1	1	1	-	1	3 471	8 497	2 525	836 5543 854 5761 872 5984 889 6210	789 0	4 616	8 648	2 682	9 718	0 752	946 8087 960 8334 975 8583 989 8832 1004 9082 1019 9333 1033	of be
_		_	_	<u> </u>	<u> </u>	<u>-</u>	— —	<u>=</u>	- [<u> </u>	<u></u>	[(1	.j 79.	3] 808	1] 82;)] 82r] 86	.] 87k	.] 89 <u>;</u>] 30	1] 92t	i] 94t	170 0
.:	AIL Florid	CEM [1 /c]	[F/ 9]	8000 [3775]	8200 [3869]	8400 [3964]	8600 [4058]	8800 [4153]	9000 [4247]	9200 [4341]	9400 [4436]	9600 [4530]	9800 [4624]	[4719	[4813	[4908	[5002	[5096	[5191	[5285	[5379	[5474	[5568	[5663	
<	₹ 🗓	ב ב	5 5	8000	8200	8400	8600	8800	9000	9200	9400	0096	9800	10000 [4719] 793 4714 813 4910 831 5110 849 5315 867 5523	10200 [4813]	10400 [4908] 822 5254 840 5465 858 5680 876 5899 893 6122	10600 [5002]	10800 [5096] 850 5845 868 6071 885 6301 902 6534 <u> 918 6772</u> 946 7074	11000 [5191] 864 6160 882 6393 899 6630 915 6871	11200 [5285] 878 6487 895 6728 912 6972 940 7313 955 7541	11400 [5379] 892 6827 909 7075 925 7328 952 7671 967 7905	11600 [5474] 906 7180 922 7436 950 7806 964 8044 979 8283	11800 [5568] <u> 920 7546 948 7944 </u> 962 8187 977 8431 991 8676 1006 8921 1021	12000 [5663]	MOTE: 1 Drive left of held line M. Drive right of held line
				_		_		_	_				_	<u>'</u> -	<u>'</u>	<u>'</u>	-	<u>'-</u>		·-	<u>'</u> -	<u>'-</u>			Ž

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Drive Package			Ľ,	L, R					M, S	S		
Motor H.P. [W]			7.5 [5592.7]	592.7]					10 [7457.0]	57.0]		
Blower Sheave			BK1	BK130H					BK120H	동		
Motor Sheave			1VP-71	-71					1VP-75	75		
Turns Open	-	5	က	4	2	9	-	2	3	4	2	9
RPM	919	919 894 869	698	844	844 817	790	790 1067 1039 1012 982	1039	1012	982	953 925	925

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

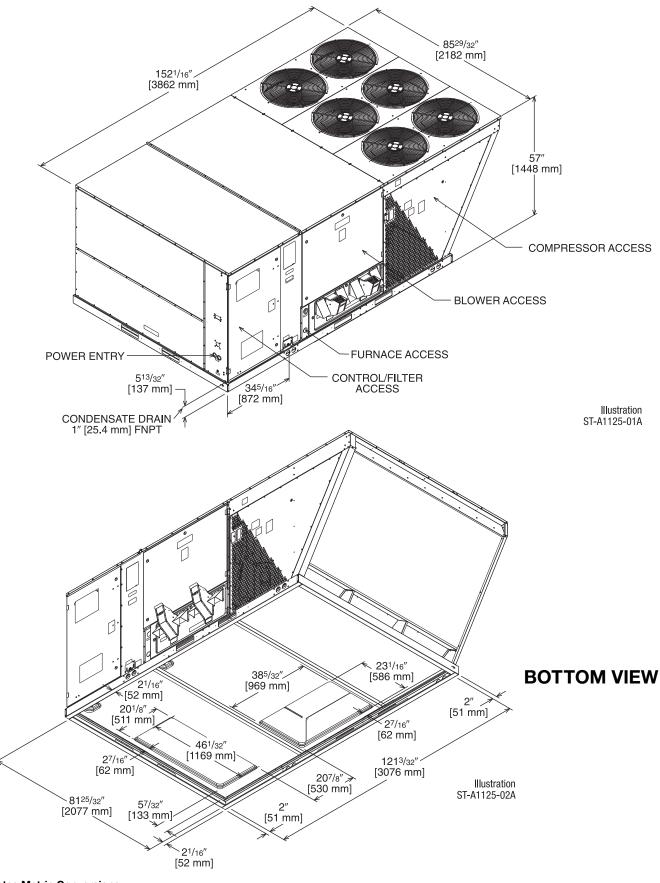
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE - 25 TON [87.9 kW]

	8000	8400	0088	9200 9600 10000 10400	0096	10000	10400	10800	11200	10800 11200 11600 12000	12000
CFM	[3775]	[3964]	[4153]	[4341]	[4530]	[4341] [4530] [4719] [4908] [5096]	[4908]	[5096]	[5285] [5474]	[5474]	[5663]
[۲/9]				Resista	ance —	Resistance — Inches of Water [kPa]	of Wateı	r [kPa]			
Mot Coil	0.07	0.09	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22
Wel coll	[.02]	[.02]	[.02]	[:03]	[:03]	[.04]	[.04]	[.04]	[:02]	[:02]	[.05]
Dometican	0.12	0.14	0.16	0.19	0.22	0.25	0.29	0.33	0.37	0.42	0.46
MO 1	[:03]	[:03]	[.04]	[.05]	[.05]	[90]	[.07]	[.08]	[60.]	[.10]	Ξ.
Downflow Economizer	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.37	0.39	0.41	0.44
R.A. Damper Open	[:02]	[90:]	[90]	[.07]	[.07]	[.08]	[.08]	[.09]	[.10]	[.10]	<u>=</u>
Horizontal Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
R.A. Damper Open	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]
Concentric Grill RXRN-AD88	0.17	0.23	08.0	98.0	0.43	0.50	99.0	0.63	69.0	92.0	0.82
& Transition RXMC-CL09	[04]	[90]	[.07]	[00]	[1]	[12]	[14]	[16]	[17]	[19]	[.20]

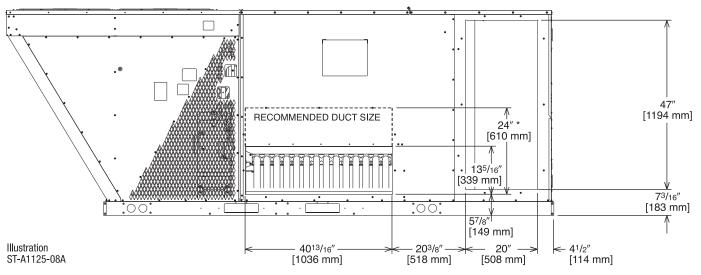
AIRFLOW CORRECTION FACTORS-25 TON [87.9 kW]

								ı			
ACTUAL—CFM	0008	8400	8800	9200	0096	10000	10400	10800	11200	11600	12000
[F/s]	[3775]	[3964]	[4153]	[4341]	[4530]	[4719]	[4908]	[2036]	[5285]	[5474]	[2663]
TOTAL MBTUH	26'0	96.0	0.99	66.0	1.00	1.01	1.02	1.03	1.03	1.04	1.05
SENSIBLE MBTUH	68.0	0.92	0.95	0.98	1.01	1.04	1.08	1.11	1.14	1.17	1.20
POWER KW	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.02


NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

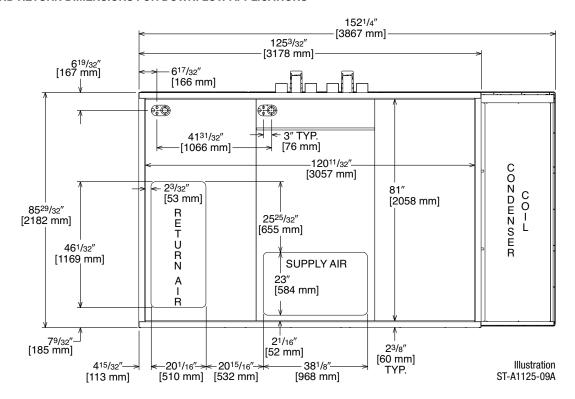
		ELECTR	RICAL DATA – I	RKNL- SERIE	S		
		C180CL H180CR	C180CM H180CS	C180DL H180DR	C180DM H180DS	C180YL	C180YM
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632
ioi	Volts	208/230	208/230	460	460	575	575
mat	Minimum Circuit Ampacity	78/78	81/81	38	40	28	30
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45	30	35
'n	Maximum Overcurrent Protection Device Size	100/100	100/100	45	50	35	35
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	460	460	575	575
- E	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
or [HP, Compressor 1	7	7	7	7	7	7
Compressor Motor	Amps (RLA), Comp. 1	25/25	25/25	12.2	12.2	9	9
g [Amps (LRA), Comp. 1	164/164	164/164	100	100	78	78
3	HP, Compressor 2	7	7	7	7	7	7
	Amps (RLA), Comp. 2	25/25	25/25	12.2	12.2	9	9
	Amps (LRA), Comp. 2	164/164	164/164	100	100	78	78
ŗ	No.	4	4	4	4	4	4
Mot	Volts	208/230	208/230	460	460	575	575
Compressor Motor	Phase	1	1	1	1	1	1
res	HP	1/3	1/3	1/3	1/3	1/3	1/3
E	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	1	1
3	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	1.8	1.8
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575
ğ	Phase	3	3	3	3	3	3
ora	HP	3	5	3	5	3	5
Evaporator Fan	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6	3.5	5.3
	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3	20	39.4

ELECTRICAL DATA – RKNL- SERIES									
		C210CL H210CR	C210CM H210CS	C210DL H210DR	C210DM H210DS	C210YL	C210YM		
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632		
ijon	Volts	208/230	208/230	460	460	575	575		
mai	Minimum Circuit Ampacity	88/88	91/91	44	46	35	37		
Unit Information	Minimum Overcurrent Protection Device Size	100/100	100/100	50	50	40	40		
ភ	Maximum Overcurrent Protection Device Size	110/110	110/110	50	50	45	45		
	No.	2	2	2	2	2	2		
	Volts	200/230	200/230	460	460	575	575		
a	Phase	3	3	3	3	3	3		
Mot	RPM	3450	3450	3450	3450	3450	3450		
, jo	HP, Compressor 1	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2		
res	Amps (RLA), Comp. 1	29.5/29.5	29.5/29.5	14.7	14.7	12.2	12.2		
Compressor Motor	Amps (LRA), Comp. 1	195/195	195/195	95	95	80	80		
త [HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2		
	Amps (RLA), Comp. 2	29.5/29.5	29.5/29.5	14.7	14.7	12.2	12.2		
	Amps (LRA), Comp. 2	195/195	195/195	95	95	80	80		
٥٢	No.	4	4	4	4	4	4		
Mot	Volts	208/230	208/230	460	460	575	575		
Compressor Motor	Phase	1	1	1	1	1	1		
res	HP	1/3	1/3	1/3	1/3	1/3	1/3		
шc	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	1	1		
ŭ	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	1.8	1.8		
	No.	1	1	1	1	1	1		
Fan	Volts	208/230	208/230	460	460	575	575		
ıtor (Phase	3	3	3	3	3	3		
Evaporator Fan	HP	3	5	3	5	3	5		
Eval	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6	3.5	5.3		
_	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3	20	39.4		

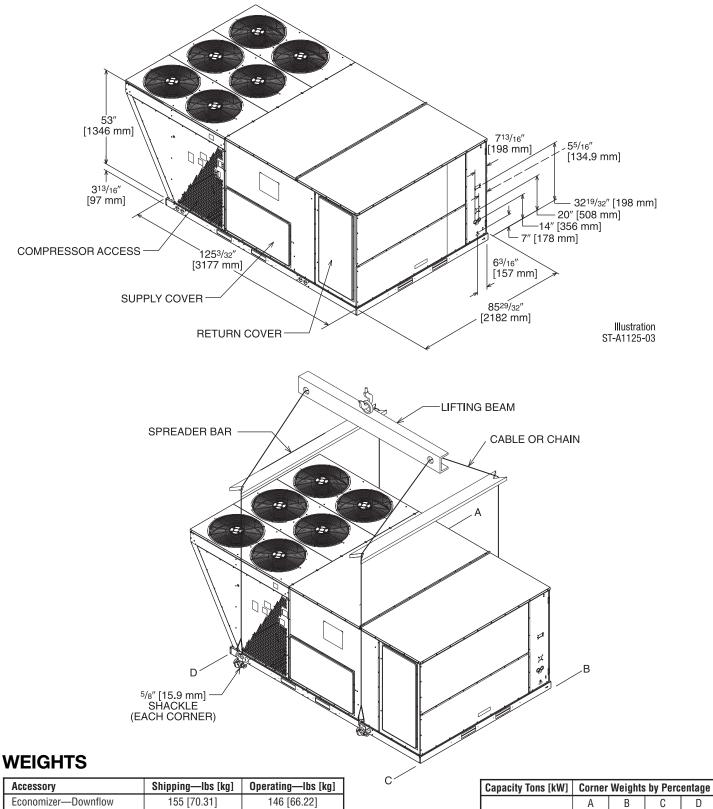

	ELECTRICAL DATA – RKNL- SERIES										
		C240CL H240CR	C240CM H240CS	C240CN H240CT	C240DL H240DR	C240DM H240DS	C240DN H240DT	C240YL	C240YM	C240YN	
	Unit Operating Voltage	187-253	187-253	187-253	414-506	414-506	414-506	518-632	518-632	518-632	
ie	Volts	208/230	208/230	208/230	460	460	460	575	575	575	
ll al	Minimum Circuit Ampacity	101/101	109/109	109/109	52	56	56	40	42	42	
Unit Information	Minimum Overcurrent Protection Device Size	110/110	125/125	125/125	60	60	60	45	50	50	
_ 5	Maximum Overcurrent Protection Device Size	125/125	125/125	125/125	60	70	70	50	50	50	
	No.	2	2	2	2	2	2	2	2	2	
	Volts	200/230	200/230	200/230	460	460	460	575	575	575	
=	Phase	3	3	3	3	3	3	3	3	3	
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450	
jo	HP, Compressor 1	10	10	10	10	10	10	10	10	10	
res	Amps (RLA), Comp. 1	33.3/33.3	33.3/33.3	33.3/33.3	17.9	17.9	17.9	12.8	12.8	12.8	
Compressor Motor	Amps (LRA), Comp. 1	239/239	239/239	239/239	125	125	125	80	80	80	
ರ	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	
	Amps (RLA), Comp. 2	29.5/29.5	29.5/29.5	29.5/29.5	14.7	14.7	14.7	12.2	12.2	12.2	
	Amps (LRA), Comp. 2	195/195	195/195	195/195	95	95	95	80	80	80	
-	No.	6	6	6	6	6	6	6	6	6	
ĕ	Volts	208/230	208/230	208/230	460	460	460	575	575	575	
sor	Phase	1	1	1	1	1	1	1	1	1	
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	
ਵ	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4	1	1	1	
_ <u>3</u>	Amps (LRA, each)	4.7/4.7	4.7/4.7	4.7/4.7	2.4	2.4	2.4	1.8	1.8	1.8	
	No.	1	1	1	1	1	1	1	1	1	
Fan	Volts	208/230	208/230	208/230	460	460	460	575	575	575	
Evaporator Fan	Phase	3	3	3	3	3	3	3	3	3	
por:	HP	5	7 1/2	7 1/2	5	7 1/2	7 1/2	5	7 1/2	7 1/2	
Eva	Amps (FLA, each)	14.7/14.7	23.1/23.1	23.1/23.1	6.6	9.6	9.6	5.3	7.8	7.8	
	Amps (LRA, each)	82.6/82.6	136/136	136/136	46.3	67	67	39.4	53.8	53.8	

	ELECTRICAL DATA – RKNL- SERIES								
		C300CL H300CR	C300CM H300CS	C300DL H300DR	C300DM H300DS	C300YL	C300YM		
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632		
ijon	Volts	208/230	208/230	460	460	575	575		
mai	Minimum Circuit Ampacity	147/147	149/149	60	63	47	50		
Unit Information	Minimum Overcurrent Protection Device Size	175/175	175/175	70	70	60	60		
ä	Maximum Overcurrent Protection Device Size	175/175	175/175	70	80	60	60		
	No.	2	2	2	2	2	2		
	Volts	200/240	200/240	460	460	575	575		
<u>.</u>	Phase	3	3	3	3	3	3		
Mot	RPM	3450	3450	3450	3450	3450	3450		
	HP, Compressor 1	11 1/2	11 1/2	11 1/2	11 1/2	11 1/2	11 1/2		
ress	Amps (RLA), Comp. 1	48.1/48.1	48.1/48.1	18.6	18.6	14.7	14.7		
Compressor Motor	Amps (LRA), Comp. 1	245/245	245/245	125	125	100	100		
ప	HP, Compressor 2	11 1/2	11 1/2	11 1/2	11 1/2	11 1/2	11 1/2		
	Amps (RLA), Comp. 2	48.1/48.1	48.1/48.1	18.6	18.6	14.7	14.7		
	Amps (LRA), Comp. 2	245/245	245/245	125	125	100	100		
or	No.	6	6	6	6	6	6		
Mot	Volts	208/230	208/230	460	460	575	575		
SOL	Phase	1	1	1	1	1	1		
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3		
ш	Amps (FLA, each)	2.4/2.4	2/2	1.4	1.4	1	1		
ŭ	Amps (LRA, each)	4.7/4.7	3.9/3.9	2.4	2.4	1.8	1.8		
_	No.	1	1	1	1	1	1		
Fan	Volts	208/230	208/230	460	460	575	575		
ıto.	Phase	3	3	3	3	3	3		
pora	HP	7 1/2	10	7 1/2	10	7 1/2	10		
Evaporator Fan	Amps (FLA, each)	24.2/24.2	28.5/28.5	9.6	12.5	7.8	10		
_	Amps (LRA, each)	136/136	178/178	67	74.6	53.8	59.2		

[] Designates Metric Conversions


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

* RECOMMENDED DUCT CONNECTION SIZE


DUCT SIDE VIEW (REAR)

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

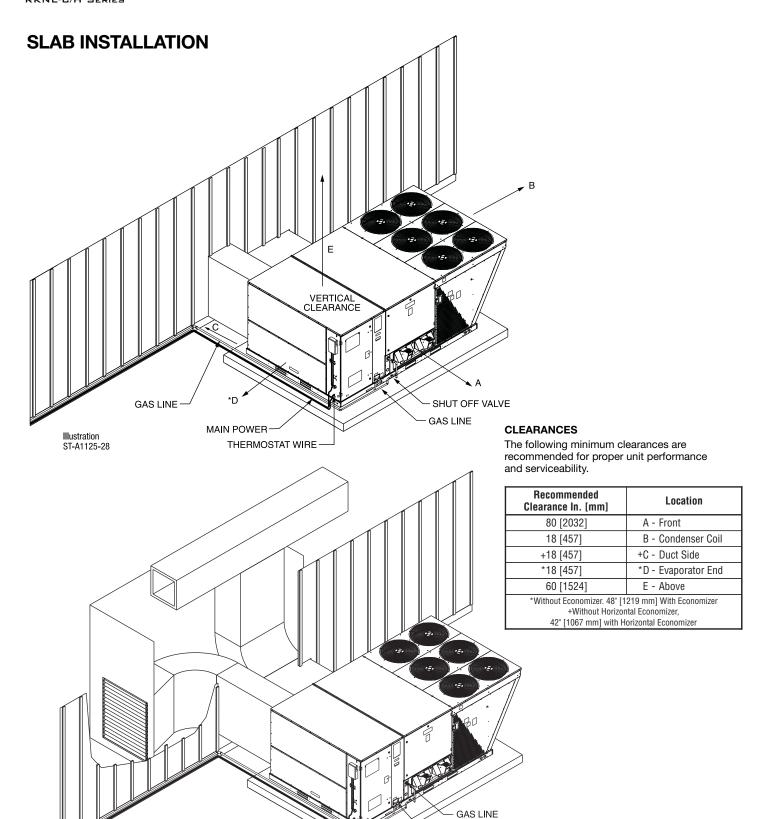
BOTTOM VIEW

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

Accessory	Shipping—lbs [kg]	Operating—Ibs [kg]
Economizer—Downflow	155 [70.31]	146 [66.22]
Economizer—Horizontal	165 [74.80]	155 [70.31]
Fresh Air Damper (Manual)	51 [23.13]	40 [18.14]
Fresh Air Damper (Motorized)	46 [20.87]	35 [15.88]
Roof Curb 14"	170 [77.11]	164 [74.39]

Corner weights measured at base of unit.

32%


15-25 [52.8-87.9]

27%

16%

D

24%

- DRAINLINE

[] Designates Metric Conversions

Illustration ST-A1125-27 MAIN POWER WIRE

THERMOSTAT WIRE

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Thermostat	See Therm	ostat Specification Sheet ((T22-001)	No
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-PMCM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD-SMCM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV03	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-RMCM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Power Exhaust (575V)	RXRX-BGF05Y	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKNL-C 300C voltage models.

^[] Designates Metric Conversions

THERMOSTATS

200-Series *
Programmable

300-Series *
Deluxe
Programmable
400-Series *
Special Applications/

Programmable

500-Series * Communicating/Programmable

Brand		Descripter (3 Characters)	Series (3 Characters)	System (2 Characters)	Type (2 Characters)
UHC	-	TST	213	UN	MS
UHC=Ruud		TST=Thermostat	200=Programmable 300=Deluxe Programmable 400=Special Applications/ Programmable 500=Communicating/ Programmable	GE=Gas/Electric UN=Universal (AC/IHP/GE) MD=Modulating Furnace DF=Dual Fuel CM=Communicating	SS=Single-Stage MS=Multi-Stage

^{*} Photos are representative. Actual models may vary.

For detailed thermostat match-up information, see specification sheet form number T22-001.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

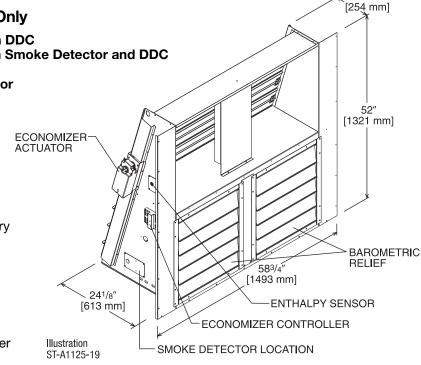
COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

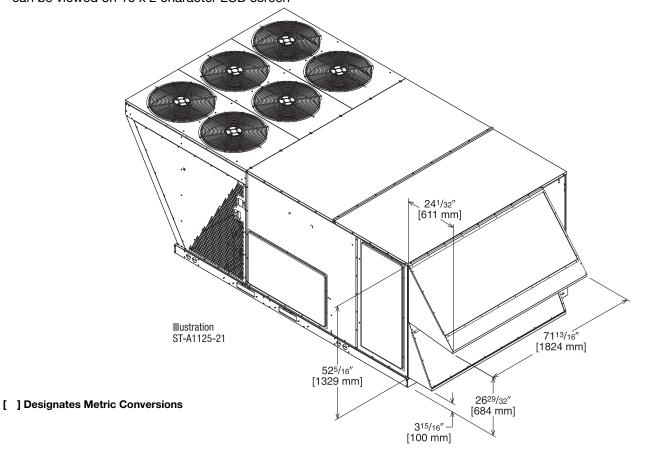
LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.


ECONOMIZERS Use to Select Factory Installed Options Only AXRD-PMCM3—Single Enthalpy (Outdoor) with DDC

AXRD-SMCM3—Single Enthalpy (Outdoor) with Smoke Detector and DDC

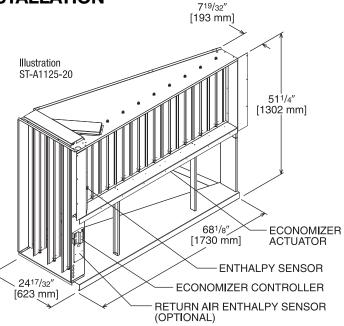
RXRX-AV03—Dual Enthalpy Upgrade Kit


RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

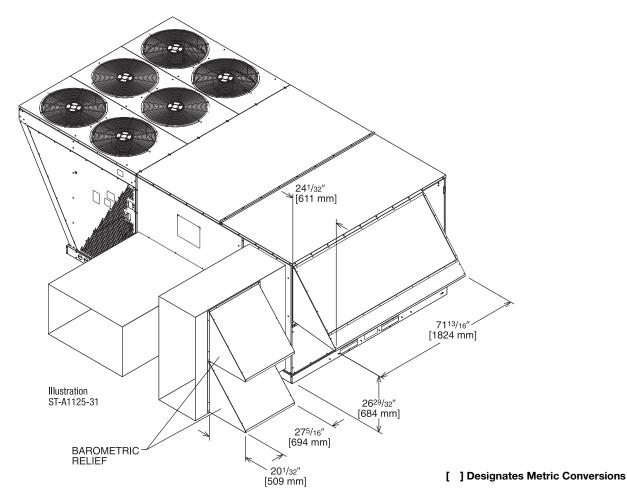
- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen

TOLERANCE ±.125

10"

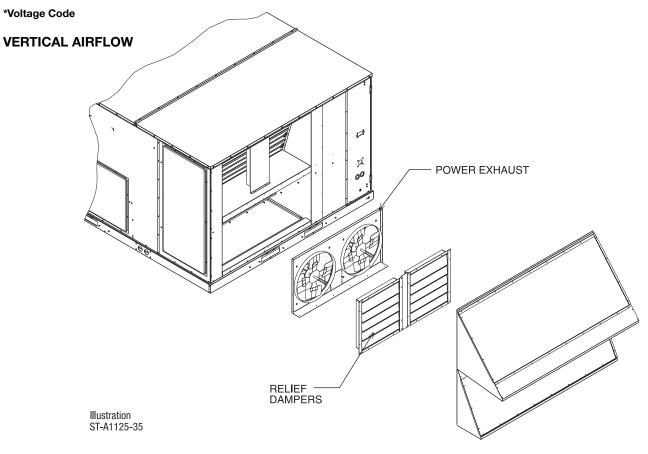


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATIONField Installed Only


AXRD-RMCM3—Single Enthalpy (Outdoor) with DDC

RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



TOLERANCE ± .125

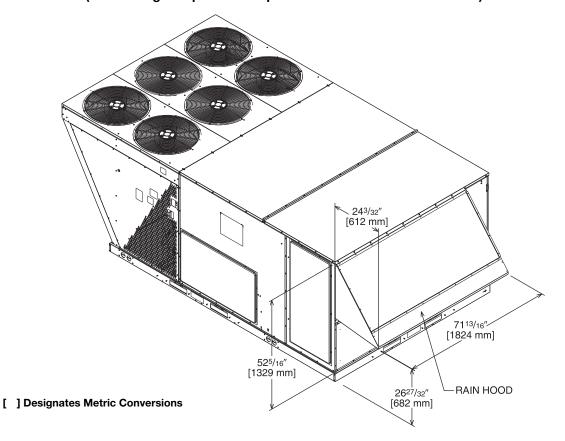
POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

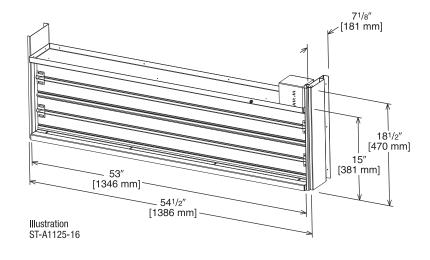
RXRX-BGF05 (C, D, or Y*)

Model No.	No.	Volts	Phase	ts Phase	HP	Low Spec	ed	High Spee	d ①	FLA	LRA
Model No.	of Fans	VUIIS			(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97	
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4	
RXRX-BGF05Y	2	575	1	0.75	4100 [1935]	850	5200 [2454]	1050	1.5	2.84	

NOTES: ① Power exhaust is factory set on high speed motor tap.
② CFM is per fan at 0" w.c. external static pressure.

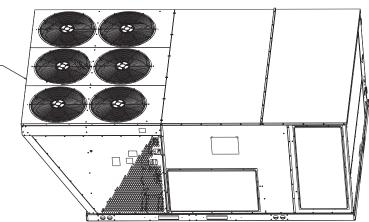
FRESH AIR DAMPER


MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)

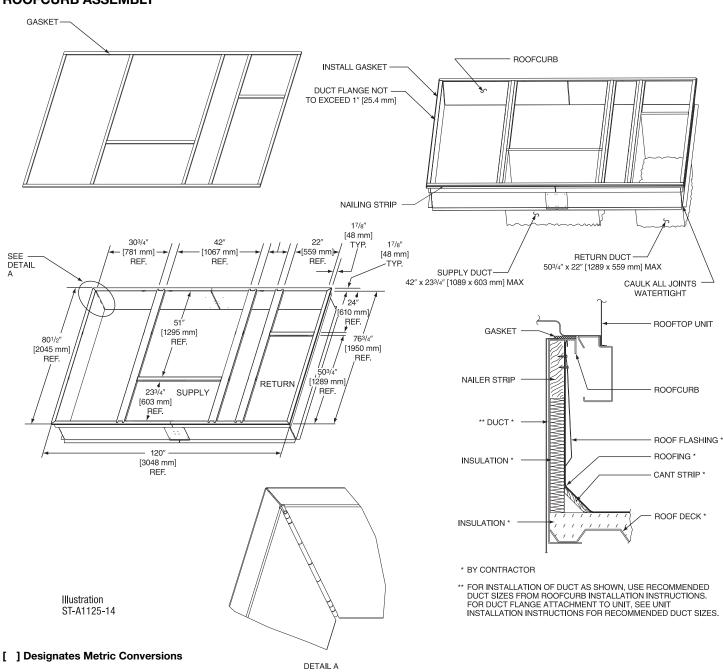

- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

RXRX-AW03 (Motorized damper kit for manual fresh air damper)

RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)

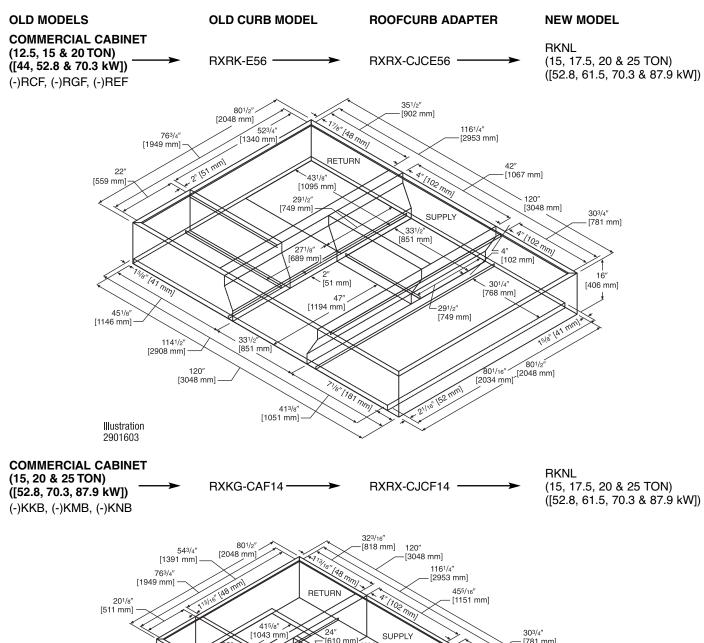

Illustration

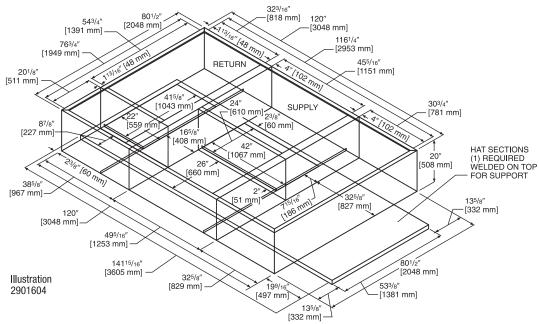
ST-A1125-17

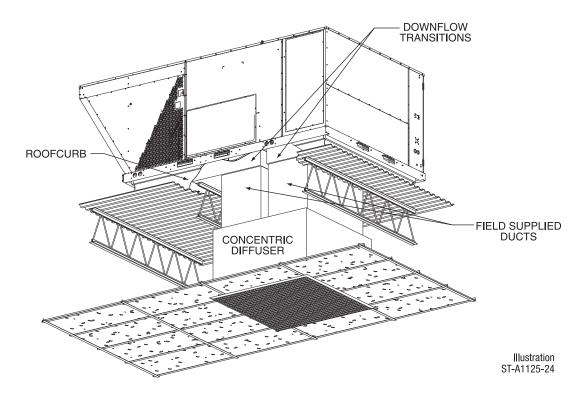

ROOFCURBS (Full Perimeter)

- Ruud's new roofcurb designs can be utilized on 15, 17.5, 20 and 25 ton [52.8, 61.5. 70.3 and 87.9 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

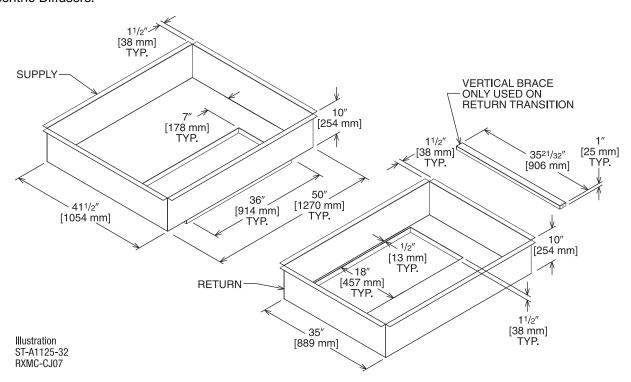
TYPICAL INSTALLATION




ROOFCURB ASSEMBLY

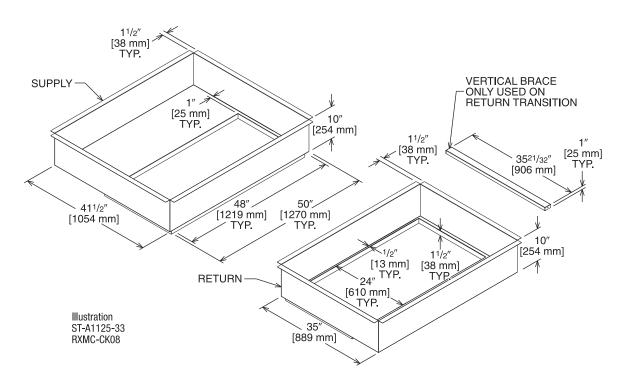

UNIT-

ROOFCURB ADAPTER

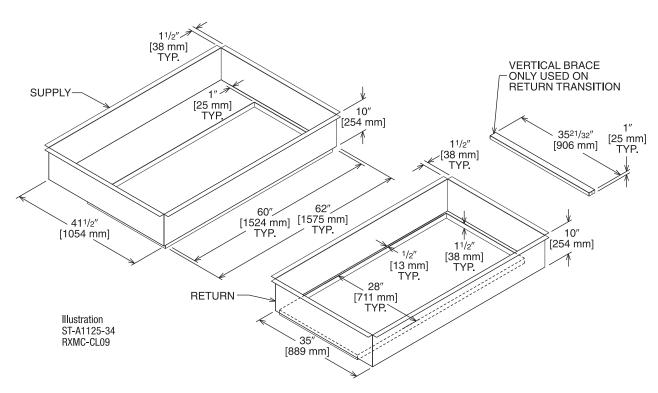

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

RXMC-CJ07 (15 Ton) [52.8 kW]

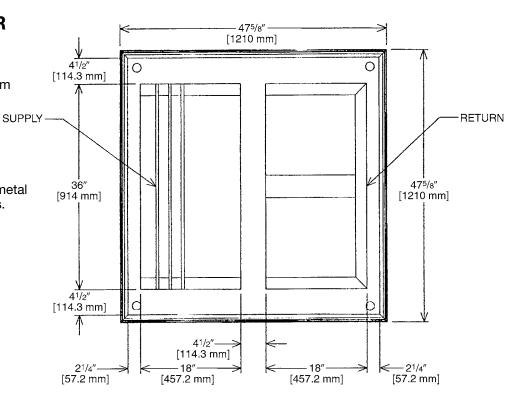

 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers.

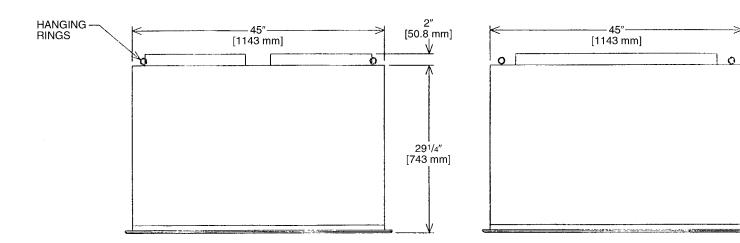
DOWNFLOW TRANSITION DRAWINGS (Cont.)


RXMC-CK08 (20 Ton) [70.3 kW]

■ Used with RXRN-AD86 Concentric Diffusers.

RXMC-CL09 (25 Ton) [87.9 kW]

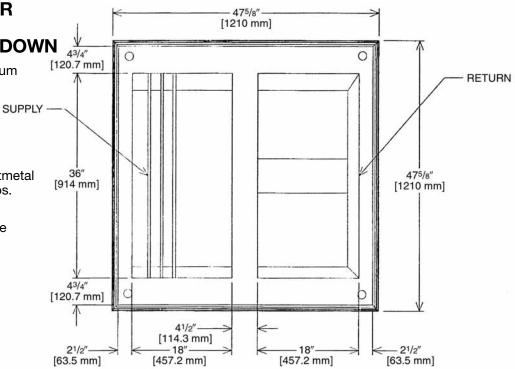

■ Used with RXRN-AD88 Concentric Diffusers.

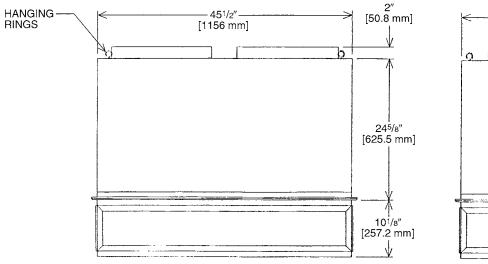


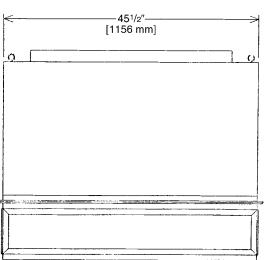
CONCENTRIC DIFFUSER RXRN-AD80 SERIES 15 TON [52.8 kW] FLUSH

 All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

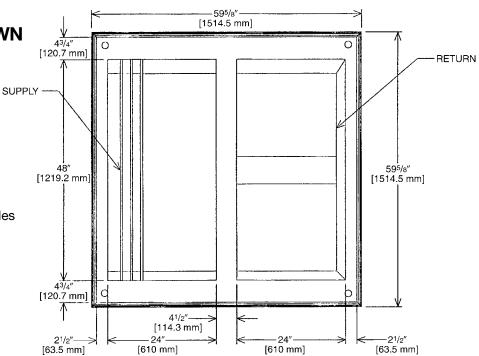

CONCENTRIC DIFFUSER SPECIFICATIONS

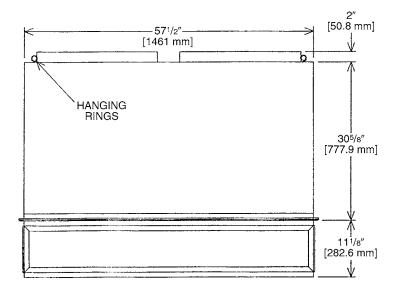

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD80	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
	6000 [2832]	0.42	40-50	1071	2230
	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

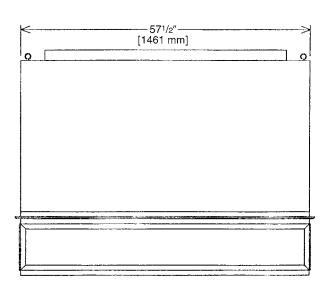

CONCENTRIC DIFFUSER RXRN-AD81 SERIES 15 TON [52.8 kW] STEP DOWN

All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

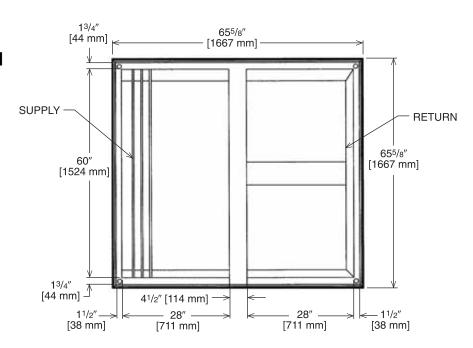


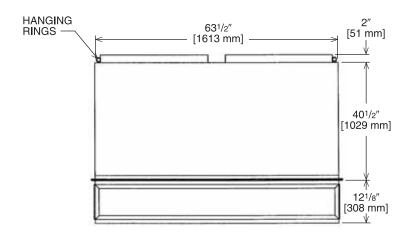

CONCENTRIC DIFFUSER SPECIFICATIONS

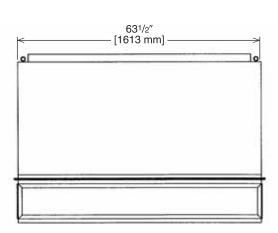

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD81	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
	6000 [2832]	0.42	44-54	1022	1022
	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.




CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
RXRN-AD86	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010

CONCENTRIC DIFFUSER RXRN-AD88 SERIES 25 TON [87.9 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD88	10000 [4719]	0.51	46-54	907	907
	10500 [4955]	0.58	50-58	953	953
	11000 [5191]	0.65	53-61	998	998
	11500 [5427]	0.73	55-64	1043	1043
	12000 [5663]	0.82	58-67	1089	1089
	12500 [5898]	0.91	61-71	1134	1134
	13000 [6134]	1.00	64-74	1179	1179

Guide Specifications RKNL-C/H 180 thru C/H300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute, www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

- a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
- b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 2, heat stage 3, exhaust/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at $115^{\circ}F$ (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at \pm 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
- 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Gas Connections:

- a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.

23 81 19.13.I. Gas Heat

1. General

- a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
- b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
- Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
- d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
- d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- e. Compressor shall be factory mounted on rubber grommets.
- f. Compressor motors shall have internal line break thermal and current overload protection.
- g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air. The barometric relief damper shall include seals, hardware and hoods to relieve building pressure. Damper shall gravity close upon unit shut down.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single-enthalpy sensor shall be provided as standard. Outdoor air enthalpy set point shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - m. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - n. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.

2. Two-Position Damper

- Damper shall be a Two-Position Damper. Damper travel shall be from the full closed position to the field adjustable %open setpoint.
- b. Damper shall include adjustable damper travel from 25% to 100% (full open).
- c. Damper shall include single or dual blade, gear driven damper and actuator motor.
- d. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- e. Damper will admit up to 100% outdoor air for applicable rooftop units.
- f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
- g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
- h. Outside air hood shall include aluminum water entrainment filter.
- 3. Manual damper
 - Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Liquid Propane (LP) Conversion Kit
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.
 - e. Non-Powered convenience outlet.
 - f. Outlet shall be powered from a separate 115-120v power source.
 - g. A transformer shall not be included.
 - h. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.

- i. Outlet shall include 15 amp GFI receptacle.
- j. Outlet shall be accessible from outside the unit.

7. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.

8. Thru-the-Base Connectors:

a. Kits shall provide connectors to permit gas and electrical connections to be brought to the unit through the unit basepan.

9. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust is shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- Full perimeter roof curb with exhaust capability providing separate airstreams for energy recovery from the exhaust air without supply air contamination.
- b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.

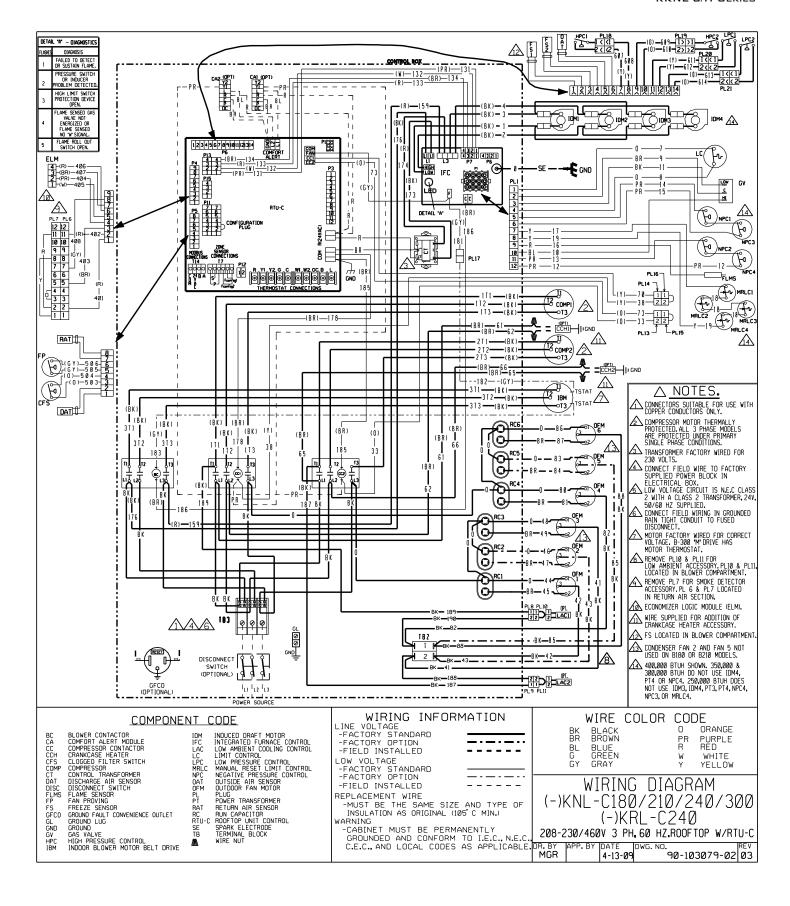
12. Outdoor Air Enthalpy Sensor:

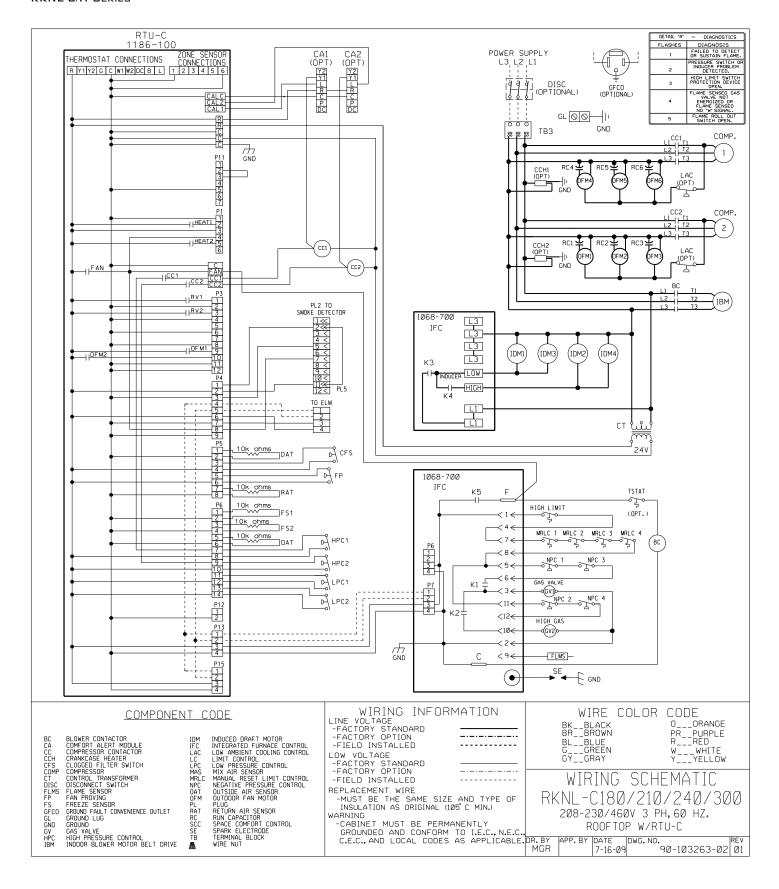
a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.

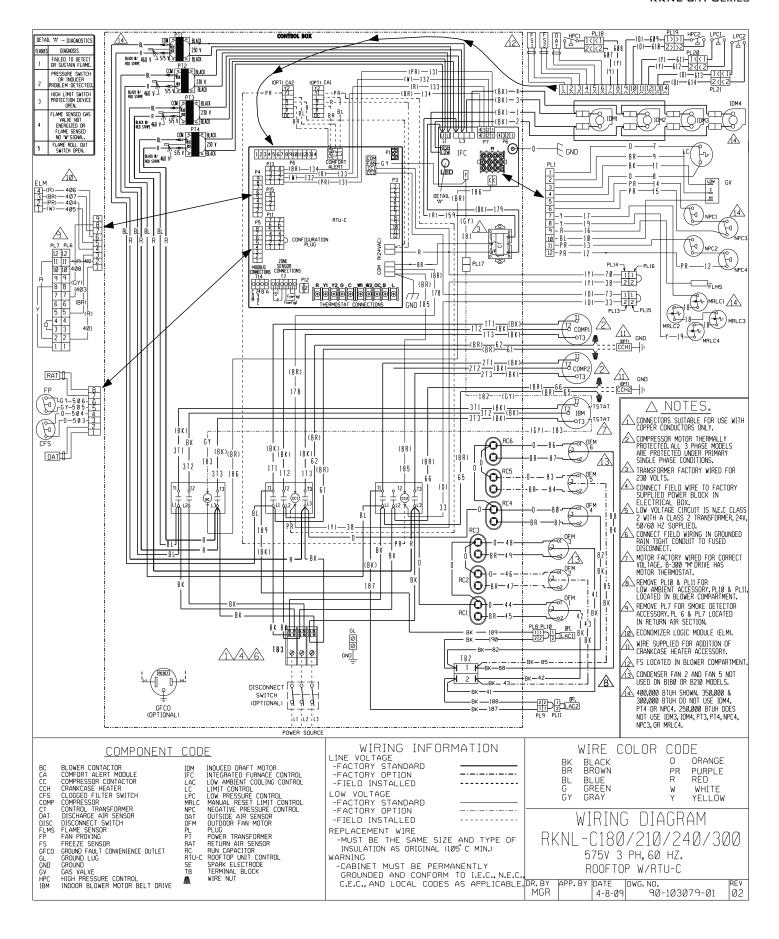
13. Return Air Enthalpy Sensor:

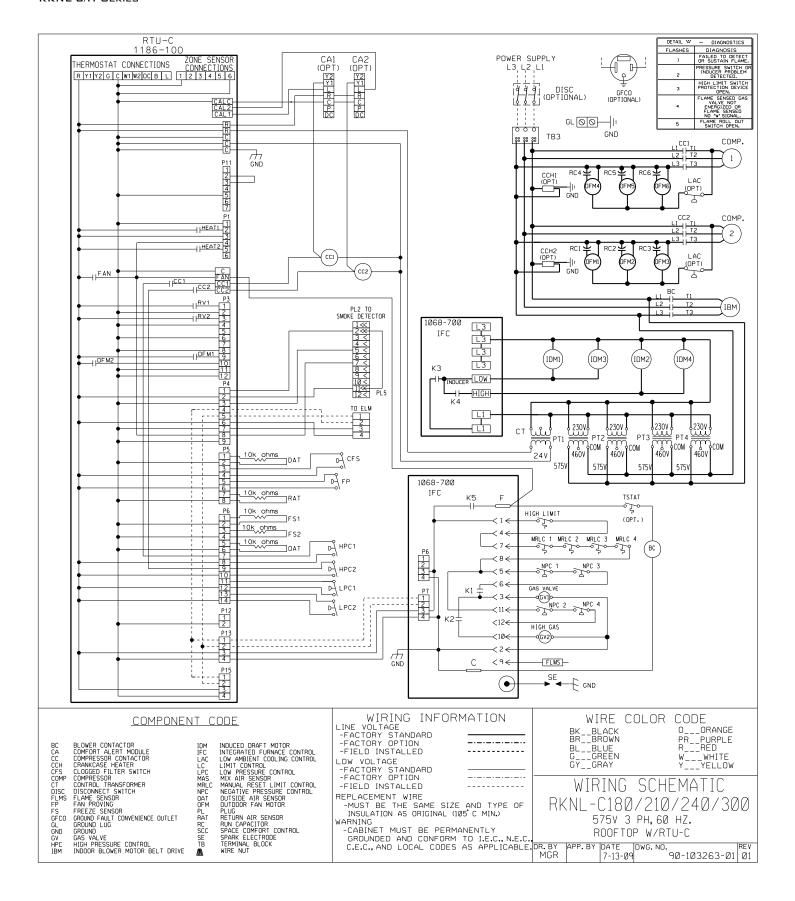
 a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

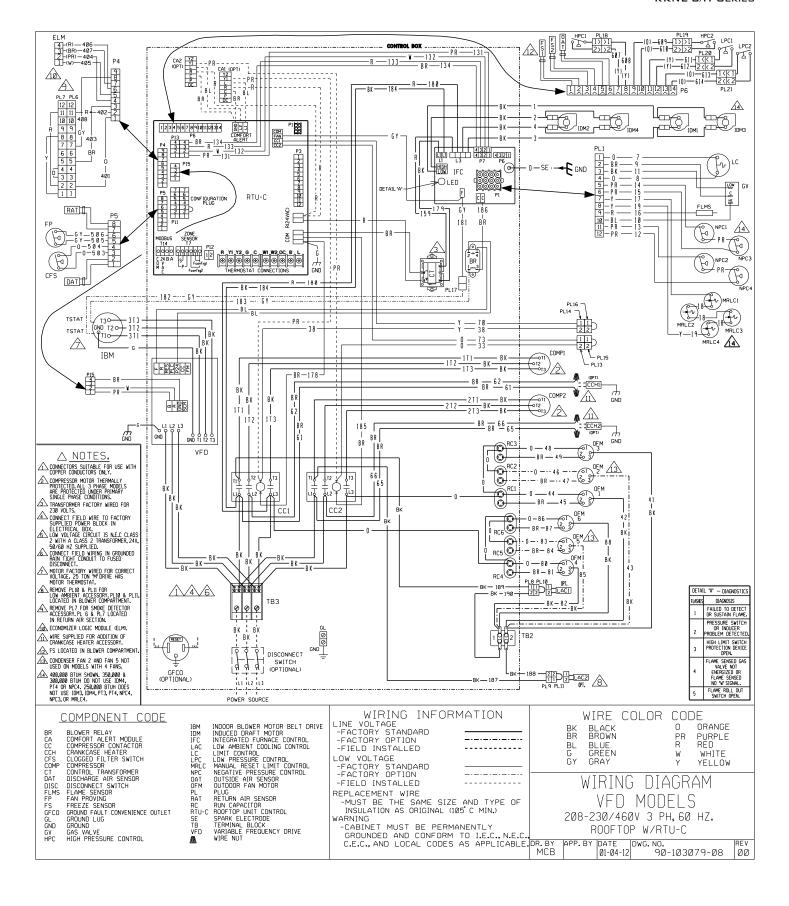
14. Indoor Air Quality (CO2) Sensor:

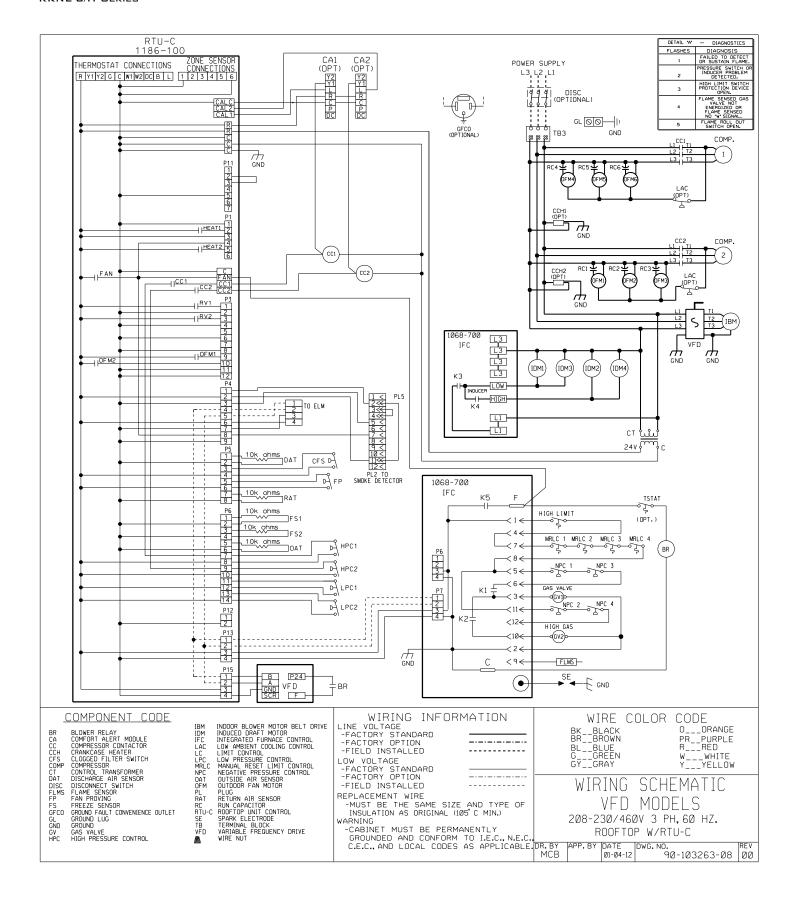

- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in wall mount with LED display. The set point shall have adjustment capability.


15. Smoke detectors:


- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control
 panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.


26 29 23.12. Adjustable Frequency Drive


- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.



BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Ruud will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compr	essor

3 Phase, Commercial ApplicationsFive (5) Years **Parts**

3 Phase, Commercial Applications.....One (1) Year

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Factory Standard Heat Exchanger 3 Phase, Commercial ApplicationsTen (10) Years Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

In keeping with its policy of continuous progress and product improvement, Ruud reserves the right to make changes without notice.